Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные режимы работы ГТД

На дроссельных характеристиках обычно указываются основные режимы работы ГТД.  [c.208]

Основные режимы работы ГТД  [c.213]

Приняты следуюш ие основные установившиеся режимы работы ГТД максимальный (взлетный), номинальный (расчетный), крейсер-с к и е (эксплуатационные), режим малого газа.  [c.213]

Наряду с основными режимами для ГТД приняты режимы работы с форсированием тяги.  [c.214]

К настоящему времени пока еще не установлена единая номенклатура основных режимов работы газотурбинных двигателей. За рубежом каждая фирма, выпускающая авиационные двигатели, каждая авиакомпания, эксплуатирующая эти двигатели, в ходе доводки и эксплуатации ГТД уточняет и изменяет перечень основных режимов ра боты двигателей, соотношение между тягами, значение основных параметров двигателя на этих режимах. В СССР для ТРД принята следующая. номенклатура основных режимов максимальный (или взлетный), номинальный, крейсерский, экономический и режим малого газа.  [c.37]


Таким образом, основное положение подхода к расчетно-экспериментальному определению ресурса дисков ГТД заключено фактически в представлении реакций материала на разные формы цикла нагружения идентичными, что позволяет считать влияние на поведение материала эффекта взаимодействия нагрузок и выдержек при постоянной нагрузке несущественным. Это, в свою очередь, позволяет при составлении программ ЭЦИ дисков представлять типовые ПЦН дисков в виде циклов простой формы, в которых отсутствует большинство этапов смены режимов работы двигателя, и этапы работы двигателя на длительно используемых режимах. В результате этого при определении долговечности, например, титановых дисков компрессоров, по аналогии с определением  [c.43]

В книге излагаются основы теории авиационных компрессоров, турбин и входных устройств (воздухозаборников) силовых установок с газотурбинными двигателями (ГТД). Основное внимание уделяется процессам, протекающим в указанных элементах двигателей на различных режимах работы, их характеристикам и влиянию на них условий эксплуатации.  [c.2]

Как и у компрессора, форма проточной части турбины и форма лопаток каждого ее венца соответствуют изменению плотности газа по тракту и форме треугольников скоростей только на одном (расчетном) режиме работы турбины. В различных условиях эксплуатации ГТД частота вращения ротора, температура газа на входе и другие величины, определяющие режим работы турбины, могут изменяться в значительных пределах. Это приводит к перераспределению теплоперепада между ступенями, к изменению формы треугольников скоростей и углов атаки и в конечном счете к изменению КПД, работы на валу и других параметров турбины. Зависимости, определяющие изменение основных параметров турбины при изменении режима ее работы, называются характеристикой турбины.  [c.223]

Наиболее обобщенные сведения о тягово-экономических данных авиационных ГТД на различных режимах эксплуатации можно получить при анализе характеристик двигателей. Характеристиками авиационных ГТД принято называть зависимости основных параметров двигателя (тяги или мощности и удельного расхода топлива) от скорости полета, высоты полета и режима работы, определяемого положением рычага управления двигателем. В результате исследований характеристик двигателя и законов его регулирования, которые подробно изложены в работах, посвященных этим проблемам [2], [9], определено, что характеристики двигателя зависят от многих факторов, и прежде всего от схемы двигателя, его расчетных термодинамических параметров, конструкции, принятой программы регулирования, параметров атмосферы, условий эксплуатации двигателя, места его расположения на летательном аппарате, степени износа и ряда других. Кроме того, на характеристики двигателей налагаются различные эксплуатационные ограничения, предотвращающие механические  [c.29]


Для полного представления о качествах и возможностях ГТД при их эксплуатации на самолетах служат зависимости тяги (мощности) и основных удельных параметров двигателей от режимов их работы, высоты и скорости полета, называемые основными (эксплуатационными) характеристиками..  [c.207]

Свойства различных ГТД могут быть выявлены при сравнении основных параметров двигателей, работающих в одинаковых условиях полета и на заданных режимах. Сравнение параметров, е частности, удобно проводить для стендовых условий прн работе двигателя на максимальном режиме (табл. 5.1).  [c.234]

До недавнего времени все лопатки компрессоров и турбин ГТД проектировали по принципу безопасного ресурса. Лопатки отстраивали по основному тону их колебаний таким образом, чтобы резонансные колебания либо вообще не возникали, либо их появление имело кратковременный характер на переходных режимах работы двигателя. Однако реальная эксплуатация двигателей показывает, что разрушение лопаток происходит при различной наработке двигателя и является частым событием по различным причинам [3, 4]. Возможна высокая концентрация напряжений по зонам галтельного перехода у основания лопаток, проявление фреттиига по контактирующим поверхностям основания лопатки и межпазового выступа диска, а также весьма распространены ситуации повреждения пера лопатки из-за попадания постороннего предмета в газовоздушный тракт ГТД или возникновения коррозионных язв. Следствием этого является фактическая эксплуатация лопаток с развивающимися в них усталостными трещинами.  [c.567]

Особенностью режимов нагружения деталей авиационных ГТД является высокая температура основных деталей — рабочих и сопловых лопаток турбины, дисков, элементов проточной части газового тракта. По данным зарубежных исследователей [7, 8 и др.], температура газа перед турбиной в транспортных ГТД за последние 10—15 лет выросла на 300° С и достигает 1300° С и более, что вызвано требованиями снижения удельного веса двигателей и повышения их мощности и экономичности. Эти требования в наибольшей степени относятся к авиационным двигателям, в особенности из-за общей тенденции экономии топлива. По данным работы [7], в которой приведен обзор направлений развития зарубежных ГТД, рост температуры газа перед турбиной будет продолжаться, к 1985—1990 гг. может быть достигнут уровень 1700° С. Охлаждаемые конструкции лопаток допускают эту возможность, если учесть, что жаропрочность обычных литых материалов увеличивается в среднем на 10° в год кроме того, разрабатываются новые высокожапропрочные сплавы — композиционные, эвтектические и др. [9]. Следовательно, теплонапря-женность деталей авиационных двигателей будет увеличиваться. Высокий уровень температур объясняет и следующую особенность этих конструкций — применение высокожаропрочных сплавов, которые часто не имеют большого ресурса пластичности, свойственного ряду конструкционных материалов, используемых в тех же деталях 10—15 лет назад. В табл. 4.1 приведены для сравнения некоторые характеристики жаропрочных лопаточных сплавов, расположенных в хронологическом порядке их применения в промышленности. Каждый из четырех приведенных материалов является базовым для ряда других, созданных на его основе, и представляет, таким образом, группу сплавов.  [c.77]

Факторы, затрудняющие запуск. Основными факторами, затрудняющими запуск ГТД в полете, являются низкая температура и давление в камерах сгорания (почти равные температуре и давлению наружного воздуха), поэтрму чем больше высота полета, тем сложнее условия запуска большая скорость воздуха на входе в камеры сгорания (в полете она значительно выше, чем на земле) повышение чувствительности двигателя (с увеличением высоты полета) к величине избытков топлива для разгона ГТД —незначительное нарушение в работе топливорегулирующей аппаратуры, не сказывающееся при запуске на земле, в полете может стать причиной неудачного запуска. Кроме того, запуск в полете усложняется еще и потому, что внимание летчика сосредоточено не только на запуске двигателя, но и на выдерживании и контроле параметров режима полета.  [c.67]

Первоначально было введено дифференцированное установление ресурса, при котором обеспечение надежности базировалось на контроле состояния отдельных двигателей, имеющих наибольшую наработку. В результате такой эксплуатации было определено, что время между ремонтамд авиационных двигателей должно назначаться на основании информации о техническом состоянии наиболее надежных узлов двигателя, а не наименее надежных узлов, как при системе с фиксированным ресурсом. При этом проводится последовательное устранение всех систематических отказов с частичной заменой некоторых элементов и узлов, ограничивающих дальнейший рост ресурса двигателя. Таким образом устанавливается дифференцированный ресурс отдельных деталей, элементов и узлов. Эта система эксплуатации позволила резко увеличить ресурс авиационных ГТД и дала ощутимый экономический эффект. Кроме того, дополнительное увеличение ресурса произошло после учета условий применения самолета. Например, для самолетов, эксплуатируемых на маршрутах большой протяженности, ресурс двигателей был существенно увеличен за счет уменьшения доли тяжелых режимов взлета и набора высоты в общем времени работы двигателя. Вследствие этого ресурс многих авиационных ГТД, устанавливаемых на военно-транспортных и пассажирских самолетах, достиг нескольких тысяч часов. Понятие плановый ремонт потеряло практическое значение, так как основная масса двигателей изымалась из эксплуатации для восстановления работоспособности отдельных элементов и узлов до выработки ресурса, т. е. приблизилась к эксплуатации по техническому состоянию.  [c.69]



Смотреть страницы где упоминается термин Основные режимы работы ГТД : [c.30]    [c.396]   
Смотреть главы в:

Справочник авиационного инженера  -> Основные режимы работы ГТД



ПОИСК



Работа основная



© 2025 Mash-xxl.info Реклама на сайте