Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагрузка классификация

Набивки сальниковые 730 Нагрузки — Классификация 167— 169  [c.785]

Разнообразные условия работы подшипников качения привели к созданию большого количества их конструктивных разновидностей, которые классифицируются по определенным признакам (форме тел качения, характеру воспринимаемой нагрузки, числу рядов тел качения, соотношению габаритных размеров, признаку самоустанавливаемости), положенным в основу разработанного и действующего в СССР стандарта (ГОСТ 3395—57 Шарико-и роликоподшипники. Классификация ).  [c.329]


Классификация. По геометрической форме валы делятся на прямые, коленчатые и гибкие . По конструк-пин прямые валы и оси делятся на гладкие и ступенчатые (рис. 3.136). Гладкие, т. е. валы одного номинального диаметра, по всей длине обеспечивают хорошее центрование насаживаемых деталей и имеют повышенные прочность и жесткость из-за отсутствия проточек, являющихся концентраторами напряжений для получения требуемых посадок участки вала отличаются допусками на диаметр и шероховатостью поверхности. Для сборки насаживаемых на валы деталей необходимы специальные приспособления. Ступенчатые валы и оси имеют более широкое распространение. Они обеспечивают удобную сборку (разборку) и фиксацию насаживаемых деталей от осевого смещения. Кроме того, уступы на валах воспринимают осевую нагрузку.  [c.400]

Классификация. По направлению действия воспринимаемой нагрузки подшипники качения делятся на радиальные, упорные, радиально-упорные и у порно-радиальные.  [c.417]

Классификация внешних сил должна проводиться по способу их приложения (сосредоточенные силы, распределенные нагрузки и т. д.) и характеру действия (статические, динамические). Совершенно неправомерно относить переменные нагрузки к ди-  [c.52]

Отдельные конструкционные элементы инженерных конструкций представляют собой пространственные трехмерные тела более или менее сложного очертания. Ясно, что степень сложности поведения таких элементов под внешней нагрузкой так или иначе зависит от особенностей его геометрии. Это делает целесообразным принять определенную их классификацию по геометрическим признакам .  [c.11]

Кроме того всю полезную нагрузку следует умножить на коэффициент надежности по назначению сооружения Уя. Для особо важных объектов (главные корпуса электростанций, центральные узлы доменных печей, телебашни, театры, крытые рынки, больницы и т. п.) вводят Уя = 1,0. Для объектов, имеющих ограниченное народнохозяйственное или социальное значение (склады, теплицы, временные сооружения сроком свыше 5 лет и т. п.), принимают уц = 0,9. Для важных объектов, не вошедших в предыдущую классификацию, — Уя = 0,95.  [c.88]

Классификация. В зависимости от направления нагрузки относительно оси различают подшипники, воспринимающие радиальную нагрузку, и подшипники, воспринимающие осевую нагрузку, так называемые подпятники. Подшипники бывают разъемные и неразъемные (непосредственно выполняемые в корпусных деталях) и накладные (выполняемые отдельно). Опоры с трением скольжения делятся на цилиндрические, конические и шаровые.  [c.450]


Полное описание разрушения анизотропных композитов в отличие от изотропного случая не может быть сведено к одномерной задаче. Необходимо установление функциональных зависимостей между ориентацией трещины, направлением материала и векторов нагрузки, не говоря уже об определении когезионной, адгезионной и механической диссипаций. Следовательно, обзор и классификация определенных теоретических решений и детализация методов исследования могут запутать, а не выявить соответствующие перспективы разрушения композитов. Более плодотворным было бы выявление элементов, играющих определяющую роль при оценке прочности композита и описании разрушения. Наше рассмотрение позволило выявить степень и уровень идеализации материала.  [c.261]

Классификация. В основу классификации центрифуг положены следующие эксплуатационные параметры категория, конструкция, тип привода, нагрузка на плечо, назначение (рис. 4).  [c.425]

Непредельные механизмы интересны тем, что они менее чувствительны к неточностям, погрешностям монтажа и деформациям под нагрузкой, чем так называемые основные механизмы, в которых л = к, которые только и охватываются существующей структурной классификацией механизмов. В настоящее время в машиностроении наблюдается тенденция широкого применения таких непредельных механизмов, т. е. механизмов с уменьшенным числом пассивных связей или совсем без таковых. В Москве большим пропагандистом применения этих механизмов является проф. МВТУ им. Баумана Л, Н. Решетов, а в Ленинграде — инж. Г. А. Блох.  [c.6]

Витые пружины могут быть расклассифицированы по виду воспринимаемой ими нагрузки и по форме, причём классификации по первому и второму признакам тесно между собой связаны.  [c.659]

Классификация режимов работы исполнительных механизмов и электроприводов по длительности нагрузки. Отдельные исполнительные механизмы и вращающие их двигатели в зависимости от характера производства, конструкции механизма, их роли в производственном процессе могут работать  [c.33]

Классифицируя кузнечные машины по кинематическим признакам рабочего хода, А. И. Зимин поначалу выделил четыре их основные вида молоты, гидравлические прессы, кривошипные и ротационные машины. В дальнейшем к ним добавились новые виды (импульсные, с вибрационным, пульсирующим приложением нагрузки, статы и др.). Эта классификация характеризовала первый этап упорядочения кузнечно-прессовых машин. В статье Весовые параметры кузнечных машин А. И. Зимин заложил основы теории конструирования оптимальных кузнечно-прессовых машин. При этом он рассмотрел проблему снижения веса машин с точки зрения влияния на вес принципиальной, энергетической и конструктивных схем и предложил коэффициент веса машин, позволяющий их количественно оценивать и сравнивать.  [c.56]

Механизмы свободного хода имеют обширную классификацию как по назначению, так и по конструктивному выполнению, причем геометрия основных звеньев может быть самой разнообразной. При выборе того или иного типа механизма свободного хода руководствуются соображениями различного характера. Геометрию профиля звездочки выбирают из соображений простоты и дешевизны изготовления, надежности и долговечности механизма, равномерного распределения нагрузки между роликами, наибольшей прочности и жесткости сопрягаемых поверхностей, повышения нагрузочной способности механизма, минимального размаха ведущ,его звена, безударной и бесшумной работы механизма и др. Важными условиями при выборе типа профиля звездочки являются условия минимального влияния погрешностей изготовления, износа и упругих деформаций на процессы заклинивания и расклинивания механизма, позволяющие повысить нагрузочную способность, понизить стоимость изготовления и обеспечить условия взаимозаменяемости рабочих элементов. В механизмах свободного хода нашли применение различные профили звездочек  [c.84]

Классификация электродвигателей по скоростным характеристикам. Двигателями с постоянной скоростью вращения называются двигатели, у которых скорость вращения не зависит от нагрузки (синхронные двигатели).  [c.378]


Классификация по роду нагрузки 917  [c.993]

Конструктивные особенности и характеристики 929 — Осадка критическая и предельная гибкость 371, 372 — Расчет при динамической нагрузке 935 — Устойчивость 370—372 --сжатия с витками прямоугольного сечения 930 --сжатия составные (концентрические) 930—Расчет 931 Пружины витые — см. также Пружины винтовые-, — Классификация по виду нагружения и форме 921 — Термообработка 916, 922  [c.994]

Приведенная классификация условна, так как, в частности, осветительная нагрузка может быть включена в зависимости от вида потребителей в промышленную, коммунальную и бытовую.  [c.13]

Классификацию типов тепловых электростанций можно произвести по следующим признакам по виду используемого топлива мощности электростанций типу установленных тепловых двигателей характеру взаимного размещения электростанции и ее потребителей и видам электрического потребления характеру электроснабжения потребителей от одной или нескольких станций типу электрической нагрузки виду отпускаемой энергии.  [c.19]

Рис. 9-7. Классификация вибрации по промежутку времени между изменением нагрузки и изменением вибрации. Рис. 9-7. Классификация вибрации по промежутку времени между изменением нагрузки и изменением вибрации.
Рассматривая ГЭС в покрытии нагрузки системы, можно дать классификации ГЭС по напорам, расходам и мощностям. Несмотря на их условность, они позволяют разработать обобщенные методы расчета ГЭС одинаковых групп.  [c.172]

Нагрузка 284 гармоническая 447 геометрическая 284,293 в точке 294 на кривой 294 на поверхности 296 критическая 31, 36, 38,421, 434 классификация 284 кинематическая 291 объемная 284, 287 пробный вектор 37 статическая 26 узловая 284, 289 элементная 284 Напряжение критическое 421 окружное 392,393 эквивалентное 339,392,399, 499,522 Натяг 385  [c.538]

В случае буксирующего транспортного средства, предназначенного для сцепки с полуприцепом или одноосным прицепом, в качестве массы транспортного средства при классификации следует рассматривать массу тягача в рабочем состоянии плюс максимальная вертикальная статическая нагрузка, передаваемая на тягач полуприцепом или одноосным прицепом, и, в соответствующих случаях, плюс собственный груз тягача.  [c.7]

Принцип действия и классификация. Схема ременной передачи изображена на рис. 12.1. Передача состоит из двух шкивов, закрепленных на валах, и ремня, охватывающего шкивы. Нагрузка передается силами трения, возникающими между шкивами и ремнем вследствие натяжения последнего.  [c.267]

Назначение н классификация. Подшипники служат опорами для валов и вращающихся осей. Они воспринимают радиальные и осевые нагрузки, приложенные к валу, и сохраняют заданное положение оси вращения вала. Во избежание снижения КПД механизма потери в подпшпниках должны быть минимальными. От качества подшипников в значительной степени зависят работоспособность и долговечность машин.  [c.330]

После снятия внешней нагрузки в теле могут оставаться внутренние напряжения. Причиной возникновения внутренних напряжений могут быть также резкие перепады температур и структурно-фазовые превращения, происходящие в процессе технологической обработки материалов. Существует следующая классификация внутренних напряжений  [c.26]

Проведенный анализ поведения твердого тела под нагрузкой с позиции синергетики и теории фрактальных структур показал возможность выделения фундаментальных свойств материала и установления универсальных связей между комплексом механических свойств и фрактальной структурой при классификации сплавов с использованием золотого сечения. Эта возможность связана с универсальностью принципов синергетики и общностью структурных особенностей фракталов для живой и неживой природы.  [c.215]

Книга посвящена анализу и оценке разрушения металлов. Автор подробно рассматривает его виды, дает классификацию 23 типов механического разрушения. При анализе пластического поведения металлов он описывает дислокационные представления. Важное место в книге занимают вопросы многоцикловой и малоцикловой усталости привлекаются различные линейные и нелинейные представления о накоплении усталостных повреждений. Заметное место отведено статистическому анализу разрушения в условиях усталостного нагружения. Формулируется феноменологический взгляд на процессы ползучести, представлены данные по опытам на ползучесть, в том числе и при циклическом законе изменения температуры и внешней нагрузки.  [c.5]

Назначение и классификация. Подшиниикн служат опорами для валов и вращающихся осей. Они воспринимают радиальные и осевые нагрузки, приложенные к валу, и сохраняют заданное положение  [c.271]

Изменение положения ведомого звена механизма как его выходной параметр. Для многих механизмов основное влияние на изменение выходных параметров оказывает износ сопряжений ведомого звена. Обычно, если требуется осуществить заданное перемещение ведомого звена, то в его формировании участвуют все звенья механизма и их износ может быть учтен или возможна компенсация износа, как это показано в гл. 7, п. 2 и 3. Если же предъявляются требования и к точности положения или траектории движения ведомого звена, то основное значение имеют сопряжения ведомого звена, определяющие его положение и направление движения. Если эти сопряжения обеспечивают постоянный контакт поверхностей трения, т. е. относятся к 1-й и 2-й группам классификации (см. рис. 85), то основным выходным параметром будет изменение положения ведомого звена в процессе изнашивания его направляющих. При изменении зон касания, как правило, следует рассматривать искажение траектории движения ведомрго звена. Приведем пример расчета изменения положения вращаю,-щейся детали (планшайбы, стола, ротора) при износе кольцевых направляющих и нецентральной нагрузке, точка приложения которой зафиксирована относительно неподвижного основания.  [c.348]


Рис. 5.3. Классификация мероприятий по обеспечению маневренности европейской секции ЕЭЭС. С. ева приведены характерные суточные графики электрической нагрузки. Рис. 5.3. Классификация мероприятий по обеспечению маневренности европейской секции ЕЭЭС. С. ева приведены характерные суточные <a href="/info/121852">графики электрической</a> нагрузки.
В понятие линеаризуемости системы входит также требование положительной определенности потенциальной энергии деформации Uq- Это означает, что, каким бы ни было малое отклонение системы от положения равновесия, оно сопровождается деформациями ее элементов того же порядка малости и накоплением положительной энергии деформации, квадратичной по отклонению такие конструкции по кинематической классификации относят к неизменяемым (см. 18.2, раздел 3.2). Помимо этого, ограничимся рассмотрением только таких однопараметрических нагрузок, для которых положительно определена и единичная силовая функция р2- В частности, исключаются нагрузки типа показанной на рис. 18.57, для которой  [c.384]

Изменения параметров изделий во времени, обусловленные происходяш,имп в них физико-химическими процессами, являются наиболее общей причиной отказов деталей. Процесс возникновения отказа представляет собой, как правило, некоторый временной кинетический процесс, внутренний механизм и скорость которого определяются структурой и свойствами материала, напряжениями, вызванными нагрузкой, и в большинстве случаев температурой. Вследствие этого классификация отказов технических устройств по их физической природе должна представлять собой прежде всего классификацию физико-химических процессов, непосредственно или косвенно влияющих на работоспособность деталей и возникновение отказов, а также классификацию условий протекания процессов. Такая классификация процессов может быть проведена по следующим признакам [66] по типу (классу) материала детали, по месту протекания процессов, влияющих на работосиособность детали, по виду энергии, определяющей характер процесса, по типу эксплуатационного воздействия, по характеру (внутреннему механизму) процесса  [c.35]

Изуч ение теплообмена в двухфазных потоках представляет собой весьма трудную задачу ввиду сложности гидродинамической структуры потока, взаимного, порой определяющего влияния теплообмена и гидродинамики, Случайных отклонений от гидродинамической и термодинамической неравновесности. Режимы течения определяются рядом факторов давлением, общим расходом потока и соотношением между фазами, свойствами фаз, тепловым потоком, предысторией потока и др. По имеющейся классификации основными режимами течения являются пузырьковый, снарядный, расслоенный, эмульсионный дисперсно-кольцевой и обращенный дисперсно-кольцевой (пленочное кипение недогретой жидкости). Четких границ между ними не наблюдается, и существуют целые области переходных режимов. Пока не имеется детальной информации для всех режимов течения по таким основным характеристикам потока, как распределение фаз, скоростей и касательных напряжений. Поэтому основой для понимания явления служат визуальные наблюдения и некоторые экспериментальные данные по распределению фаз, их полям скоростей, уносу и осаждению, гидравлическому сопротивлению и т. д. К настоящему времени накоплена достаточная информация о режимах течения адиабатных потоков, однако мало данных по диабатным (с подводом тепла) потокам при высоких давлениях, тепловых нагрузках и большом различии теплофизических свойств. Подавляющее большинство исследований выполнено на пароводяных и воздуховодяных смесях.  [c.120]

В разделе Учение об износе и расчеты на износ надо дать классификацию видов изнашивания и некоторые наиболее развитые теории износа. При этом большое внимание следует уделять возможности практического использования рассматриваемых зависимостей. Надо показать, что процесс изнашивания— трехстадийный процесс (взаимодействие, изменение, разрушение). При изложении усталостной теории износа следует обосновать выбранную расчетную модель и на ее основе описать процесс изнашивания. Основное уравнение должно быть тщательно проанализировано (зависимость износа от модуля упругости или твердости, нагрузки, трения, шероховатости, ко1нтактной фрикционной усталости).  [c.91]

Вспомогательные механизмы — Электродвигатели— Время работы механизма 8 — 1062 — Расчёт мощности 8 — 1062 — Электроприводы 8—1061 Вталкнватели 8—1028 Главная линия — Детали — Конструирование и расчёт 8 — 894 — Механизмы — Конструирогвание и расчёт 8 — 894 — Элементы 8 — 850 — Схемы 8 — 850 Двигатели — Графики нагрузки 8 — 1054 — Определение мощности 8 — 1054 — Расчёт на перегрузку 8— 1055 — Регуляторы скольжения 8 — 1056 — Регуляторы скольжения жидкостные 8 — 1056 Детали — Конструирование 8 — 894 Расчёт 8 — 874—937 Кантователи 8—1042 Кантователи крюковые 8—1042 Кантователи роликовые 8—1044 Кантователи рулонов 8—1044 Кантователи угловые 8—1042 Кантующие втулки для иоворачивания )ельсов 8—1043 классификация 8—849 Классификация по расположению валков в клети 8 — 851  [c.223]

Предварительный стандарт (Vornorm DIN 50 320, изданный в 1953 г.), содержит определение некоторых понятий и классификацию в области изнашивания. Изнашивание определяется как нежелательное изменение поверхности предметов пользования путем отделения малых частиц вследствие механических причин. В стандарте указаны факторы, от которых зависит процесс изнашивания и его результаты (свойства основного трущегося тела, свойства контртела, промежуточная среда, нагрузка и движение). Далее приводится в самом общем виде классификация условий изнашивания, которая по существу аналогична классификации, опубликованной в 1953 г. проф. М. М. Хрущовым  [c.8]

Механизмы исполнительные — Классификация по изменению момента статической нагрузки 422 Механический эквивалент теп,ла 40 Микроинтерферометры 251 Микроманометры И, 456 Микрообъективы 239, 242 Микроскопы 242, 250 — Разрешаюшая сила 234  [c.543]

Твердость (см. п. 8.1.2) не является каким-то особым специфическим свойством металла, а испытания на твердость — одна из разновидностей механических испытаний [42]. В зависимости от характера приложения нагрузки и движения индентора (наконечника твердомера) различают методы измерения твердости путем вдавливания, царапания и отскока закаленного стального бойка от поверхности испытуемого материала. В зависимости от скорости приложения на1рузки на индентор различают статические и динамические методы измерения твердости. Наибольшее распространение в технике получили статические методы измерения твердости при вдавливании шара, конуса или пирамиды. По геометрическим размерам отпечатка, полученного при вдавливании индентора под определенной нагрузкой, подсчитывают значение твердости с помощью соответствующих формул и таблиц. В табл. 8.89 приведена краткая классификация основных методов измерения твердости путем вдавливания индентора различной формы.  [c.346]

Классификация барабанов. Равномерность структуры любой покрышки пневматической шины, ее прочность, надежность, долговечность и другие эксплуатационные характеристики в большой степени зависят от точности (однозначности) выполнения всех технологических операций и особенно сборки из основных деталей. Каркас автомобильной и других покрышек пневматических шин состоит из одного или нескольких слоев резинокордных (металлокордных) материалов. Нити корда в этих слоях выполняют роль арматуры, воспринимающей основную нагрузку в процессе эксплуатации покрышек. В этой связи, для получения равнопрочной конструкции покрышки, необходимо изготовить ее каркас так, чтобы армирующие нити корда были расположены на одинаковых расстояниях одна от другой по всему периметру покрышки. Таким образом, при сборке покрышки необходимо обеспечить наибольшую равномерность ее структуры и особенно равномерность структуры резинокордного каркаса. Так как сборка покрышки в настоящее время осуществляется на сборочных барабанах специальных сборочных станков, то их конструкция должна обеспечивать максимальную возможность получения равномерной структуры резинокордного каркаса.  [c.189]


Кавитационная коррозия 16,18, 594, 599, 600 Кавитация 16, 18, 592, 599, 600 Касательно-модельная нагрузка 557 Катодная защита 594, 596 Каустическое охрупчивание 602 Квазистатнческое нагружение 497, 498 Квантиль 319 Коварная трещина 299 Кондона — Морса кривые 26, 27, 29, 30 Конструктивных схем классификация 297, 298  [c.616]

Свойства, состав и классификация пластмасс. Пластическими массами (пластмассами) называются материалы, получаемые на основе природных или синтетических полимеров. Пластмассы являются важнейшими современными конструкционными материалами, занимая по применению ведущее место из всех неметаллов. Они обладают рядом ценных свойств малой плотностью (до 2 г/см ), высокой удельной прочностью, низкой теплопроводностью (и, соответственно, хорошими теплоизоляционными свойствами), химической стойкостью, хорошими электроизоляционными свойствами, звукоизоляционными свойствами, хорошей окрашиваемостью в различные цвета. Некоторые пластмассы обладают оптической прозрачностью, фрикционными и антифрикционными свойствами, стойкостью к истиранию и др. Кроме того, пластмассы имеют хорошие технологические свойства легко формуются, прессуются, обрабатываются резанием, их можно склеивать и сваривать. Недостатками пластмасс являются низкая теплостойкость (до 100 °С для большинства пластмасс), низкая ударная вязкость, ползучесть, низкая твердость, плохая сопротивляемость динамическим нагрузкам, склонность к старению для ряда пластмасс.  [c.235]

Таким образом, программа предусматривает расчет конструкций из элементов коротких цилиндрических, сферических, конических, эллиптических оболочек постоянной толщины, цилиндрических оболочек линейно-переменной толщины, нолубесконечных оболочек, круглых и кольцевых пластин и различных кольцевых деталей (табл. 2) при различных (с учетом разработанной классификации) видах и упругих характеристиках разрывных сопряжений (сы. табл. 1), при краевых условиях в усилиях, смещениях, смешанных, а также при краевых условиях в виде сопряжения оболочек с упругими элементами заданной жесткости. Типы нагружения — силовые нагрузки в виде усилий затяга шпилек фланцевых соединений, затяга винтов узлов уплотнения, равномерного, линейно-переменного давления, распределенных по параллельному кругу изгибающих моментов и перерезывающих усилий, осевых усилий, центробежных сил температурные нагрузки в виде краевых температурных коэффициентов влияния — перемещений для элементов, рассматриваемых как свободные (при температуре, постоянной по толщине и изменяющейся вдоль меридиана) либо усилий для элементов, рассматриваемых как часть бесконечных оболочек (при переменной по толщине температуре).  [c.85]


Смотреть страницы где упоминается термин Нагрузка классификация : [c.165]    [c.21]    [c.74]   
Моделирование конструкций в среде MSC.visual NASTRAN для Windows (2004) -- [ c.284 ]



ПОИСК



Глава тринадцатая Гидроэлектрическая станция в покрытии нагрузки 13- 1. Классификация ГЭС

Классификация колебаний стержней. Дифференциальное уравнение продольных колебаний. Численные значения постоянных для стали. Решение для стержня, свободного на обоих концах. Вывод решения для стержня с одним свободным и другим закрепленным концом. Стержень с двумя закрепленными концами. Влияние малой нагрузки. Решение задачи для стержня с прикрепленной к нему большой нагрузкой. Отражение в точке соединения. Поправка иа поперечное движение. Хриплый звук Савара. Дифференциальное уравнение для крутильных колебаний. Сравнение скоростей продольной и крутильной волн Поперечные колебания стержней

Классификация мостов и нагрузок

Классификация нагрузок, действующих на элементы конструкции

Конструкции Нагрузки Типы и их классификаци

Механизмы исполнительные — Классификация по изменению момента статической нагрузки

Муфты — Классификация определении нагрузки

Нагрузка-Классификация временная

Нагрузка-Классификация действующая на систему

Нагрузка-Классификация динамическая

Нагрузка-Классификация моментная

Нагрузка-Классификация объёмная

Нагрузка-Классификация поверхностная

Нагрузка-Классификация повторная

Нагрузка-Классификация подвижная

Нагрузка-Классификация постоянная

Нагрузка-Классификация расчётная

Нагрузка-Классификация сосредоточенная

Нагрузка-Классификация сплошная

Нагрузка-Классификация статическая

Объекты расчета и классификация внешних нагрузок

Понятие об упругих и пластических деформациях. Классификация нагрузок

Предмет сопротивления материалов (II). 2. Нагрузки и их классификация

Пружины Классификация по роду нагрузки

Тепловые электростанции графики нагрузок, тепловая экономичность, принципиальные тепловые схемы и типы установок Классификация тепловых электростанций по видам нагрузок



© 2025 Mash-xxl.info Реклама на сайте