Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ориентация кристалла

Рентгенографический метод, в частности, микроанализ с помощью электронного зонда пригоден для исследования продуктов, образующих пленку на металлах определения размеров и ориентации кристаллов, а также измерения параметров кристаллической решетки.  [c.436]

Поляризация света. Опыт показывает, что интенсивность светового пучка, проходящего через некоторые прозрачные кристаллы, например исландского шпата, зависит от вза [Мной ориентации двух кристаллов. При одинаковой ориентации кристаллов свет проходит через второй кристалл без ослабления. Если же второй кристалл повернут на 90° от первоначального положения, то свет через него не проходит.  [c.268]


Если один из пучков по выходе из первого кристалла заставить упасть нормально на грань второго кристалла, то мы опять получим два пучка, лежащих в главной плоскости второго кристалла и поляризованных так же, как и раньше, по отношению к главной плоскости второго кристалла. Таким образом, направление поляризации зависит только от ориентации кристалла и не зависит от того, поляризован ли падающий на него свет или же он является естественным. Интенсивности обоих пучков будут, однако, в случае поляризованного падающего луча зависеть от угла а между направлением колебаний в падающем поляризованном луче и главной плоскостью второго кристалла. Действительно, во втором кристалле направление колебаний в необыкновенном луче, лежащих в главной плоскости второго кристалла, составит угол а с направлением колебаний в падающем поляризованном свете, а направление колебаний в обыкновенном луче образует с ним угол я/2 — а. Если амплитуда падающей на второй кристалл волны равна А, то амплитуды обеих волн, выходящих из кристалла, будут равны  [c.383]

Опыт полностью подтверждает эти расчеты. Если, например, расположить два кристалла один за другим и, задержав один из лучей, рассматривать на экране следы двух пучков и / , на которые разобьется второй, то относительные интенсивности их будут зависеть от взаимной ориентации кристаллов. Поворачивая кристалл относительно обыкновенного луча на 360", мы заставим обойти вокруг него пятнышко от необыкновенного луча, причем отношение их интенсивностей будет меняться в соответствии с формулой /о//е = tg а (см. упражнение 146).  [c.384]

Изменение ориентации кристалла (или его температуры, или наложение на кристалл постоянного электрического поля) приводит к смещению частот, для которых выполняется условие синфазности в направлении максимальной добротности, перпендикулярном зеркалам, и в результате частоты генерируемого излучения СО1, з изменятся. Таким образом, параметрические генераторы света позволяют получать мощное когерентное излучение с плавной перестройкой его частоты.  [c.853]

Если известна ориентация кристалла относительно направления действующих напряжений, то можно вычислить касательную (скалывающую) составляющую напряжений, при которой начинается пластическая деформация для каждой из возможных для данного кристалла систем скольжения. Для вывода расчетной формулы рассмотрим монокристалл в виде - цилиндра, С площадью поперечного сечения S, к которому вдоль оси приложено растягивающее усилие F (рис. 4.15).  [c.131]

Если ось конуса лучей не совпадает с оптической осью пластинки, то геометрические места одинаковой разности фаз будут не окружностями, а более сложными кривыми. Интерференционные фигуры для одноосных пластинок, вырезанных под различными углами к оптической оси, изображены на рис. 18.13. Столь характерные различия фигур используются в кристаллографии, минералогии и т. п. для быстрого качественного определения ориентации кристаллов.  [c.62]


Что же касается Гюйгенса, то здесь вопрос о понимании ученым природы света оказался более острым. Недостаточное понимание этой природы, как известно, не позволило Гюйгенсу объяснить его же собственные опыты по двойному лучепреломлению, в которых пучок света пропускался последовательно через два кристалла. Гюйгенс наблюдал, как вышедшие из первого кристалла обыкновенный и необыкновенный лучи вели себя во втором кристалле по-разному — в зависимости от взаимной ориентации кристаллов. В одни случаях каждый из лучей снова расщеплялся на два луча. В других случаях нового расщепления лучей не происходило при этом вышедший из первого кристалла обыкновенный луч либо оставался во втором кристалле обыкновенным лучом, либо (при иной ориентации кристаллов) вел себя как необыкновенный луч. Аналогично вел себя и необыкновенный луч, вышедший из первого крис-  [c.9]

Для компенсированных металлов (п, = п ) с замкнутыми ПФ (бериллий, молибден, вольфрам, полуметаллы) p.t.i ад (ол) oS- для всех направлений. Небольшая анизотропия, не зависящая от В, обусловлена несферичностью ПФ. Эффект Холла (и соответственно коэффициент Холла ) — сложная функция S, Г и ориентации кристалла.  [c.738]

Тл ф — угол поворота магнитного поля в плоскости, перпендикулярной электрическому току через образец. Ориентация кристалла 0 = 34°. S=°3 0 и — полярный н азимутальные углы осей образца относительно главных осей кристалла) и зависимость Лр/р для Мо от магнитной индукции (б) в направлениях минимума и максимума угловой диаграммы а (см. п. 3, с. 738)  [c.750]

Рис. 30.36. Анизотропия Ар/р для монокристалла Pd [25] (а) (Г = 4,2 К В = 2,3 Тл ф — угол поворота магнитного поля в плоскости, перпендикулярной электрическому току через образец ориентация кристалла 0 = 6°, = 27° 0 и i — полярный и азимутальный углы осей образца относительно главных осей кристалла) и зависимость Лр/р от магнитной индукции (б) в направлениях минимума и максимума угловой диаграммы а (см. п. 2. с. 738) Рис. 30.36. Анизотропия Ар/р для монокристалла Pd [25] (а) (Г = 4,2 К В = 2,3 Тл ф — <a href="/info/2649">угол поворота</a> <a href="/info/20176">магнитного поля</a> в плоскости, перпендикулярной электрическому току через образец ориентация кристалла 0 = 6°, = 27° 0 и i — полярный и азимутальный углы осей образца относительно главных осей кристалла) и зависимость Лр/р от <a href="/info/11296">магнитной индукции</a> (б) в направлениях минимума и максимума угловой диаграммы а (см. п. 2. с. 738)
Конечно, такой способ расчета не может претендовать на высокую точность многое зависит от ориентации кристалла, его строения, а также от типа связей между атомами в кристаллической решетке. Но любопытно, что множество достаточно точных расчетов по оценке так называемой идеальной (расчетной) прочности дают для всех материалов практически тот же результат. Напряжения необратимого скольжения, а также и отрыва по основным кристаллографическим плоскостям лежат для всех материалов в пределах 5... 16 % от f . Прямая связь между идеальной прочностью и модулем упругости очевидна. Они имеют общее происхождение и определяются характером межатомного сцепления. И, наконец, есть еще нечто общее, что сохраняется для всех материалов. Результаты теоретических расчетов по идеальной прочности находятся в резком противоречии с тем, что мы получаем при испытании образцов на растяжение. И возникновение общей текучести, и последующий разрыв образца происходят при напряжениях, в лучшем случае, в десятки, а то и в сотни раз меньших, чем те, которые прогнозируются расчетом.  [c.76]

Наиболее высокими защитными свойствами обладают покрытия с преимущественной ориентацией кристаллов плоскостью 0001 и текстурой с меньшим рассеянием [46].  [c.56]

Полиморфное превращение облегчается при наличии энергетических флуктуаций внутри исходной фазы, флуктуациях плотности, обеспечивающих зарождение и. рост НОВЫХ зерен внутри старой фазы без образования поверхности раздела, а с постепенным и плавным переходом кристаллической структуры одной фазы в другую, готовой поверхности раздела, на которой могут нарастать слои атомов новой фазы (наличие нерастворимых примесей). Форма и ориентация кристаллов новой фазы, зарождающихся внутри кристаллов исходной фазы, должна соответствовать минимуму поверхностной энергии, что обеспечивается при максимальном сходстве расположения атомов  [c.51]


Получаемая в результате ТМО предпочтительная ориентация кристаллов мартенсита также оказывает определенное влияние, проявляющееся в анизотропии механических свойств [111, 112, 121]. Так, испытания образцов стали 4340, упрочненных с помощью НТМО и вырезанных в продольном и поперечном направлениях, показали, что ориентация образцов, не оказывая заметного влияния на прочностные свойства (аь и з ) существенно влияет на характеристики пластичности относи-  [c.76]

В Со — Р-покрытиях обнаруживается преимущественная ориентация кристаллов текстура и степень совершенства которой зависят от условий их получения и содержания в них фосфора При поперечном срезе покрытий наблюдают четкую столбчатую струк туру перпендикулярную поверхности основы, а также слоистость, характерную и для Ni—Р покрытий Можно предполагать, что слоистость вызвана колебаниями в распределении фосфора по толщине покрытия которые связаны с периодическим изменением соотношения скоростей реакции восстановления кобальта и фосфора 1см уравнения (12) и (13)]  [c.57]

Особенность начального образования оксида состоит в том, что из-за несовершенства поверхности отдельные зародыши располагаются на металле хаотично. Поскольку интенсивность и характер хемосорбции во многом определены ориентацией кристаллов, наличием кромок, пустот, дефектов на поверхности и т. д., предполагается, что хемосорбция является преобладающей в окислении металла в начальной стадии образования оксида, Число зародышей мало зависит от времени, а возрастает с повышением парциального давления кислорода-в окружающей среде. С повышением температуры число зародышей, приходящихся на единицу поверхности, убывает. Объясняется это увеличением поверхностной диффузии, что в свою очередь расширяет зародыши по размерам. После об-разования размещающихся хаотично на поверхности зародышей оксида окисление в дальнейшем идет путем роста отдельных кристаллов до тех пор, пока поверхность полностью не покрывается тонким оксидным слоем. Иногда такие дискретные зародыши и кристаллы оксидов могут образовываться даже после возникновения тонкой оксидной пленки [62]. Им часто отводят важную роль в общем процессе окисления металла.  [c.46]

Такая же тенденция в ориентации кристаллов с повышением температуры получения наблюдалась при силицировании в интервале 1250—1350° в порошке кремния [5].  [c.72]

Усиление преимущественной ориентации кристаллов с повышением температуры силицирования объясняется, по-видимому, уменьшением напряжений образования в слое.  [c.72]

С повышением температуры силицирования увеличивается размер зерен дисилицида молибдена, сильно повышается степень преимущественной ориентации кристаллов, уменьшается микротвердость, что объясняется уменьшением напряжений образования силицидов  [c.74]

Во всех случаях существенное влияние на реализацию скольжения по той или иной плоскости оказывает ориентация кристалла по отношению к действующей нагрузке.  [c.18]

В качестве реактива для штрихового травления меди указывается раствор III способа с применением тиосульфата натрия. Аналогичные результаты получают при травлении а-твердого раствора латуни в течение 60 мин. Для (а + р)-латуни после различной продолжительности травления можно определить ориентацию кристаллов сначала в р-, а затем в а-твердом растворе. Продолжительность травления, необходимая для выявления штриховых фигур, составляет для Р-фазы около 6 мин [в растворе (И)] и для а-фазы 60 мин [в растворе (III)]. У (а + р)-деформируемой латуни также можно обнаружить текстуру (Клемм [17]), у а-латуни в поперечном сечении появляются преимущественно сетчатые штриховые фигуры (111), а в продольном шлифе — параллельные штрихи (ПО). Для р-латуни, напротив, характерно преобладание в поперечном сечении параллельных, а в продольном шлифе — сетчатых штриховых фигур.  [c.202]

Сталь Ст. Б подвергалась следующей обработке аустенизация при температуре 1100 С в течение 1 ч подстуживание до температуры деформации 900°С пластическая деформация растяжением на 6% немедленная закалка с температуры деформации в воде отпуск при температуре 500°С. В этом случае упрочнение связано с измельчением аустенита вследствие образования дефектов кристаллической решетки большой плотности. При этом имеет место измельчение мартенситных пластин, образование тонкой структуры, направленная ориентация кристаллов мартенсита [72]. При последующем отпуске упрочнение является следствием дисперсионного твердения и изменения характера выделений карбидов.  [c.48]

Методика и аппаратура для получения никелевого композиционного материала, содержащего нитевидные кристаллы карбида кремния, описаны в работе [224 I. Отмечено, что большая степень реализации прочности нитевидных кристаллов в композиции может быть достигнута только при достаточной ориентации кристаллов в материале в заданном направлении. Получены образцы композиционных материалов, содержащих около 10 об. % кристаллов карбида кремния, достаточно хорошо ориентированных в одном направлении. Материал имел очень высокие прочностные свойства предел прочности при растяжении — 227 кгс/мм , модуль упругости 31 200 кгс/мм . Эти результаты дают основание полагать, что метод электроосаждения является одним из наиболее перспективных, позволяющих реализовать уникальные свойства нитевидных кристаллов в металлических композиционных материалах.  [c.180]

Финч и Кворелл (1933 г.) на основании своих исследований предположили, что ориентация кристаллов образующегося соединения может сопровождаться изменением характера решетки, т. е. образуется псевдоморфный слой, являющийся кристаллографическим продолжением решетки металла. Так, на поверхности металлического магния, обладающего гексагональной структурой, первичный псевдоморфный слой окислов также имеет гексагональную структуру, ориентированную по структуре металлического магния, хотя для компактного окисла MgO характерна кубическая структура. Однако существование таких псевдоморфных слоев в настоящее время считается недоказанным.  [c.43]


Такие модельные представления подтверждаются огромным экспериментальным материалом. Так, например, при исследовании кристаллов, обладающих высокосимметричной кубической решеткой, отсутствуют оптические эффекты, связанные с различной ориентацией кристалла относительно возбуждающего пучка света. Однако при внедрении в решетку кубического кристалла ионов какого-либо элемента могут образоваться локальные анизотропные центры. При этом кристалл остается макроскопически изотропным, но такая "скрытая анизотропия" может быть обнаружена при том или ином анизотропном воздействии. Даже полностью изотропное вещество может стать анизотропным под воздействием внешних механических или электрических воздействий.  [c.113]

Еще Гюйгенс (1690 г.), изучая открытое Бартолином (1670 г.) свойство исландского шпата раздваивать проходящие через него световые лучи (двойное лучепреломление), нашел, что каждый из полученных таким образом лучей ведет себя при прохождении через второй кристалл исландского шпата иначе, чем обычные лучи а именно, в зависимости от ориентации кристаллов друг относительно друга каждый из лучей, раздваиваясь во втором кристалле, дает два луча различной интенсивности, а при некоторых ориентировках — только один луч (интенсивность другого падает до нуля). Гюйгенс не нашел объяснения открытому им явлению. Ньютон (1704 г.), обсуждая открытие Гюйгенса, обратил внимание на то, что здесь проявляются основные свойства света ( изначальные , как называет их Ньютон), в силу которых луч имеет как бы четыре стороны, так ЧТО направление, соединяющее одну пару сторон, неравноправно с перпендикулярным направлением. В силу этого Ньютон видел в световых корпускулах некоторое внешнее сходство с магнитиками, обладающими полюсами, благодаря чему направление вдоль магнитика неравноправно с перпендикулярным направлением.  [c.371]

Конечно, явление вращения плоскости поляризации имеет место и тогда, когда свет направлен не вдоль оси кристалла, а под углом к ней. Но изучение его в этих условиях значительно труднее, ибо явление частично маскируется обычным двойным лучепреломлением. Еще труднее наблюдать явление в двуосных кристаллах, так как вращение может быть различным вдоль каждой из осей. Наконец, известны также некоторые кристаллы кубической системы, не обнаруживающие обычно двойного лучепреломления, но обладающие свойством вращать плоскость поляризации (хлорноватистокислый натрий НаСЮа и бромноватистокислый натрий КаВгОз) в этом случае величина вращения не зависит от ориентации кристалла.  [c.610]

Установлено, что нормальные напряжения почти не оказывают влияния на пластическое течение кристаллов. Таким образом, пластическая деформация происходит под действием касательных напряжений. При этом, как показано экспериментально, напря-н< ение, соответствующее пределу текучести, сильно меняется в зависимости от ориентации кристалла, однако если согласно (4.38) это напряжение преобразовать в приведенное напряжение, то результирующее напряжение сдвига является константой данного материала (типичные значения этого напряжения обычно находятся в пределах (/ " - —Ю- ) G. Другими словами, пластическая деформация начинается в том случае, когда скалывающее напряжение -X превышает некоторое критическое значение, характерное для данного материала и данной системы скольжения. Этот закон постоянства критического скалывающего напряжения впервые на основании экспериментальных данных был сформулирован Е. Шмидом и В. Боасом. В соответствии с этим законом, если образец находится под действием постепенно возрастающей нагрузки, то скольжение мало до тех пор, пока скалывающие напряжения не превзойдут определенного предельного значения, которое, например, при комнатной температуре для Си (плоскости скольжения 111 , направления скольжения <1Ю>) равно 0,49-10 Па, а для А1 (системы скольжения 111 , <1Ю>) и Zn (системы скольжения 0001 , <1120>)—соответственно 0,78-10 и 0,18-10 Па.  [c.132]

Рис. 30.48. Зависимость Ap/pi для тех же (см. рис. 30.47) вискеров Fe от цоЯ при температуре 300,77, 4,2 К и различных ориентациях кристаллов [44] Рис. 30.48. Зависимость Ap/pi для тех же (см. рис. 30.47) вискеров Fe от цоЯ при температуре 300,77, 4,2 К и различных ориентациях кристаллов [44]
Существенное увеличение 1кот достигабтся при точ-ном выполнении условий синхронизма в анизотропных кристаллах. В них показатель преломления, а следовательно, и фазовая скорость зависят не только от частоты, но и от поляризации волны, поэтому возможно выполнение условий синхронизма на значительно большей длине. При этом в зависимости от выбора поляризации и ориентации кристалла возможны два типа фазового синхронизма. В отрицательных одноосных кристаллах, где показатель преломления для обыкновенной волны По (волны с поляризацией, перпендикулярной плоскости, проходящей через оптическую ось кристалла и направление луча) больше показателя преломления для необыкновенной волны Пе (волны С поляризацией, параллельной указанной плоскости), в некотором направлении 01, отсчитываемом от направления оптической оси кристалла,  [c.878]

Для характеристики ориентировки кристалла в случае одноосного нагружения используется только один треугольник. Обычно берется треугольник с вершинами [001], [011], [111], расположенный в центре проекции. Все возможные ориентации кристаллов кубической структуры обозначаются точкой (например, оси растяжения) внутри такого треугольника или вдоль его границ. Поэтому на практике, если хотят представить ориентацию монокристаллическо-го образца, то измеряют углы между осью образца и, по крайней мере, двумя из трех направлений [001], [011], [111]. Затем положение этих осей откладывают на стандартном треугольнике, используя стереографическую сетку.  [c.116]

Скорость упрочнения (параметр 0ц) на стадии II упрочнения мала по сравнению с величиной 0и г. ц. к. монокристаллов, для которых 011 не является температурночувствительной характеристикой. В о. ц. к. монокристаллах, наоборот, 011 зависит от температуры и уменьшается с повышением температуры. Примеси внедрения оказывают существенное влияние на вид кривой т—у. Например, для а-железа величина 0ц чувствительна к ориентации кристалла, равна по величине значению 0ц для г. ц. к. монокристаллов (рис. 122,6). Наступление стадии II в ниобии точно отвечает появлению двойного скольжения, и протяженность стадии I увеличивается с удалением от симметричной границы кристаллографического треугольника [001]—[101]. У железа, например, можно обнаружить три стадии только у кристаллов мягкой ориентировки. Параболическая кривая т—у получается при скольжении по двум системам скольжения (рис. 122, б).  [c.200]

Как показали результаты рентгеноструктурного исследования, проведенные на дифрактометре УРС-5ИМ в СпЛГа-излучении, с повышением температуры получения увеличивается степень преимуш,ественной ориентации кристаллов.  [c.72]

Исследованы некоторые свойства слоев, полученных при силицировании молибдена в паровой фазе кремния при высоких температурах. Показано, что с повышением температуры силицирования увеличивается размер зерен дисилицида молибдена, сильно повышается степень преимущественной ориентации кристаллов, что объясняется уменьшением напряжений образования. Жаростойкость полученных образцов не хуже, чем у силицировапгшх при 1250 С. Библ. — 9 назв., рис. — 4.  [c.338]


Статистические исследования показали, что величина этого коэффициента может существенно изменяться в зависимости от места и направления вырезки образца. Это связано с тем, что у титана, как и у других гексагональных металлов, тепловое расширение зависит от ориентации кристаллов. Определение анизотропии термического расширения по данным температурной зависимости параметров решетки показало большее удлинение по оси с, чем по оси а. Различие составляет 10 — 20 %. Например, увеличение степени обжатия при волочении от 0 до 40 % приводит к возрастанию а с 8,4-10" до 9,9 10" °СГ . Дальнейшее увеличение степени обжатия не приводит к изменению текстурованности и не влияет на а. Отжиг при 400 —900°С также не влияет на величину а и только отжиг при 1100— 1200°С, при  [c.7]

Травитель 19 [водный раствор кислот HNO3, HF, H2SO4]. Раствор, приготовленный из равных объемов этих кислот, применен Кирнером [22] для исследования трещинообразования ванадиевых монокристаллов. Он выявляет трещины в направлении (ПО). Этот реактив наиболее пригоден для выявления фигур травления и определения ориентации кристалла.  [c.160]

Реактив Лакомбе 36 выявляет периодическое отражение. В процессе травления на отдельных зернах образуется чешуйчатая поверхность (рельефное травление), которая позволяет четко установить определенные кристаллографические направления. После рельефного травления раствором 36 возможна и качественная оценка ориентации кристаллов.  [c.261]

Принимают, что границей, при которой по рельефу поверхности можно микроскопически определить ориентацию кристаллов, является степень чистоты 99,7%. Джеквессон и Маненс [34] определяют ориентацию кристаллов металлов, особенно в холоднодефор-мированном состоянии, с помощью фигур травления при анодном травлении. Они приводят для алюминия оптимальный состав ванны, и плотность тока.  [c.262]

Штриховое травление с ориентированным осаждением Для сплавов, содержащих медь, Кострон [49] неоднократно применял этот металлографический способ работы с реактивом Ке-перника 50. Для сплавов с содержанием меди более 1 % продолжительность травления при температуре 50° С составляет 1 мин. Одной из причин разрушения при высушивании пленки, содержащей осадок меди, является ориентация кристаллов. Грань куба (100) темная и не имеет штрихов плоскость октаэдра (1И) имеет сетчатую штриховку без преимущественной ориентации. На плоскости додекаэдра (110) появляются параллельные штрихи. Расстояние между штрихами определяет положение вышеуказанных кристаллографических плоскостей. С их помощью можно установить принадлежность ячейки дендрита твердого раствора в литейном сплаве, текстуру и влияние рекристаллизации. Способность к образованию штриховых фигур зависит от толщины осадка. При существующей ликвации вследствие различной толщины пленки центр твердого раствора может не иметь штриховых фигур, а по периферии твердого раствора приобретать их.  [c.277]


Смотреть страницы где упоминается термин Ориентация кристалла : [c.411]    [c.47]    [c.22]    [c.115]    [c.36]    [c.84]    [c.274]    [c.160]    [c.89]    [c.210]   
Смотреть главы в:

Прикладная нелинейная оптика  -> Ориентация кристалла


Прикладная нелинейная оптика (1976) -- [ c.33 , c.34 ]



ПОИСК



Кристаллы ориентация в осадке

Несовершенные кристаллы разупорядочеииые ориентации

Определение оптической ориентации двулучепреломляющих кристаллов

Ориентация



© 2025 Mash-xxl.info Реклама на сайте