Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы генератор — двигатель

Сопряжение генератора и приводного двигателя СЧ осуществляется таким образом, что дифференциальное уравнение этого каскада преобразования энергии без учета свойств первичного источника энергии и замыкающего звена цепи можно рассматривать как линейное. Это справедливо в пределах основного рабочего диапазона изменения координат и Qi( ) названных электрических машин. Поэтому в (7-9) оператор B iip) и коэффициент Ад1 характеризуют свойства не только ПД силовой части, но и электрического генератора как сети ограниченной мощности. Заметим, что все параметры рассматриваемого промежуточного каскада цепи преобразователей энергии характеризуют процессы, происходящие в системе генератор — приводной двигатель, без учета свойств двигателя внутреннего сгорания и силовой части СП. Так же, как и для силовой части СП, (7-9) отвечает неизменяемой части каскада, т. е. не учитывает изменения его динамических характеристик при добавлении обратных связей по напряжению и току генератора для коррекции режима его работы.  [c.403]


Для повышения точности остановки кабины лифта электросхема управления лифтом должна предусматривать возможность получения уменьшенной скорости перед торможением, что достигается системой электрического или механического регулирования скорости. В случае электрического регулирования скорости применяют 1) привод, работающий на постоянном токе по системе генератор — двигатель с реостатным управлением 2) привод  [c.364]

Слитковоз с канатным приводом (фиг. I, а), управляемый по системе генератор—двигатель (Г — Д), при анализе неустановившихся процессов может быть представлен расчетной схемой (рис. 1,6), полученной в результате таких допущений 1) жесткость звеньев лебедки, соединяющих электродвигатель с барабаном, велика по сравнению с жесткостью канатов, поэтому все вращающиеся массы можно заменить одной приведенной к барабану массой 2) влияние профиля пути на движение слитковоза незначительно, поэтому можно считать слитковоз перемещающимся по горизонтальному пути 3) жесткость канатов в процессе неустановившегося движения принимается переменной в зависимости от положения слитковоза и усилия в канате.  [c.106]

Электромагнитная постоянная времени системы ГД может быть определена экспериментальным путем [95]. Для этого генератор, питающий двигатель, разгоняется вхолостую до номинальной скорости.  [c.14]

Рис. 9. Система генератор—двигатель и ее электромеханическая модель Рис. 9. Система генератор—двигатель и ее электромеханическая модель
Рис. 10, Динамические механические модели системы генератор—двигатель Рис. 10, Динамические <a href="/info/74923">механические модели</a> <a href="/info/433695">системы генератор</a>—двигатель
Электропривод главных механизмов осуществляется на постоянном токе с управлением по системе генератор-двигатель и с применением силовых магнитных усилителей для возбуждения генераторов. Принятая система управления, в отличие от систе-М.Ы трехобмоточного генераторного двигателя на экскаваторах СЭ-3 и ЭКГ-4, обладает простотой исполнения и наладки, высокой надежностью, малым количеством реле и контактов. Более полно используются габаритные мощности генераторов, сокращается время разгона, торможения и всего рабочего цикла машины. Возбудители собственных нужд имеют термомагнитные шунты. Этим достигается постоянство характеристик независимо от изменения наружной температуры воздуха и нагрузки. Новая система обеспечивает- максимальное совпадение статических и динамических характеристик.  [c.16]


Недостатком его следует считать более высокую стоимость, что объясняется необходимостью преобразовывать переменный ток в постоянный вращающимися машинами. Нормальная система Леонарда состоит из 1) основного двигателя постоянного тока, приводящего исполнительный механизм 2) генератора постоянного тока, питающего основной двигатель (генератор Леонарда) 3) двигателя, вращающего генератор этот двигатель при малых мощностях или резко пиковых нагрузках — обычно асинхронный, при больших мощностях и отсутствии очень больших пиков на-  [c.11]

В последние годы широкое распространение получает система Леонарда, в которой генератором служит амплидин. Подобная система пока конструируется для мощностей до 25 кет. При больших мощностях применяется нормальная система Леонарда, а амплидины используются в качестве возбудителей генератора и двигателя.  [c.12]

Привод летучих ножниц, режущих полосы на куски при одновременной прокатке их, осуществляется шунтовым двигателем постоянного тока с регулированием скорости в цепи обмотки возбуждения в пределах 1 3-ь-1 4. При необходимости в более широкой регулировке скорости применяется система Леонарда. Поддерживание скорости ножей в соответствии со скоростью полосы в клети стана достигается применением регуляторов скорости, изменяющих скорость ножниц соответственно скорости металла приводом ножниц от стана через механическую связь приводом ножниц от двигателя, получающего питание от генератора, который вращается двигателем клети стана (генератор и двигатель могут быть выбраны как постоянного тока, так и синхронные) синхронизацией скоростей ножниц  [c.1067]

Система генератор—двигатель дает возможность получить устойчивые скорости как в двигательном, так и в тормозном режиме. На фиг. 28 приведены механические характеристики системы Г — Д. Характеристики / — 4 и есте-  [c.421]

Переходные режимы в системе генератор-двигатель  [c.425]

В системе генератор-двигатель (см. фиг. 27) пуск двигателя благодаря наличию индуктивности обмотки возбуждения генератора может производиться путем включения обмотки овг сразу на полное или даже повышенное напряжение.  [c.425]

Метод эквивалентной мощности не пригоден при частых пусках для асинхронных двигателей с короткозамкнутым ротором и для системы генератор двигатель, В остальных случаях использования этого метода следует принимать максимальное значение пусковой мощности при учете пусковых периодов.  [c.428]

Необходимость электрического регулирования скорости электропривода является одним из важнейших факторов, определяющих выбор электрического типа двигателя и системы электропривода. Регулировочные свойства различных электродвигателей и системы генератор — двигатель указаны в разделе Механические характеристики".  [c.431]

Система генератор — двигатель  [c.444]

Электропривод по системе генератор — двигатель (г—д) применяется в случаях, когда механизм требует широкой регулировки скорости, а также при частых пусках и реверсах.  [c.444]

Реальные газы — см. Гааы реальные Ребра квадратные — Коэффициент эффективности 129 --круглые — Коэффициент эффективности 128 Реверберация 262, 263 Реверс двигателя в системе генератор—двигатель 426  [c.548]

Система Леонарда — см. Система генератор — двигатель Системы генератор — двигатель—Переходные режимы 425  [c.549]

Схемы двигателей постоянного тока 442 - принципиальные системы генератор— двигатель 444  [c.551]

Электроотрицательность атомов 273 Электропривод 410—432 — см. также Системы генератор — двигатель  [c.558]

Сложные системы регулирования скорости двигателей постоянного тока. С и-стема генерато р-д вигатель (Г—Д). Система генератор-двигатель (система Леонарда) — наиболее совершенная система управления и регулирования двигателей постоянного тока. Недостаток ее  [c.517]

В этой системе (фиг. 36) двигатель постоянного тока Д, вращающий рабочий механизм, получает питание от отдельного генератора постоянного тока Г. Генератор приводится во вращение синхронным или асинхронным двигателем. Как генератор, так и двигатель Д имеют независимое возбуждение.  [c.517]


Для установок большой мощности — порядка нескольких сот и тысяч киловатт— применяются схемы, в которых якорь двигателя получает питание от отдельного генератора (система Г —Д), а обмотки возбуждения генератора и двигателя—от ртутных управляемых выпрямителей.  [c.520]

В системе генератор — двигатель (см. фиг. 36) пуск двигателя благодаря индуктивности обмотки возбуждения генератора может производиться путем включения обмотки сразу на полное или даже на повышенное напряжение.  [c.524]

Система генератор — двигатель — Переходные режимы 524  [c.728]

В качестве объекта исследования работы системы автоматического регулирования двигателя выбран тракторный дизель КД-35-НАТИ, работающий на генератор. Этот двигатель четырехтактный, четырехцилиндровый, мощностью 37 л. с. при номинальном скоростном режиме 1400 об мин. Полный литраж 4,08 л.  [c.599]

На тяжелых кранах-штабелерах применяют приводы с двигателями постоянного тока с регулировкой скорости по системе генератор - двигатель. Особое внимание обращается на выбор значений ускорения при пуске и замедления при торможении. Ускорения при пуске ограничивают, применяя электродвигатели с фазным ротором, а при применении двигателей с коротко-замкнутым ротором мощность двигателя выбирают так, чтобы пусковые моменты не превышали статические моменты сопротивления более чем на 60. .. 80 %.  [c.382]

В качестве переключающих устройств могут быть применены электромагнитные муфты механических коробок скоростей золотники с электромагнитным управлением гидрофицированных коробок скоростей, а также электрические управляющие устройства регулируемых силовых приводов (РСП) [системы генератор постоянного тока — двигатель (Г—Д), электромашинный усилитель—двигатель (ЭМУ—Д), магнитный усилитель—двигатель (ПМУ—Д), тиристорный преобразователь-двигатель (ТП—Д)].  [c.182]

Прогрессивный путь решения проблемы передачи электрической энергии нашли в 1880 г. французский ученый М. Депре и русский физик Д. А. Лачинов. Математическим анализом существа физических процессов в системе генератор—линия—двигатель они показали, что эффективность электропередачи может быть достигнута при увеличении напряжения в линии [25, 26].  [c.57]

Механизмы для бесступенчатого изменения скорости бывают электрические, гидравлические и механические. В станках широко используют системы электромаыгинного усиления, системы генератор — двигатель, гидравлические двигатели и различные механические устройства, например вариаторы. В вариаторе (рис. 6,17, к) шкивы 1 п 2, имеющие криволинейную образуюш,ую, закреплены соответственно на ведуш,ем / и ведомом // валах. Оси роликов 3, прижатых к поверхностям шкивов, устанавливают под различными углами к оси валов. Этим обеспечивают плавное изменение частоты враш,ения ведомого вала.  [c.287]

К этому времени отечественные машиностроительные заводы освоили аппаратуру и комплектные устройства для автоматического управления — так называемые магнитные станции, обеспечивавшие автоматическое управление (рис. 35). Для регулирования скоростей шире стала использоваться система генератор — двигатель и наметились новые принцишл построения непрерывного управления электроприводами, основанные на использовании замкнутых цепей и обратных связей с применением электромашинных и электронноионных регуляторов. В предвоенные годы началось промышленное использование электромашинных систем управления.  [c.115]

В дореволюционной России преимущественно применялась электрическая аппаратура ручного управления, хотя в некоторых случаях находила применение релейно-контактная автоматика, импортированная в Россию из TTIA (вращающиеся распределители доменных печей), а также из Германии и Японии (крупные металлорежущие станки). Наиболее распространенными видами автоматически действующих устройств, применяемых в электроприводе, в то время были плавкие предохранители и универсальные автоматические выключатели, применявшиеся для защиты двигателей от перегрузок. В предвоенные пятилетки было постепенно налажено производство релейно-контактной автоматики и средств управления, которые нашли широкое применение в системах управления автоматизированным электроприводом. После восстановительного периода наряду с быстрым развитием релейно-контактной автоматики начинает постепенно зарождаться электро-машинная автоматика, развитие которой является следствием применения и развития системы генератор — двигатель. В системах электромашинной автоматики элементами, из которых собираются комплексные устройства электропривода, являются электромашинные усилители, стабилизирующие трансформаторы, тахогенераторы.  [c.235]

К концу 30-х годов релейно-контактная автоматика стала широко применяться в различных системах управления. Свидетельством этого является количественный пост производства магнитных станций, которое достигло в 1940 г. около 500 шт. Наряду с релейно-контактной автоматикой интенсивно развивалось применение электромашинпой автоматики, основанной на использовании системы генератор — двигатель.  [c.241]

Для управления двигателями постоянного тока применяется система генератор — двигатель. Регулирование возбуждения генераторов осуществляется при помощи электромашинных усилителей, работающих в каскаде с промежуточными магнитными усилителями. Для механизма шагания установлено четыре высоковольтных асинхронных электродвигателя мощностью по 260 кет. Схема предусматривает автоматическое управление механизмом шагания.  [c.79]


К 1887—1889 гг. относятся попытки немецкого инженера Ф. А. Ха-зельвандера и американца Ч. Брэдли получить генераторы и двигатели, приближающиеся к связанной трехфазной системе [28, с. 43—45].  [c.59]

Техника трехфазного тока в начале 90-х годов прошлого столетия во многом опиралась на предшествовавший опыт сооружения установок постоянного тока. Еще в 70—80-х годах были осуществлены первые опыты электропередачи на генераторном напряжении до 6 кВ. Наибольшего успеха в создании передач постоянного тока достиг швейцарский инженер Ренэ Тюри. Его схема представляла собой линию высокого напряжения между двумя системами последовательно соединенных машин — генераторов и двигателей. Первая установка Тюри была осуществлена в Генуе в 1889—1893 гг. при напряжении 5—6 кВ, а позднее при 10 и даже 14 кВ, длина линии составляла 60 км. Самой значительной из передач системы Тюри была линия Мутье—Лион протяженностью 180 км, введенная в эксплуатацию в 1906 г. при напряжении57кВ позднее напряжение было увеличено до 125 кВ. Установка проработала до 1937 г. и только тогда была заменена трехфазной [20, 21].  [c.74]

Общая характеристика. Двигатели постоянного тока допускают экономичную и плавную регулировку скорости в широких пределах, особенно в системе генератор — двигатель (схема Леонарда), плавный пуск, торможение и реверс, поддержание постоянства заданных параметров (при применении элек-тромашинных усилителей).  [c.381]

Система генератор—двигатель (система Леонарда) — наиболее совершенная система управления и регулирования двигателей постоянного тока. Недостаток ее — необходы.мосгь в специальном дви-гатель-генераторе.  [c.420]

Двигатели независимого возбуждения применяются в системах генератор — двигатель, в том числе и с электрома-шинным управлением.  [c.442]

Диоды Кенотроны Пентоды Тетроды Триоды Левина профилографы 251, 252 Лекланше элемент 356 Ленца закон 333 Ленца-Джоуля закон 338 Леонарда система — см. Система генератор-двигатель Лермантова объемомер 14 Линзы 233  [c.542]

Станок мод. 745А имеет привод электромеханический по системе генератор — двигатель с электромашинным усилителем. Механизм подач стола станка мод. 745А снабжен индивидуальным электродвигателем и сообщает столу продольное, поперечное и круговое движения. Пределы круговой подачи стопа 0,75—25 мм на один двойной ход долбяка на диаметр 1250 мм.  [c.64]

П. р. широко используются в радиотехнике, электронике, электроакустике и др. в качестве фильтров, резонаторов в задающих генераторах, резонансных пьезопреобразователей и пьезотрансформаторов. Пьезоэлектриком в П. р. служит кристалл кварца или пьезо-керамика с малыми потерями. Кварцевые резонаторы применяются в качестве резонансных контуров генераторов злектрич. ВЧ-колебаний. Высокая добротность (10 — 10 ) кварцевого резонатора определяет малый уход частоты генератора от её номинального значения 1(10 — Ю )%] при изменении окружающей темп-ры, давления и влажности. Разработаны микроминиатюрные кварцевые резонаторы на частоты колебаний 30 кГц — 8,4 МГц, нашедшие применение в электронных часах, системах электронного зажигания двигателей внутр. сгорания и др. П. р. на основе кварца используются в акустоэлектронных устройствах фильтрации и обработки сигналов монолитных ньезо-электрич. фильтрах, а также фильтрах и резонаторах на поверхностных акустических волнах (ПАВ). Оси. достоинство резонаторов на ПАВ — возможность использования в устройствах стабилизации частоты и узкополосной фильтрации в диапазоне частот 100— 1500 МГц. Пьезоэлектрич. фильтры из пьезокерамики, как правила, многозвенные, изготавливают на частоты 1 кГц — 10 МГц. При этом на частотах до 3,5 кГц используют биморфные пьезоэлементы, когда П. р. совершает резонансные колебания изгиба по грани в  [c.192]

На рис. 2.10, а представлены механические характеристики приводов, работающих по системе трехобмоточный генератор - двигатель и применяемых, в частности, на экскаваторах средней мощности. Форма характеристики может быть изменена соответствующим подбором ампер-витков трех обмоток генератора - независимой, щунтовой и сериесной. На рис. 2.10, б показана механическая характеристика привода постоянного тока по системе генератор - двигатель с элекгромашинными усилителями, применяемого на экскаваторах большой мощности. Такие характеристиками имеют участки малой и повышенной жесткости, что позволяет применять их как в приводах рабочих органов или исполнительных механизмов, требующих плавности изменения скоростей рабочих движений, так и при стабильной скорости, независимой от изменения внешней нагрузки.  [c.33]

Основные проекты, разрабатываемые в США, уже были рассмотрены достаточно подробно. Более 40 американских организаций осуществляют научно-исследовательские программы, финансируемые правительством, в соответствии с которыми разрабатываются как сам двигатель Стирлинга, так и его элементы. Самые, большие денежные суммы выделены на программы разработки автомобильного двигателя и двигателя на солнечной энергии. Все более интенсифицируются исследовательские работы по созданию больших двигателей для стационарных силовых и энергетических установок общего назначения [8, 9]. Рассматриваются возможности использования камер сгорания с псевдоожиженным слоем и нетрадиционных источников энергии [5]. В работе [5] довольно подробно рассмотрено преобразование дизельных двигателей в двигатели Стирлинга с использованием двигателя типа двигателя Рингбома. Последний является гибридной системой со свободно перемещающимся вытеснителем, связанным поршнем и камерой сгорания на угле. Сотрудники фирмы Фостер — Миллер ассошиэйтс [10] иод-считали, что генератор с двигателем Стирлинга, работающим на угле, мощностью 2,3 МВт позволит сэкономить за год 656 тыс. долл. Все очевидней становится тенденция к созданию более крупных двигателей.  [c.407]


Смотреть страницы где упоминается термин Системы генератор — двигатель : [c.24]    [c.548]    [c.553]    [c.333]   
Справочник машиностроителя Том 2 (1955) -- [ c.0 ]



ПОИСК



Двигатель-генераторы

Пуск асинхронных двигателей двигателя в системе генератор двигатель

Пуск двигателя в системе генератор двигатель

Реверс двигателя в системе генератор — двигатель

Система Генераторы

Системы генератор — двигатель моментов

Системы генератор — двигатель процессы

Системы генератор — двигатель—Переходные режимы

Системы — Динамика генератор — двигатель

Статические механические характеристики системы генератор — двигатель

Схемы двигателей постоянного ток принципиальные системы генератор — двигатель

Схемы двигателей постоянного тока принципиальные системы генератор— двигатель

Схемы принципиальные системы генератор - двигатель

Торможение асинхронных двигателе в системе генератор — двигател

Торможение в системе генератор - двигател

Торможение — Испытания в системе генератор — двигател

Фсема-привода ставка по системе генератор — двигатель (схема Леонарда)

Электродвигатель система генератор-двигатель



© 2025 Mash-xxl.info Реклама на сайте