Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температура плавления жидкостей

При значительно меньших по сравнению с температурах, например вблизи температуры плавления, жидкость по своей структуре ближе к твердому состоянию, нежели к газообразному. В этом случае при сопоставлении свойств жидкой и твердой фаз за естественный масштаб следует принимать не критические параметры, а другие характеристики, которые вытекают из аналогии между жидким и твердым состояниями. Одной из таких удобных характеристик служит величина так называемого свободного объема жидкости, представляющего собой объем, приходящийся на долю одной частицы жид-  [c.214]


При меньших температурах, например вблизи температуры плавления, жидкость по своей структуре ближе к твердому состоянию, нежели к газообразному. В этом случае при сопоставлении свойств жидкой и твердой фаз за естественный масштаб следует принимать уже не критические параметры, а другие характеристики, которые вытекают из аналогии между жидким и твердым состояниями. Одной из таких удобных характеристик является величина так называемого свободного объема жидкости, представляющего собой объем, приходящийся на долю одной частицы жидкости при какой-либо характерной температуре (например, при температуре тройной точки или при Т—>-0 в последнем случае величина свободного объема определяется экстраполяцией).  [c.210]

Скрытая теплота фазового превращения сообщается при условиях постоянства давления и может быть вычислена как изменение энтальпии. Для большого числа веществ изменение энтальпии фазового превращения может быть определено эмпирически при температуре превращения и атмосферном давлении. Так как жидкости и твердые тела почти несжимаемы, на скрытую теплоту и температуру плавления давление влияет очень мало. Однако паровая фаза может подвергаться сильному сжатию, и на скрытую теплоту и температуру испарения давление влияет весьма существенно.  [c.60]

Кристаллизация сплава с 50% Sn, 30% РЬ и 20% Bi (см. рис. 123. точка D) начнется выделением олова при температуре между 150 и 180°С (ближе к 180°С). Когда точка, изображающая состав жидкости, достигнет линии ЕзЕ (в точке 0 , которая соответствует температуре около 145°С), жидкая фаза будет содержать 30% Sn, 42% РЬ и 28% Bi. Здесь начнется кристаллизация двойной эвтектики Pb-j-Sn, и состав жидкости будет изменяться по кривой ЕзЕ вплоть до точки Е, лежащей при 96°С (в жидкости, отвечающей этой точке, содержится 16% Sn, 32% РЬ и 52% Bi). iB этой точке при постоянной температуре заканчивается кристаллизация. Сплав указанного состава самый легкоплавкий, температура начала и конца кристаллизации этого силана 96°С, тогда как температуры плавления чистых компонентов значительно выще .  [c.152]

Межмолекулярные связи действуют между любыми атомами и молекулами, но они очень малы (порядка Ю Дж/моль). Поэтому молекулярные кристаллы, обусловленные этими силами (твердые инертные газы, молекулы кислорода, азота и др.), отличаются весьма низкой температурой плавления (Не— 1,8 К, Аг — 40 К). Образование прочных структур обусловлено главным образом сильными типично химическими связями, например ковалентной, а силы Ван-дер-Ваальса служат лишь небольшой добавкой . Силами Ван-дер-Ваальса обусловлены обычно адгезионные связи при склеивании, смачивании твердых тел жидкостями и т. п.  [c.10]


С изменением внешних условий, например, температуры, свободная энергия системы изменяется по сложному закону, который различен для твердого и жидкого состояния (рис. 24). При температурах выше равновесной температуры плавления 7), меньшей свободной энергией обладает жидкая фаза, а ниже этой температуры - твердая фаза. При температуре Т обе фазы могут существовать одновременно и процесс кристаллизации еще не начинается. Для его начала необходимо, чтобы процесс был термодинамически выгоден системе и сопровождался уменьшением свободной энергии системы. Из кривых на рис. 24 видно, что это возможно при охлаждении жидкости ниже равновесной температуры Т .  [c.41]

Заметим, что чем выше масса атома (атомный номер), тем больше энергия сцепления и температура плавления молекулярных кристаллов (табл. 2.3). Это связано с тем обстоятельством, что с повышением атомного номера элемента число электронов возрастает, электронная оболочка становится более рыхлой и легко деформируемой при взаимодействии атомов друг с другом, а это означает, что дипольные моменты увеличиваются, что и приводит к возрастанию энергии сцепления. При одной и той же температуре и давлении разные вещества с различными атомными номерами в силу указанного обстоятельства могут находиться в различных агрегатных состояниях. Так, при комнатной температуре фтор (2=9)—газ, бром (2 = 35)—жидкость, а иод (2=53) — кристалл.  [c.69]

Подавляющее большинство окружающих нас веществ представляет собой неупорядоченные системы, в которых отсутствует дальний порядок, но в то же время существует ближний порядок в расположении атомов. Такие вещества называют аморфными, некристаллическими или неупорядоченными. Среди неупорядоченных веществ имеются такие, которые обладают механическими свойствами, сходными с механическими свойствами кристаллических твердых тел. Некристаллические вещества, в которых коэффициент сдвиговой вязкости превышает 10 —10 H /м , обычно называют аморфными твердыми телами (типичное значение вязкости для жидкости вблизи температуры плавления 10 H /м ). Многочисленные экспериментальные исследования показали, что аморфные твердые тела, подобно кристаллическим, могут быть диэлектриками, полупроводниками и металлами.  [c.353]

Одна из особенностей кристаллического состояния — это невозможность сколько-нибудь заметного перегрева. Если жидкость подвержена заметному переохлаждению (на десятки градусов), то кристаллы практически всегда плавятся сразу же по достижении температуры плавления. Следовательно, можно говорить, что температура плавления — истинно верхняя граница существования кристаллического твердого тела. Для жидкости нижняя граница ее существования условна (вследствие склонности к переохлаждению), а верхняя (критическая температура) будет истинной. Эти особенности поведения твердого тела и жидкости вблизи температуры плавления связаны с исчезновением (при плавлении) или возникновением (при кристаллизации) межфазной границы.  [c.12]

Температура плавления с повышением давления понижается также при Г<0,3 К у изотопа гелия с атомной массой З( Не), хотя у него v">v. Это происходит потому, что удельная теплота плавления А.= Г(5" —,v ) твердого Не при Г<0,3 К отрицательна эффект Померанчука), т. е. энтропия s жидкого Не меньше энтропии s его твердой фазы. Такое поведение энтропии у разных фаз Не вызвано тем, что в жидкости силы обменного взаимодействия между атомами приводят к упорядочению их спинов уже при Г< 1 К, в то время как в твердой фазе из-за малости амплитуды нулевых колебаний по сравнению с межатомным расстоянием такое упорядочение наступает лишь при 10 К, когда кТ становится порядка магнитной энер-  [c.236]

Температура плавления с повышением давления понижается также при Г<0,3 К У изотопа гелия с атомной массой 3 ( Не), хотя у него v">v. Это происходит потому, что удельная теплота плавления X = T(is"—s ) твердого = Не при Т<0,ЗК отрицательна эффект Померанчука), т. е. энтропия. s" жидкого Не меньше энтропии s его твердой фазы. Такое поведение энтропии у разных фаз Не вызвано тем, что в жидкости силы обменного взаимодействия между атомами приводят к упорядочению их спинов уже при Т<1К, в то время как в твердой фазе из-за малости ампли-  [c.163]


Поверхностное натяжение и угол смачивания некоторых жидкостей (при температуре плавления)  [c.148]

В табл. 12.11 приведены температуры плавления и кипения жидкостей, используемых в качестве теплоносителей и хладонов.  [c.309]

Это значит, например, что температура кипения жидкости зависит от давления. Из рис. 1.10 видно, что линия сублимации и линия насыщения имеют положительный наклон. Это означает, что с ростом давления температура фазового перехода здесь повышается. Эта зависимость справедлива для всех чистых веществ. Линия плавления для различных веществ может иметь как положительный, так и отрицательный наклон.  [c.19]

Пищевые и другие лабильные продукты являются материалами с сильно размытыми границами фазовых превращений твердое тело — жидкость. Чем меньше содержание воды в продукте, тем более размытыми оказываются эти границы, в особенности для продуктов маслоделия из-за большого числа компонентов, имеющих разные температуры плавления. В этих случаях пользоваться для тепловых расчетов теплотой плавления (затвердевания) каждого компонента или продукта в целом нецелесообразно, так как температурный интервал фазовых превращений может растянуться на десятки градусов, т. е. они будут являться большой частью технологического процесса. Поэтому теплоты плавления — затвердевания включаются в эффективную теплоемкость (6.2).  [c.147]

Экспериментальные исследования показывают, что для системы жидкость — пар существует критическое состояние, в котором различие между обеими фазами исчезает. На рис. 2-1 это состояние — критическая точка — обозначено точкой К- В этой точке заканчивается кривая парообразования при более высоких давлениях или температуре понятия жидкость и пар лишены смысла. Для кривой плавления критическая точка не обнаружена, несмотря на то, что для ряда веществ равновесия твердое тело — жидкость изучались до давлений в сотни килобар.  [c.33]

Если исходить из молекулярной структуры вещества, то очевидно, что кристаллическая фаза, будучи самой упорядоченной, должна иметь наименьшую энтропию по сравнению с жидкостью и газом. Жидкая фаза, особенно вблизи температуры плавления, сохраняя некоторые элементы так называемого ближнего порядка, обладает меньшей энтропией, чем вполне неупорядоченная газообразная фаза.  [c.206]

Наряду с кристаллическими твердыми телами существуют аморфные твердые тела. Они образуются при очень больших скоростях охлаждения жидкого расплава. Вследствие значительной вязкости переохлажденного расплава расположение атомов в виде периодической кристаллической решетки оказывается неосуществимым. Тем не менее в аморфных телах наблюдается ближний порядок в расположении атомов. Отличие от кристаллических твердых тел состоит лишь в отсутствии дальнего порядка. Соседние атомы располагаются почти периодически, поэтому в аморфном твердом теле так же, как и в кристаллическом, образуются энергетические зоны. Многие свойства (и прежде всего электрические) аморфных твердых тел аналогичны свойствам кристаллов. Вместе с тем аморфные тела не имеют определенной температуры плавления и превращаются в жидкость при нагревании постепенно (если только при нагревании до некоторой температуры не происходит переход из аморфного в кристаллическое состояние).  [c.392]

Пусть в жидком состоянии оба компонента смешиваются в произвольных отношениях, а в твердом — не смешиваются, но образуют химическое соединение. Диаграмма состояния показана на рис. 7.12. Прямая DE определяет состав химического соединения точки В н G соответствуют температурам тройных точек, где находятся в равновесии смешанная жидкая фаза, твердые химические соединения и твердая фаза одного из чистых компонентов. В области DBE вещество суш,ествует в виде смешанной жидкой фазы и твердого химического соединения, в области, расположенной ниже прямой СВЕ, — в виде смеси твердого химического соединения и одного из чистых твердых компонентов. Затвердевание жидкости заканчивается в эвтектической точке В или G. На рис. 7.13 изображена диаграмма для веществ, полностью растворимых как в жидкой, так и в твердой фазе. Пограничная кривая описывает зависимость температуры плавления от состава раствора.  [c.501]

Принимая условно энтропию жидкости при температуре плавления So = О, впредь вместо изменения энтропии вещества будем говорить  [c.35]

Реакция образования полимера из мономера носит название полимеризации. При полимеризации молекулярная масса, естественно, увеличивается возрастает температура плавления и кипения, повышается вязкость в процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости и далее в состояние твердого тела уменьшается растворимость и т. д.  [c.103]

Иной характер имеет различие между газообразным и красталлическим состояниями вещества. Кристаллическое состояние есть анизотропная фаза вещества, а газообразное состояние представляет собой изотропную фазу его. Поэтому непрерывный переход из твердого состояния в газообразное, а также в жидкое при высоких температурах (например, больших критической) едва ли возможен, соответственно чему кривая фазового равновесия между кристаллической и жидкой фазами не имеет конца и, в частности, критической точки фазового превращения кристаллическая фаза — жидкость, ло-видимому, не существует. Вместе. с тем нужно иметь в 1виду, что при температуре вблизи точки кристаллизации в свойствах кристаллической и жидкой фаз имеются сходные черты. Вообще при температурах, близких к температуре плавления, жидкость по своим свойствам гораздо ближе к твердому состоянию, чем к газообразному. Подтверждением этого является наличие у жидкостей вблизи точки плавления некоторого порядка в расположении молекул, вследствие чего можно говорить условно о квазикристаллической структуре жидкости. Близость свойств жидкого и твердого состояний хорошо видна из табл. 4-2, в которой приведены значения молярной теплоемкости ряда жидкостей (преимущественно расплавленных металлов, представляющих собой с точки зрения молекулярной структуры простейшие жидкости). У жидкостей молярная теплоемкость заключена между 27,6 и 36,9 кдж/кмоль град, тогда как у кристаллических тел она составляет согласно закону Дюлонга —Пти 25 кдж1кмоль град. Таким образом, молярная теплоемкость жидкостей практически такая же, как у кристаллических тел. Это означает, что частицы жидкости подобно атомам или ионам кристаллической решетки совершают периодические колебательные движения, причем в жидкостях центр колебаний может вследствие теплового движения перемещаться, в пространстве. Последнее объясняет некоторое превышение теплоемкости жидкостей по сравнению с твердым состоянием.  [c.125]


Влияние серы. Сера является вредной примесью в стали. С железом она образует химическое соединение FeS, которое практически нераствори.мо в нем в твердом состоянии, но растворимо в жидком металле. Соединение FeS образует с железом легкоплавкую эвтектику с температурой плавления 988 °С. Эта эвтектика образуется даже при очень малых содержаниях серы. Кристаллизуясь из жидкости по окончапии затвердевания, эвтектика преимущественно располагается по границам зерна. При нагревании стали до температуры прокатки или ковки (1000—1200 С) эвтектика расплавляется, нарушается связь между зернами металла, вследствие чего при деформации стали в местах расположения эвтектики возникают надрывы и трещины. Это явление носит название красноломкости.  [c.130]

Во-вторых, ограничения пригодны только для таких изменений состояния системы, при которых меняются интенсивные свойства фаз, так как иначе частные производные сопряженных переменных либо тождественно равняются нулю, как, например, (dPjdV)T при равновесии жидкость—пар в однокомпо-нентной системе, либо не существуют (бесконечны), как, например, Ср при температуре плавления индивидуального вещества. В гомогенных системах такие процессы также должны учитываться, что делалось выше при выборе и обосновании знака неравенства (12.29), но они, как нетрудно заметить, не влияют на ограничения (13.9) — (13.11) и другие, которые получаются из (12.29) при условии постоянства хотя бы одной из термодинамических координат системы. Этим исключается влияние процессов, единственным результатом которых было бы изменение массы системы. Так, неравенства (13.9) — (13.11), (13.21) относятся к закрытым системам и для их вывода важно знать значение не полного определителя формы (12.29), а его главных миноров. Последние должны быть определены положительно в термодинамически устойчивой системе (см. примечание на с. 123).  [c.128]

Производство ингибитора ИКУ-1 было организовано в цехе № 3 ОАО Уфахимпром . Для его получения применяли хлорпарафин ХП-470 (по ТУ 6-01-16-90 с содержанием органического хлора 47,3%), который представляет собой прозрачную маслянистую жидкость без механических примесей с температурой плавления минус 15-минус 30°С, плотностью 1185-1235 кг/м при 20"С. Кватернизацию проводили при температуре 140 С в течение 8 ч. Схема реакции  [c.290]

Позднее было сделано много тщательных измерений по установлению диаграммы энтропии и диаграммы состояния жидкого гелия, которые будут подробно рассмотрены ниже. Проведенные работы не содержат каких-либо новых открытий, однако они подчеркивают значение условий фазового равновесия при низких температурах между жидким и твердым гелием. Согласно третьему закону термодинамики, энтропия жидкой фазы, так же как и твердой, при абсолютном нуле должна обращаться в нуль. Х-аномалия в теплоемкости указывает на очень быстрое убывание энтропии в интервале нескольких тысячных градуса ниже Х-точки. Независимо от того, каким путем устанавливается упорядочение в этой области (что само по себе является чрезвычайно интересным вопросом), убывание энтропии должно сказаться на форме кривой плавления. Изменение давления плавления с температурой, согласно уравнению Клаузиуса — Клапейрона, равно отношению изменения энтропии к изменению объема. При исчезновении разности энтропий между жидкой и твердой фазами это отиошепие обращается в нуль. Поэтому, как было указано Симоном [13], изменение в наклоне кривой плавления тесно связано с явлением Х-иерехода, так как при этих температурах энтропия жидкости падает до значений, близких к энтропии твердой фазы.  [c.788]

Промежуточное положение жидкого состояния проявляется и в квази-кристаллической структуре жидкости при температурах, близких к температуре плавления. Так, например, в воде обнаруживается тетраэдрическая координация молекул, обра-  [c.130]

В силу практической несжимаемости жидкости величины Пж и Пт.Ф одного порядка. Поэтому из уравнения (7.24) следует, что в условиях Vж>Vт.ф величина йр1с1Т>0, т. е. с ростом давления увеличивается и температура плавления. Если же Пж< <Ут.ф, то величина йр1йТ<0 и это значит, что с ростом давления температура плавления уменьшается (например, для льда). Действительно, при плавлении льда объем воды уменьшается, т. е. Пж<Ит.ф. Из уравнения (7.24) следует, что увеличение давления понижает температуру плавления. Теплота плавления для льда при температуре =0°С и нормальном давлении составляет г = 335 Дж/г. Удельный объем льда при О °С равен Vт.ф = = 1,091 см /г, а удельный объем воды Пж=1 см /г, т. е. Ож— Vr.ф = —0,091 см /г. Подставляя значения перечисленных величин в уравнение (7.24), находим  [c.95]

Константа интегрирования может быть найдена из тех соображений, что при Т— 2пл (температура плавления компоненты 2) растворимость достигнет 1, поскольку при образовании идеального раствора две жидкости растворяются друг в друге неограниченно. После соответствующей подстановки получим так называемое уравнеие Шредера для идеальной растворимости  [c.176]

Наряду с газами и капельными жидкостями в качестве теплоносителей применяют жидкие (расплавленные) металлы, такие, как ртуть, натрий, калий, литий, висмут, галлий, свинец. Достоинством этих теплоносителей является то, что они имеют высокую теплопроводность, малую вязкость, высокую температуру кипения коррозионное воздействие на материал стенок каналов, по которым они перемещаются, незначительное. Благодаря высокой теплопроводности жидкие металлы могут очень интенсивно отводить теплоту от поверхности нагрева. Их можно использовать при высоких температурах (700—800°С) и в то же время при низких давлениях. Потери давления при движении жидких металлов в каналах находятся в приемлемых пределах. Многие из них имеют невысокую температуру плавления (для натрия, например, л —97,5°С) и могут без особых трудностей переводии.ся в жидкое состояние. Все эти  [c.196]

Жидкое состояние нельзя рассматривать ни как плотный газ , ни как испорченный кристалл . Жидкое состояние представляет собой промежуточ1ше состояние вещества, отличающееся от кристаллического и газообразного состояний. Это различие может быть больше или меньше в зависимости от того, при каких давлении и температуре находится жидкость. Около кривой плавления свойства жидкости близки, как уже отмечалось ранее, к свойствам кристалла, а при температурах, близких к критической, свойства жидкости приближаются к свойствам газа.  [c.211]

Промежуточное положение жидкого состояния проявляется и в квазикристаллической структуре жидкости при температурах, близких к температуре плавления. Так, в воде обнаруживается тетраэдрическая координация молекул, образующаяся в результате размывания колеблющимися молекулами кристаллической структуры льда оторвавшиеся молекулы могут заполнять пустоты квазикристаллической структуры, что делает  [c.211]

Таким образом, жидкое состояние металлов от твердого отличается только временем оседлой жизни атома. Время оседлой жизни атома в жидком состоянии рассчитывается по формуле Я. И. Френкеля. Поданным Я. И. Френкеля, образующаяся жидкая фаза кристаллоподобна, поскольку при малом времени взаимодействия между атомами жидкий металл ведет себя как твердый. Поэтому в жидком металле атомы стремятся сблизиться. Электростатические силы, которые определяют межатомное расстояние в кристаллах, действуют и в жидкости. Наименьшее расстояние между атомами в жидкости близко к межатомному расстоянию в кристалле этого же металла однако число атомов, находящихся на этом расстоянии, неодинаково. Структура жидкого металла даже при температуре плавления менее упорядочена, чем структура твердого металла. Структуру жидкой фазы при температуре плавления можно представить состоящей из мгновенных закономерно ориентированных плотных группировок атомов, которые в результате теплового движения и столкновения с соседними атомами сразу же уничтожаются.  [c.42]


В этом случае с1рпл1с1Тх л>0 и кривая плавления составляет острый угол с осью температур, как показано на рис. 1.4 для СОг. Для этих веществ температура плавления с ростом давления увеличивается. Для некоторых же веществ, таких как вода, висмут и др., объем жидкости меньше объема твердого вещества (лед легче воды), т. е  [c.13]

Пусть мы имеем 1 кг воды в момент получения ее из твердого состояния, т. е. при температуре плавления. Все параметры жидкости при температуре плавления будем обозначать индексом О . Изобразим это состояние жидкости, в частности воды, при некотором давлении р графически в системе координат р, v некоторой точкой а, имеющей координаты р и Vo (рис. 1.11). Если теперь при постоянном давлении р сообщить ей теплоту, то, как показывает опыт, температура ее будет непрерывно повышаться до тех пор, пока она не достигнет температуры кипения Гн, соответствующей данному давлению р. Одновременно с этим, как правило, будет увеличиваться и удельный объем от vo до v (исключение имеет вода, при нагревании которой от О до 4°С удельный объем уменьшается до минимального, после чего непрерывно увеличивается вплоть до v ). Все параметры кипящей жидкости, кроме давления, будем обозначать одним штрихом. Как показывает опыт, при подводе теплоты к кипящей жидкости происходит постепенное превращение ее в пар. Этот процесс испарения происходит не только при постоянном давлении, но и при постоянной температуре до тех пор, пока последняя частица жидкости не превратится в пар удельного объема и", который называется сухим насыщенным паром (на графике в координатах р, v его состояние обозначено точкой с). Следовательно, сухил/ насыщенным паром называется пар, имеющий температуру насыщения при данном давлении и не содержащий жидкой фазы. Впредь все параметры сухого насыщенного пара будем обозначать двумя штрихами. Следует отметить, что вообще насыщенным паром называется пар, находящийся в термическом равновесии с жидкостью, из  [c.31]

Теперь возьмем воду при температуре плавления и при давлении Pi > р. Так как с увеличением давления удельный объем жидкости уменьшается, то точка ai, характеризующая состояние жидкости при температуре плавления и давлении pi, должна лежать левее точки а. Процесс подогрева жидкости при pi = onst на графике в координатах р, V изобразится отрезком ai—hi, причем ючка bi должна лежать правее точки Ь, что объясняется следующим обстоятельством. Для всех жидкостей с увеличением давления повышается температура кипения. Таким образом, с одной стороны, увеличение давления жидкости уменьшает удельный объем ее, но, с другой стороны, с повышением давления увеличивается температура кипящей жидкости, вследствие чего удельный объем ее должен увеличиваться. Как показывает опыт, влияние температуры на повышение удельного объема кипящей жидкости больше, чем давления.  [c.32]

По решению VI Международной конференции по свойствам водяного пара за начало отсчета внутренней энергии и энтропии принята внутренняя энергия и энтропия жидкой фазы воды в тройной точке, т. е. и = О и s = 0. Так как температура в тройной точке у воды и большинства жидкостей близка к температуре плавления, то представляется в химической технологии более целесообразным вести отсчет этих параметров от температуры плавления, т. е. принять i/o = О и So = О при to и р . Тогда ho = Uo + PmVo = Pml o-  [c.34]

Ts-д и а г р а м м а. Как и в случае газов, в термодинамике паров находит широкое применение Ts-диаграмма, в которой площадь под кривой процесса дает количественное выражение теплоты процесса. На рис. 1.14 в системе координат Т, s представлен изобарный процесс превращения 1 кг воды при температуре плавления в перегретый пар заданной температуры перегрева, соо1ветствующей состоянию в точке d. Кривая аЬ представляет изобарный процесс нагрева воды от То = = 273 К до Т при данном давлении р поэтому площадь под кривой процесса будет представлять q . В процессе подогрева жидкости зависимость s = p(T) выражается уравнением (1.128), откуда следует, что кривая аЬ в первом приближении есть логарифмическая линия. Площадь под кривой Ьс есть теплота парообразования г. В соответствии с уравнением = s"x -Ь s (l — х) = s -t- rx/Tn в процессе парообразования. 5, — s = rxjTn и, следовательно, площадь под прямой be есть гх. Очевидно, площадь под кривой d есть теплота перегрева q e. Процесс перегрева описывается уравнением (1.130), которое приближенно можно представить в виде s e - s" In T IT ). Следовательно, в первом приближении линия d есть логарифмическая кривая.. Так как для воды Срж > Ср, то кривая перегрева пара d идет круче кривой нагрева воды аЬ. Степень сухости влажного пара давлением р в точке е определится как отношение отрезков be к Ьс, так как Ье Ьс = (rxjT (г/Тп) = х. Как видно из рис. 1.14, 1.15, при увеличении давления точки hue, оставаясь в каждом отдельном случае на горизонтали, сближаются и при критическом давлении сливаются в одну точку к. Соединив между собой точки hi, hi, Ьз и т. д., соответствующие состоянию кипящей жидкости при различных давлениях, получим пограничную кривую жидкости. X = 0. Аналогичным образом получим пограничную кривую пара X = 1, соединив между собой точки с, Сь С2 и т. д., соответствующие состоянию сухого насыщенного пара при различных давлениях. Подобно пограничным линиям ри-диаграммы, пограничная кривая  [c.36]

До отверждения эпоксиды являются олигомерами в виде или вязких жидкостей, или твердых веществ с низкой температурой плавления (в зависимости от способа получения). Эти олигомеры при наличии в молекулах двух и более эпоксидных групп в смеси с некоторыми соединениями—отвер-дителями отверждаются, переходят в твердое неплавкое и нерастворимое состояние. Эпоксиды — полярные диэлектрики. Существует несколько разновидностей эпоксидных олигомеров. Рассмотрим важнейшие из них. Диановые смолы получают путем взаимодействия эпихлоргидрина и дифени-  [c.140]

Твердые кристаллические диэлектрики при нагреве плавятся и для них характерным параметром является температура плавления Т ц (К). Аморфные материалы переходят из твердого состояния в жидкое в интервале температур. Такой переход характеризуют температурой размягчения Тра ,м-Температуру размягчения таких диэлектриков, как битум, воск, и некоторых видов компаундов определяют методом кольца и шара . Для этого испытуемый диэлектрик заливается в цилиндрическое кольцо до самого верха (рис. 5.42, а). После затвердевания диэлектрика кольцо помещают на стойку и в центре поверхности кладут стальной шар. Стойку помещают в сосуд с жидкостью. При нагревании происходит размягчение диэлектрика и под нагрузкой, создаваемой шариком, он выдавливается из кольца. За Граам принимают температуру, при которой выдавленная масса коснется пластины, расположенной на глубине h.  [c.187]

А. А. Рыжиков и В. В. Марков [77[ предложили заменить жесткий пуансон, передаюш,ий давление на кристаллизующийся расплав, жидкой средой. Для этого на поверхность залитого в матрицу расплава наливали жидкость с температурой плавления ниже температуры плавления прессуемого металла. Это необходимо для того, чтобы в течение всего периода кристаллизации металла заготовки рабочая жидкость не затвердевала. После этого матрица плотно закрывалась, и к рабочей  [c.98]

Диэлектрическая проницаемость твердых тел зависит от структурных особенностей твердого диэлектрика. В 1вердых телах возможны все виды поляризации. Для твердых неполярных диэлектриков характерны те же закономерности, что и для неполярных жидкостей и газов. Это подтверждается данными табл. 1-5 и зависимостью е, (/) для парафина, показанной на рис. 1-5. При переходе парафина из твердого состояния в жидкое (температура плавления около  [c.25]

В работе рассмотрен вопрос о движущих силах растекания смачивающих жидкостей по поверхности твердых тел. Выведено уравнение, описывающее изменение движущей силы растекания. Показано, что в условиях высоких температур заметное влияние оказывает химическое взаимодействие между жидкостью и подложкой. Приведено уравнение, связывающее межфазную поверхностную энергию на границе твердое тело—жидкость с изобарно-изотермическим потенциалом реакции, протекающей на этой границе. Теоретическое рассмотрение сопоставлено с экспериментальными данными. Исследована связь между массой жидкого металла и конечной площадью растекания в случаях слабого и сильного взаимодействия жидкости с подложкой при температуре последней выше температуры плавления металла, а также сильного взаимодействия жидкости с подложкой при температуре последней ниже температуры плавления металла. Приведены расчетные формулы. Расчеты сопоставлены с результатами эксперимента. Библ. — 10 назв., рис. — 4.  [c.336]

Как отмечается в работе [10], в области плохого кристалла (ядра дислокаций) искаженные связи носят главным образом металлический, или мультиполярный, характер, т. е. не являются направленными. Такое локальное состояние решетки характерно а для металлической жидкости, т. е. приближается к состоянию локального плавления в очагах, насыщенных энергией искаже- V, ПИЯ предельной величины, равной максимальной энергии сдвиго-образования в кристаллической решетке. Эту энергию G легко подсчитать как увеличение термодинамического потенциала металла при нагреве от О К до температуры плавления Т .  [c.25]



Смотреть страницы где упоминается термин Температура плавления жидкостей : [c.49]    [c.114]    [c.416]    [c.33]    [c.256]    [c.131]    [c.28]   
Справочник машиностроителя Том 2 (1955) -- [ c.38 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.2 , c.38 ]



ПОИСК



Жидкости твердые — Температура плавления

Плавление

Сыр плавленый

Температура жидкости

Температура плавления

Температура плавления нормальна жидкости

Температура плавления нормальна избытком жидкости

Температура плавления нормальна насыщенного жидкостью фитиля



© 2025 Mash-xxl.info Реклама на сайте