Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тройная точка

Наименьшим давлением, при котором еще возможно равновесие воды и насыщенного пара, является давление, соответствующее тройной точке. Под последней понимается то единственное состояние, в котором могут одновременно находиться в равновесии пар, вода и лед (точка А на рис. 4.6). Параметры тройной точки для воды ро = б11 Па /о = 0,01 °С t)o = 0,00100 м кг. Процесс парообразования, происходящий при аб-  [c.36]

За нулевое состояние, от которого отсчитываются величины s, s", принято состояние воды в тройной точке. Так как состояние кипящей воды и сухого насыщенного пара определяется только одним параметром, то по известному давлению или температуре из таблиц воды и водяного пара берутся значения у, и", /г, h s, s", г  [c.37]


Состояние воды в тройной точке (so = 0 7 о = 273,16 К) изображается в диаграмме точкой Л. Откладывая на диаграмме для разных температур зна-  [c.37]

За начало координат принято состояние воды в тройной точке. Откладывая на диаграмме для различных давлений значения s и h для воды при температуре кипения, а также s" и h" для сухого насыщенного пара, получаем нижнюю и верхнюю пограничные кривые.  [c.37]

Градус Кельвина — единица измерения температуры по термодинамической температурной шкале, в которой для температуры тройной точки воды установлено значение 273,16 °К.  [c.10]

Диаграмма фазового равновесия при независимых переменных — температура и давление приведены на рис. 176,6. При высоких давлениях возможно образование железа с гексагональной плотноупакованной решеткой (так называемое е-же-лезо). Тройная точка равновесия лежит при /=527°С и Р= = 130 кбар. Выше 527 С при увеличении давления возможен а- у- е-переход, а ниже прямой — ос->е-переход.  [c.234]

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]

Численное значение постоянной Больцмана k устанавливают, принимая произвольное значение температуры тройной точки воды и сравнивая уравнения состояния системы, записанные на языке классической и статистической механики. Простейшей системой является идеальный газ, для которого в классическом случае  [c.25]


Чтобы объяснить различие между первичной и вторичной термометрией, прежде всего укажем, в чем смысл первичной термометрии. Под первичной термометрией принято понимать термометрию, осуществляемую с помощью термометра, уравнение состояния для которого можно выписать в явном виде без привлечения неизвестных постоянных, зависящих от температуры. Выше было показано, каким образом постоянная Больцмана обеспечивает необходимое соответствие между численными значениями механических и тепловых величин и каким образом ее численное значение определяется фиксированием температуры 273,16 К для тройной точки воды. Таким же способом было найдено численное значение газовой постоянной. Таким образом, имеются три взаимосвязанные постоянные Т (тройная точка воды) или То (температура таяния льда), к и R. В принципе теперь можно записать уравнение состояния для любой системы и использовать ее в качестве термометра, смело полагая, что полученная таким способом температура окажется в термодинамическом и численном согласии с температурой, полученной при использовании любой другой системы и другого уравнения состояния. Примерами таких систем, пригодных для термометрии, могут служить упомянутые выше при обсуждении определения к н Я газовые, акустические, шумовые термометры и термометры полного излучения. Наличие не зависящих от температуры постоянных, таких, как геометрический фактор в термометре полного излучения, можно учесть, выполнив одно измерение при То Последующее измерение Е(Т)  [c.33]

Обозначения т. т. — тройная точка т. к. — точка кипения т. н. к. — точка кипения при нормальном давлении (1 атм) т. з. — точка затвердевания.  [c.47]

Вскоре после того как таблица ККТ-64 была рассчитана, рабочая группа ККТ предложила в 966 г. новую предварительную шкалу, где были учтены новые результаты измерений температуры кипения кислорода и тройной точки водорода, выполненные газовым термометром [34]. Эти рекомендованные значения реперных точек также приведены в табл. 2.3.  [c.52]

Обозначения т. н. к. — точка кипения при нормальном давлении -т, т. г—тройная точка.  [c.65]

Низкотемпературные точки кипения и тройные точки  [c.152]

Для прецизионной термометрии наибольший интерес представляют низкотемпературные точки кипения или тройные точки таких газов, как гелий, водород, неон, кислород, аргон и метан. Основные принципы реализации любой из этих точек являются общими для всех. Они будут изложены в процессе описания аппаратуры и методики работы с ней при реализации тройной точки и точки кипения водорода. При этом будут отмечены специфические особенности работы с другими газами. Измерение давления паров Не и Не занимает особое место, поскольку обеспечивает воспроизведение принятых международных температурных шкал. Эти шкалы и их реализация обсуждались в гл. 2.  [c.152]

Тройная точка и точка кипения водорода  [c.152]

Таблица 4.3. Точки кипения и тройные точки нормального и равновесного водорода Таблица 4.3. <a href="/info/3834">Точки кипения</a> и тройные точки нормального и равновесного водорода
Давление паров в тройной точке 7210,3 Па 7034,5 Па  [c.153]

Рис. 4.13. Изменение тройной точки водорода вследствие орто— пара конверсии в камере с образцом [37]. 1 — образец выдерживался замороженным 2 — образец выдерживался в жидком состоянии. Рис. 4.13. Изменение <a href="/info/4056">тройной точки водорода</a> вследствие орто— пара конверсии в камере с образцом [37]. 1 — образец выдерживался замороженным 2 — образец выдерживался в жидком состоянии.

Если полнота конверсии гарантирована, реализовать водородную тройную точку или точку кипения относительно просто.  [c.154]

Рис. 4.15. Криостат для реализации тройной точки [38]. Обозначение элементов см. в тексте. Рис. 4.15. Криостат для реализации тройной точки [38]. <a href="/info/81799">Обозначение элементов</a> см. в тексте.
Рис. 4.16. Плато тройной точки водорода, равновесного при 13,81 К [37]. Рис. 4.16. Плато <a href="/info/4056">тройной точки водорода</a>, равновесного при 13,81 К [37].
Криостат для измерения давления паров и соответственно точек кипения отличается от показанного на рис. 4.15 для реализации тройных точек. Схема типичного криостата для измерения давления паров приведена на рис. 4.17.  [c.157]

Необходимость выполнять измерение давления увеличивает сложность аппаратуры для реализации точки кипения по сравнению с аппаратурой для тройных точек. В процессе измерения давления качество регулирования температуры должно быть предельно высоким. С этой целью применяется относительно массивный медный блок, в котором размещены термометры и конденсационная камера. С другой стороны, реализация тройной точки основывается на ее собственной температурной стабильности в процессе плавления и, следовательно, относительно легком адиабатическом калориметре. Наклон кривой температурной зависимости давления насыщенных паров водорода возрастает от 13 Па мК при 17 К до 30 Па-мК- при 20,28 К- Поэтому для строгого определения точки 17 К измерению давления должно быть уделено больше внимания. Криостат должен быть сконструирован так, чтобы самая его холодная точка находилась в конденсационной камере и ни в коем случае не на манометрической трубке, связывающей камеру с манометром. Необходимо также введение поправки, обусловленной гидростатическим давлением газа в системе измерения давления. Она пропорциональна плотности газа и, следовательно, обратно пропорциональна температуре [см. уравнения (3,30) и (3.31) гл. 3,  [c.158]

Точно реализовать точку кипения кислорода несколько сложнее. Выше отмечалось, что чувствительность по давлению в ней составляет треть от чувствительности в неоновой точке, и поэтому возникает необходимость точного введения гидростатической поправки. Примеси в кислороде также более вероятны и трудноотделимы. Надежные измерения чистоты кислорода осуществить трудно, потому что в нем, например, сразу сгорает катод масс-спектрометра [24]. Тем не менее было проведено подробное изучение влияния примесей на точку кипения и тройную точку кислорода [2, 25, 38]. Оказалось, что примеси СОг и НгО не влияют на результаты измерений, поскольку они конденсируются далеко от камеры с образцом, и что Не и Ме нерастворимы в жидком кислороде и потому легко откачиваются. Наиболее важными примесями являются азот (что и следовало ожидать) и СО. Влияние этих примесей, а также аргона и криптона на точку кипения кислорода показано в табл. 4.4.  [c.161]

Тройные точки неона (24,561 К), кислорода (54,361 К), азота (63,146 К), аргона (83,798 К), метана (90,686 К), криптона (115,763 К) и ксенона (161,391 К)  [c.162]

Существенный прогресс последних лет в эталонной термометрии связан с созданием герметичных ячеек с чистыми газами для воспроизведения температур их тройных точек. Осуществленное по разработанной ККТ программе международное сличение транспортируемых герметичных ячеек разных лабораторий, в том числе ВНИИФТРИ, показало, что их воспроизводимость по крайней мере в несколько раз лучше, чем на традиционной стационарной аппаратуре. Поэтому естественна современная тенденция положить в основу будущей МПТШ в качестве реперных температур только тройные точки в ее низкотемпературной части и точки затвердевания металлов при температурах выше 0° С. Отметим в этой связи превосходные метрологические характеристики точки галлия. В низкотемпературной части МПТШ эта программа, обеспечивающая повышение воспроизводимости будущей шкалы в несколько раз, может быть, без сомнения, реализована вплоть до 24 К, особенно при добавлении к традиционным тройным точкам МПТШ-68 тройной точки вблизи 150 К и точки плавления галлия.  [c.7]

Наибольшие трудности встречает сегодня выбор метода воспроизведения будущей МПТШ в интервале 13,8—24 К. Традиционная схема с платиновым термометром, градуированным в реперных точках, неизбежно потребует применения точек по температурам кипения водорода со всеми их недостатками, поскольку здесь просто не существует тройных точек в числе, достаточном для точного вычисления поправочной функции. Отметим, что пока не удалось получить удовлетворительных результатов для тройной точки дейтерия вблизи 18 К. Это связано, по-видимому, с недостаточной изученностью процессов орто-пара конверсии. К этому добавляются характерные для измерений с платиновым термометром в этом интервале температур проблемы их стабильности. Преимущество традиционного метода состоит в возможности перекрыть большой интервал температур единственным и очень широко применяемым прибором, каким является платиновый термометр сопротивления.  [c.7]

До недавнего времени было принято считать, что для МПТШ обязательно, чтобы температуры в данном интервале воспроизводились только одним методом. Выполнение этого требования автоматически обеспечивает единство измерений температуры. Однако редакция МПТШ-68 1975 г. допускает при градуировке платиновых термометров сопротивления использовать с равным правом тройную точку аргона пли точку кипения кислорода. В настоящее время нет никаких указаний на то, что такая двойственность привела к заметным расхождениям результатов измерений. Опыт успешной эксплуатации ПТШ-76, где с равным правом допускается воспроизводить шкалу несколькими весьма различными, но хорошо исследованными методами, также позволяет считать указанные выше формальные требования неоправданно жесткими. Можно полагать поэтому, что разумное отступление от метрологического пуризма и применение на равных основаниях обоих указанных выше методов воспроизведения МПТШ от 13,81 до 24 К не сможет привести к экспериментально ощутимым потерям в единстве измерений температуры.  [c.8]


Это затруднение было преодолено в ревизии температурной шкалы 1968 г., когда единица температуры по практической и термодинамической шкалам была одинаково определена равной 1/273,16 части термодинамической температуры тройной точки воды. Единица получила название кельвин вместо градус Кельвина и обозначение К вместо °К. При таком определении единицы интервал температур между точкой плавления льда и точкой кипения воды может изменять свое значение по результатам более совершенных измерений термодинамической температуры точки кипения. В температурной шкале 1968 г. значение температуры кипения воды было принято точно 100 °С, поскольку не имелось никаких указаний на ошибочность этого значения. Однако новые измерения с газовым термометром и оптическим пирометром, выполненные после 1968 г., показали, что следует предпочесть значение 99,975 °С (см. гл. 3). Тот факт, что новые первичные измерения, опираюшиеся на значение температуры 273,16 К для тройной точки воды, дают значение 99,975 °С для точки кипения воды, означает, что ранние работы с газовым термометром, градуированным в интервале 0°С и 100°С между точкой плавления льда и точкой кипения воды, дали ошибочное значение —273,15 °С для абсолютного нуля температуры. Исправленное значение составляет —273,22 °С.  [c.50]

МПТШ-68 условно разделяется на 4 интервала а) от 13,81 до 273,15 К б) от 0 °С до 630,74 °С в) от 630,74 до 1064,43 °С и г) выше 1064,43 °С. В интервале а шкала определена шестью низкотемпературными реперными точками (табл. 2.3) и стандартной зависимостью tt7J кт-68 (Т ев), которая представляет собой усовершенствованную таблицу ККТ-64. Термометры градуируются в этих шести точках и дополнительно в тройной точке воды и точке кипения воды. Затем для них по результатам градуировки вычисляются поправки зависимости ДИ7(Т б8) в четырех диапазонах, как схематически показано на рис. 2.4. В каждом из этих диапазонов значение (Т в) для данного термометра равно сумме стандартного значения и поправки ДИ7(7 б8). Требова-  [c.53]

Рис. 2.4. Иллюстрация метода воспроизведения МПТШ-68 между 13,81 и 273 К. т. к. — точка кипения т. т. — тройная точка. Пояснения даны в тексте. Рис. 2.4. Иллюстрация метода воспроизведения МПТШ-68 между 13,81 и 273 К. т. к. — <a href="/info/3834">точка кипения</a> т. т. — тройная точка. Пояснения даны в тексте.
В гл. 2 излагалось, каким образом на основе ряда реперных точек и определенных методов интерполяции между ними возникла Международная практическая температурная шкала (МПТШ). Реперными точками первой МПТШ являлись точки кипения кислорода, воды и серы, точки затвердевания воды, серебра и золота. В современной редакции шкалы добавлены точки кипения водорода и неона, тройные точки водорода, неона, аргона, кислорода и воды, точки затвердевания олова и цинка в свою очередь точка кипения серы исключена. В последние годы тройные точки и точки затвердевания считаются более предпочтительными по сравнению с точками кипения по простой причине они могут быть реализованы без необходимости измерять давление. Продолжающийся рост требований к увеличению точности реализации точек кипения приводит к необходимости более точных измерений давления, что сопряжено с очень большими трудностями. Например, для реализации точки кипения воды с воспроизводимостью по температуре 0,1 мК необходимо измерение давления с погрешностью 0,3 Па в свою очередь в точке кипения серы изменения давления 0,3 Па приводят к изменениям температуры на 0,2 мК- Необходимость в расширении МПТШ ниже 13,81 К, т. е. в область, где тройных точек не существует, привело к разработке реперных точек, основанных на фазовых переходах в твердом теле. Наиболее важным шагом в этом направлении явилось принятие в качестве реперных точек нижней части ПШТ-76 температур сверхпроводящих. переходов.  [c.138]

Неравновесные смеси орто- и параводорода имеют температуры тройных точек и точек кипения в промежутках между значениями, указанными в табл. 4.3. В связи с этим состав водорода, использующегося для реализации температуры репернож точки, должен быть определен. Поскольку орто—пара конверсия направлена к состоянию с более низкой энергией, переход, от высокотемпературного к низкотемпературному равновесному состоянию сопровождается выделением тепла, составляющим около 1300 Дж-моль при 20 К. Выделяющееся при конверсии тепло приводит к тому, что водород, залитый в сосуд Дьюара сразу после ожижения, испаряется при хранении более чем наполовину. Именно поэтому желательно включить катализатор конверсии между ожижителем и сосудом для хранения водо-  [c.153]

Типичное устройство, используемое для реализации тройной точки водорода, показано на рис. 4.15. В этом криостате 1 — наружная вакуумная рубащка 2 — наружный экран, температура которого регулируется 3 — камера с образцом. Камера  [c.155]


Смотреть страницы где упоминается термин Тройная точка : [c.134]    [c.8]    [c.23]    [c.25]    [c.26]    [c.49]    [c.51]    [c.54]    [c.54]    [c.55]    [c.56]    [c.65]    [c.130]    [c.153]    [c.153]    [c.155]    [c.157]   
Физика низких температур (1956) -- [ c.30 , c.44 ]

Техническая термодинамика. Теплопередача (1988) -- [ c.86 ]

Единицы физических величин и их размерности Изд.3 (1988) -- [ c.189 ]

Техническая термодинамика Изд.3 (1979) -- [ c.138 , c.207 ]

Термодинамика равновесных процессов (1983) -- [ c.103 ]

Единицы физических величин и их размерности (1977) -- [ c.153 ]

Термодинамика (1969) -- [ c.83 ]

Физико-химическая кристаллография (1972) -- [ c.129 ]

Термодинамика (1970) -- [ c.205 , c.226 , c.237 , c.252 , c.253 ]

Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.70 ]

Лекции по термодинамике Изд.2 (2001) -- [ c.83 ]

Термодинамика и статистическая физика Т.1 Изд.2 (2002) -- [ c.106 ]

Введение в термодинамику Статистическая физика (1983) -- [ c.121 ]

Современная термодинамика (2002) -- [ c.198 ]

Термодинамика и статистическая физика Теория равновесных систем (1991) -- [ c.128 ]



ПОИСК



Водород Параметры тройных точек

Воспроизводимость точки льда и тройной точки воды. Температура тройной точки воды (перевод Беликовой Т. П. и Боровика-Романова

Графит Коэффициент Параметры тройных точек

Замерзание и тройная точка

Низкотемпературные точки кипения и тройные точки

Сосуд тройной точки воды

Спинодаль тройная точка

Точка материальная тройная вещества

Точка сублимации Точка тройная

Точка тройная 516, XVII

Точка тройная бензойной кислоты

Точка тройная воспроизводимость

Точка тройная кислорода

Точка тройной эвтектики

Тройная точка в диаграммах состояни

Тройная точка водорода

Тройная точка водорода галлня

Тройная точка водорода герметичные ячейки

Тройная точка водорода других газов

Тройная точка воды

Тройная точка галлия (29,774 С)

Тройная точка главная

Тройная точка двуокиси углерода

Тройная точка и критическая точка

Тройная точка. Правило фаз

Тройные точки на особых поверхностях

Тройные эвтектические точки

Углекислота Параметры тройных точек

Фазовая диаграмма для воды н тройная точка

Фазовая диаграмма. Тройная точка



© 2025 Mash-xxl.info Реклама на сайте