Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шлаки компонентов

Требуемый состав шлака, выбираемый по диаграмме плавкости (в мол. %) Молекулярный (атомный) вес компонентов шлака Атомный вес элемента, образующего шлак Компоненты шлака, пересчитанные в вес. % Количество металла, которое необходимо окислить для получения 1 кг шлака,  [c.17]

Производство ЭШЛ отвечает самым строгим требованиям санитарно-гигиенических условий труда. Однако из-за того, что процесс ЭШЛ является бес-камер ным, имеет место выделение из жидкого шлака некоторого количества дыма и газов. Образование дыма в этом процессе связано с испарением из шлака компонентов, имеющих малую упругость пара. В дальнейшем при понижении температуры парогазовой фазы происходит их конденсация.  [c.616]


Целлюлозное покрытие содержит целлюлозу и другие органические вещества с небольшим количеством шлакообразующих компонентов. Они создают хорошую газовую защиту и образуют малое количество шлака. Особенно пригодны для сварки на монтаже в любых пространственных положениях на переменном и постоянном токе. Их применяют для сварки низкоуглеродистых и низколегированных сталей. Наплавленный металл по составу соответствует полуспокойной или спокойной стали.  [c.192]

К основным Химическим процессам относятся химические реакции в газовой и жидкой фазах, на границах фаз (газовой с жидкой, газовой с твердой, жидкой с твердой) при взаимодействии компонентов покрытий, флюсов, защитных газов с жидким металлом с образованием окислов, шлаков, окислением поверхности и т. д.  [c.19]

Шлаки представляют собой жидкие минеральные фазы, отделяющие зеркало металла от непосредственного действия газовой атмосферы. Шлаки не изолируют металл от окружающей газовой среды, а только заменяют непосредственное взаимодействие диффузионным. Через шлак могут диффундировать газы или металлы (в виде своих низших оксидов) на границу раздела с газами, там окисляться и, возвращаясь к металлу, передавать захваченный кислород. Так, железо, обладающее переменной степенью окисления, может переносить кислород по следующей схеме (в круглых скобках — компоненты шлака)  [c.348]

Взаимодействие шлаковой фазы с металлом полностью зависит от ее состава, обычно сложного, и температуры. Равновесие между компонентами шлаковой и металлической фаз и возможность возникновения окислительно-восстановительных процессов определяются обобщенно законом распределения (см. п. 8.4). Активное взаимодействие шлака и металла при высоких температурах сварочного процесса приводит к изменению состава металла шва и это необходимо учитывать при разработке технологии сварки.  [c.349]

Составы шлаковых многокомпонентных фаз варьируются в широких пределах в зависимости от того, какие металлы или сплавы подвергаются процессу сварки. Так, алюмосиликатные флюсы, т. е. заранее приготовленные шлаки, удовлетворяюш,ие процессам сварки сталей, непригодны для сварки титана или алюминия, так как эти металлы могут восстанавливать компоненты шлака и тем самым изменять состав металла шва. Поэтому компоненты шлаковых фаз должны обладать достаточно высокой термодинамической устойчивостью.  [c.350]

Нейтральные компоненты шлаковых фаз представляют собой обычно фториды активных металлов, обладающие высокой термодинамической устойчивостью. В ряде случаев их совместные системы могут использоваться как бескислородные или фторид-ные шлаки.  [c.353]


Взаимодействие металла со шлаком следует рассматривать, с одной стороны, как гетерогенные окислительно-восстановительные процессы между компонентами шлака и компонентами металла на границе раздела металл — шлак, а с другой стороны,  [c.360]

В результате обработки шлаком состав металла сварочной ванны существенно изменяется. Подбор компонентов шлака и их соотношений ведется таким образом, чтобы полученный состав металла соответствовал поставленным требованиям.  [c.361]

Окислительно-восстановительные реакции на границе раздела металл — шлак. Взаимодействие компонентов шлака и  [c.361]

Рассмотрим гетерогенное равновесие между шлаком, содержащим МпО, и сталью, которая тоже может содержать марганец как легирующий компонент  [c.362]

Восстанавливающийся марганец будет растворяться в железе, а получающийся оксид железа будет уходить в шлак, но в зависимости от состава и характера шлака активность компонентов может изменяться в значительных пределах.  [c.363]

Шлаковая защита сварочной ванны реализуется при механизированной сварке под слоем флюса (рис. 10.1). Электрический дуговой разряд, перемещаемый вдоль свариваемого шва механическим устройством, поддерживается в замкнутом пространстве в среде расплавленного флюса и флюса в полужидком состоянии, причем газы дуговой атмосферы — пары металла и компонентов флюса — поддерживают давление внутри полости выше, чем давление окружающей атмосферы. Дуговая сварка под слоем флюса— высокопроизводительный процесс (более 20 г/А- ч), обеспечивающий хорошее формирование сварного шва и высокое использование электродного металла — проволоки ( 98%), так как не происходит разбрызгивания и, следовательно, не образуется грат. Шлак, образовавшийся при плавлении флюса электрическим дуговым разрядом, хорошо отделяется от поверхности сварного соединения.  [c.368]

Таблица 10.2. Массовые доли, %, основных компонентов флюса АН-8 и шлака Таблица 10.2. <a href="/info/29143">Массовые доли</a>, %, основных компонентов флюса АН-8 и шлака
Свойства металла шва, наплавленного электродом без покрытия, очень низки (ударная вязкость падает до 0,5 МДж/м вместо 8 МДж/м ). Состав покрытия электродов определяется рядом функций, которые он должен выполнять защита зоны сварки от кислорода и азота воздуха, раскисление металла сварочной ванны, легирование ее нужными компонентами, стабилизация дугового разряда. Производство электродов сводится к нанесению на стальной стержень электродного покрытия определенного состава. Электродные покрытия состоят из целого ряда компонентов, которые условно можно разделить на ионизирующие, шлакообразующие, газообразующие, раскислители, легирующие и вяжущие. Некоторые компоненты могут выполнять несколько функций одновременно, например мел, который, разлагаясь, выделяет много газа (СОг). оксид кальция идет на образование шлака, а пары кальция имеют низкий потенциал ионизации и стабилизируют дуговой разряд, СОг служит газовой защитой.  [c.390]

В настоящее время порошковые проволоки нашли промышленное применение для сварки и наплавки в СОг и без защитного газа (самозащитная порошковая проволока). Они изготавливаются из стальной ленты толщиной 0,2...0,5 мм, которая постепенно сворачивается в трубку на специальных вальцах. На определенной стадии вальцовки в еще не закрытую полость электрода засыпают порошкообразные компоненты — шлако- и газообразующие (при сварке в СОг газообразующие компоненты не применяются), раскислители, а в ряде случаев и специальные легирующие добавки, а также железный порошок. После этого трубку вместе с порошковым материалом дополнительно обжимают, очищают от следов смазки во время вальцовки и свертывают в бухты. Диаметр порошковых проволок колеблется от 1,6 до  [c.399]


Простейшие схемы, показанные на рис. 13.1, предназначены для получения жидких смол, содержащих ценные виды химического сырья, бензина, высококалорийного газа с компонентами сжиженного газа и непредельных углеводородов, цементного клинкера и других строительных материалов типа шлако-войлока, шлаковаты и т. п.  [c.393]

Обмазка применяется в основном с целью предохранения стержня от угара в процессе наплавки за счет образующегося слоя жидкого шлака. Во многих случаях в состав обмазки входят также компоненты, необходимые для образования твердого слоя,  [c.567]

Шлакоситаллы. Шлакоситаллы — стеклокристаллические материалы, получаемые путем управляемой кристаллизации стекла на основе шлаков. Для превращения шлаков, содержащих высокий процент основных окислов, в стекло, пригодное для формования изделий, к нему добавляют кварцевый песок и некоторые другие компоненты, обеспечивающие необходимые технологические свойства стекольного расплава.  [c.485]

По принципу защиты металла современные толстые покрытия могут быть подразделены на 1) газозащитные, состоящие в основном из компонентов, образующих при сгорании (расплавлении) покрытия газовую защитную атмосферу, предохраняющую расплавленный металл от непосредственного взаимодействия с атмосферным воздухом 2) ш л а к о з а-щитные, состоящие в основном из шлако-  [c.297]

В соответствии с функциями электродных покрытий для их изготовления применяются различные компоненты, из которых многие представляют собой руды или минералы, не отличающиеся постоянством химического состава даже в пределах одного и того же месторождения. Чрезмерное засорение компонентов покрытия вредными элементами может оказать неблагоприятное влияние на физические и химические свойства покрытия и образуемый ими шлак и вызвать понижение механических и физических свойств металла шва. Установленные стандарты на покрытые электроды неразрывно связаны с техническими условиями на компоненты покрытий, с учётом их специфических функций в процессе дуговой сварки. Технические условия на главнейшие компоненты электродных покрытий приведены в табл. 29.  [c.299]

Ф л ю с ы, применяемые на практике, подразделяются на плавленые и шлаковые. Плавлеными называются флюсы, изготовляемые путём сплавления компонентов в плавильных печах, шлаковыми — флюсы из обогащённого марганцем шлака доменных печей, работающих на древесном угле.  [c.327]

Как и следовало ожидать, хвосты обогатительной фабрики, содержаш,ие тальк, феллиты и другие неактивные минералы, снижают прочность вяжущего в среднем на 7—8 %. Отрицательное влияние хвостов особенно отчетливо проявляется при длительном твердении образцов (табл. 7). Различный характер твердения цементов на брянском и савинском цементах сказывается и в случае применения шлака, содержащего хвосты обогатительной фабрики. Учитывая сказанное, целесообразно при производстве закладочных работ применять молотый шлак — компонент вяжущего — без примеси хвостов обогатительной фабрики.  [c.96]

После расплавления шихты в сталеплавильной печи образуются две несмешивающиеся среды жидкий металл и шлак. Металл и шлак разделяются из-за различных плотностей. В соответствии с законами распределения закон Нернста), если какое-либо вещество растворяется в двух соприкасающихся, но несмешивающихся жидкостях, то распределение вещества между этими жидкостями происходит до установления определенного соотношения (константы распределения) постоянного для данной температуры. Поэтому большинство компонентов (Мп, Si, Р, S) и их соединения, растворимые в жндкovf металле и шлаке, будут распределяться между металлом и шлаком в определенном соотношении, характерном для данной температуры.  [c.29]

Жидкие самотвердеющие смеси (ЖСС), используемые для изготовления как литейных стержней, так и литейных форм, приготовляют из кварцевого песка, отвердителей (шлаков фер-рохромистого производства), связующих материалов (жидкое стекло, сии гетические смолы), поверхностно-активных веществ. При интенсивном перемешивании компонентов смеси образуется пена, которая разделяет зерна песка, уменьшает силы трения между ними, что и придает смеси свойство текучести. Такие смеси сохраняют текучесть обычно в течение 9—10 мин. За это время смесь должна бьпь разлита по формам или стержневым ящикам. Через 20—30 мин смесь становится прочной  [c.132]

Флюсы для сварки легированных и высоколегированных сталей должны обеспечивать минимальное окисление легирующих элементов в шве. Для этого приме няют плавленые и керамические пизкокремпистые, бескреинистые и фторидные флюсы. Их шлаки имеют высокое содержание СаО, СгР и А1,0ч. Плавленые флюсы изготовляют из плавикового шпата, алюмосиликатов, алюминатов, путем сплавления в электропечах. Их шлаки имеют основной характер. Керамические флюсы приготовляют из порошкообразных компонентов путем замеса их на жидком стекле, гранулирования и последующего прокаливания. Основу керамических флюсов составляет мрамор, плавиковый шпат и хлориды щелочноземельных металлов. В них также входят ферросплавы сильных раскислителей (кремния, титана, алюминия) и легирующих элементов и чистые металла. Шлаки керамических флюсов имеют основной или пассивный характер и обеспечивают получение в металле шва заданное содержание легирующих элементов.  [c.194]

Сварочные материалы наряду с окислителями могут содержать вредные компоненты — серу и фосфор, так как они являются причиной горячих трещин и охрупчивания металла шва. Сера, соединяясь с железом, образует сульфид железа РеБ. Металл очищают от серы, вводя более активный элемент, чем свариваемый металл, по реакции РеБ+Мп Ре+Мп5. Сульфид марганца менее растцорим в стали, чем сульфид железа, что вызывает перераспределение серы из расплавленного металла в шлак.  [c.28]

Высокие температуры, используемые при сварке плавлением, с одной стороны, понижают термодинамическую устойчивость оксидов, как это было показано в п. 9.2, но, с другой стороны, скорость их образования резко увеличивается и за очень небольшое время сварочного цикла металлы поглощают значительное количество кислорода. Поглощенный кислород может находиться в металле или в растворенном состоянии в виде оксидов (обычно низшей степени окисления), или субоксидов (TieO, TisO, Ti20), а также может создавать неметаллические включения эндогенного типа, образовавшиеся при раскислении металла более активными элементами. И то, и другое резко снижает качество сварных соединений, особенно пластичность металла шва. Исследования этого вопроса показали, что основная масса кислорода в металле обычно находится в неметаллических включениях [20]. Источниками кислорода в металле при сварке служат окислительно-восстановительные реакции между металлом и атмосферой сварочной дуги, металлом и шлаками, образующимися в результате плавления флюсов или при разложении и плавлении компонентов электродного покрытия, а также при взаимодействии с наполнителями порошковой проволоки.  [c.317]


При различных массовых соотношениях одних и тех же компонентов шлак может быть или основным, или кислым. Если основной шлак содержит до 10% Si02, то можно пренебречь ком-плексообразованием SuOJ и ограничиться только расчетом энергий взаимодействия ионов между собой. В этом случае получаем совершенный ионный раствор (СИР). Но если шлак кислый и содержит много комплексных ионов SLO/ , то нужно также учитывать энергию и энтропию образовавшихся комплексов, т. е. рассматривать шлак как регулярный ионный раствор (РИР).  [c.355]

Недостаток достоверных данных сильно затрудняет точные расчеты, так как термодинамические данные, полученные из рассмотрения бинарных диаграмм состояния, переносить на многокомпонентные системы можно лишь условно. Тем не менее расчеты по этой системе уже нашли применение в сварочной металлургии для определения основности шлаков В и активностей наиболее важных компонентов шлаковых фаз (Si02 МпО).  [c.355]

Переход из шлака в металл других компонентов в заметных количествах маловероятен. Оксид АЬОз обладает очень высокой термодинамической устойчивостью и, кроме того, образует комплексные ионы А107 и восстанавливаться железом практически не может. Титан из шлаков, богатых ТЮг, например при плавлении рутиловых покрытий, восстанавливаться может, но переходить в металл не будет, так как титан имеет ряд оксидов, и если он будет восстанавливаться, окисляя металл, по реакции  [c.366]

Для сварки легированных сталей, содержащих легкоокисляю-щиеся компоненты, используют флюсы с минимальной окислительной способностью. Такие флюсы строятся на основе флюорита СаРг, к которому добавляют для понижения электропроводности АЬОз и СаО. Эти флюсы также активно понижают содержание серы. Длительное пребывание жидкого металла в контакте с синтетическим шлаком дает возможность подавать в шлаковую ванну электродные проволоки или пластины различного состава для их переплава, а это создает условия для улучшения свойств полученного металлического слитка (снижение содержания серы  [c.378]

Электроды группы Р осуществляют защиту зоны сварки шлаками на основе ТЮг, полевого шпата (NaoO-АЬОз- eSiOa), магнезита Mg Os, который, разлагаясь, дает большой объем СО2, но, кроме того, защитная атмосфера пополняется органическими компонентами. Электроды этой группы обладают высокими технологическими свойствами — обеспечивают высокую устойчивость горения дуги, хорошее формирование шва и отделяемость шлаковой корки, возможность сварки в любом пространственном положении шва. Кроме того, рутиловые электроды малотоксичны и обеспечивают высокие механические свойства у наплавленного металла.  [c.395]

Шлакообразование. Роль шлака при плавке жаропрочных сплавов исключительно велика. От состава шлака зависят температура металла и содержание вредных примесей (S и Р). Источниками шлакообразования являются оплавившаяся футеровка, зола кокса, продукты окисления компонентов чугуна при плавке (РеО, SiOz, МпО и др.), а также различные оксиды, вносимые шихтой, и флюс. Для регулирования состава и степени основности шлака используют известняк.  [c.258]

Ситалл — неметаллический неорганический стеклокристаллический материал, получаемый кристаллизацией затвердевшего стекла. Принято выделять технические ситаллы, сырьем для которых служат химические продукты высокой чистоты, однородности и стоимости шлакоситаллы (ведущий компонент сырья — отвальный холодный шлак) петроситаллы (ведущий компонент сырья — изверженная горная порода).  [c.90]

Эта установка имеет низкую степень аппаратурного оформления теплообменных процессов [14]. Теплообмен между шлаком и грануляционной водой происходит в грануляционном желобе и гидроэлеваторе отстойника. Степень использования тепла шлака в этом аппарате очень низкая, так как значительная часть нагретой воды теряется при гидравлической транспортировке шлака, а крупные куски шлака не успевают остыть в установке и поступают в отвал раскаленными внутри. Змеевики, в которых нагревается сетевая вода, снаружи покрываются слоем шлаковых отложений, в результате чего резко снил аются интенсивность теплообмена и температура сетевой воды на выходе из теплообменника, что также уменьшает эффективность установки. Грануляционная вода за счет выщелачивания растворимых компонентов шлака приобретает агрессивные коррозионные свойства. Змеевики из обычной углеродистой стали быстро разъедаются и выходят из строя за короткий срок.  [c.161]

Жароупорный бетон — специальный вид бетона, способный сохранять в заданных пределах основные свойства при длительном воздействии на него высоких температур. Этот бетон состоит из портландцемента, тонкомолотой добавки (шамот, хромит, кварцевый песок, шлак, зола и т. п.), мелкого и крупного заполнителя (шамот, базальт, диабаз, шлак и т. п.) и воды. Вид и соотношение компонентов в бетоне зависят от условий его эксплуатации. 1 бетона, рассчитанного на службу при 1100—1200° С, содержит портландцемента — 300 кг, тонкомолотого шамота — 100—300 кг, шамотного песка 500—700 кг, шамотного щебня — 700 кг и воды 330 л. Марки бетона от 100 до 300 (предел прочности при сжатии образцов 10Х 10Х 10 см, высушенных при 110° С в течение 32 ч, через 7 суток после изготовления). Температура начала деформации жароупорных бетонов на шамотном заполнителе под нагрузкой 2 кПсм равна 1100—1200° С, а конца 1350—1400° С. Термостойкость этих бетонов не ниже термостойкости шамотных изделий их коэффициент линейного расширения в интервале температур 20—900° С изменяется в пределах 6-10 — 8-10 , линейная усадка при максимальных температурах равна 0,4—1,0%. В зависимости от состава бетона максимально допустимые температуры элементов конструкций колеблются в пределах 350—1400° С. Объемный вес бетона 1800—2800 Сушку и разогрев теплового агрегата можно осуществлять только через 7 суток твердения бетона со скоростью подъем температуры до 150° С—5—40° /i< выдержка при 150° С — 0,33—7 суток, подъем температуры от 150° С до рабочей 25—200° С/ч. Жароупорный бетон применяют для кладки фундаментов доменных печей, стен боровов, регенераторов, шлаковиков, кессонов, сборных отопительных печей и т. п.  [c.519]

В зависимости от рода получаемого шлака электродные покрытия могут быть разбиты на кислые и основные. Важнейшим моментом, определяющим качество покрытия, является степень его раскислённости или окислительная способность образуемых им шлаков. Даже в условиях весьма эффективной защиты расплавленного металла от вредного внешнего воздействия атмосферного кислорода нераскис-лённые или слабо раскисленные шлаки могут насытить металл шва значительным количеством кислорода за счёт перехода свободных окислов из шлака в металл. Аналогичное явление может иметь место при использовании в покрытии рудных компонентов, которые при нагреве выделяют свободный кислород, например, марганцевая руда. В советской практике для многих марок толстопокрытых электродов применяются главным образом основные рас-кислённые покрытия, особенно при сварке легированных сталей. Для регулирования химического состава металла шва и его механических свойств в советской практике в подавляющем большинстве марок покрытых электродов, применяемых для сварки углеродистых и низколегированных конструкционных сталей, практикуется легирование через покрытие. Для этой цели используются в основном различные ферросплавы, которые одновременно осуществляют и другие функции в электродном покрытии (раскисление, создание мелкозернистости металла шва, повышение устойчивости дуги, улучшение технологических свойств шлака).  [c.297]


В основных покрытиях, шлаки которых базируются на СаО, одновременно вводится значительное количество плавикового шпата для повышения жидкоплавкости и реактивной способности шлака. Этот компонент отрицательно влияет на устойчивость вольтовой дуги и предопределяет род тока и полярность (постоянный ток, обратная полярность). В случаях сварки на переменном токе в покрытие вводятся компоненты, содержащие элементы с низким потенциалом ионизации (поташ, окислы калия и натрия и др.), или производится замена одних компонентов другими (например, кварц заменяется полевым шпатом или гранитом, содержащим помимо Si02 также значительный процент окислов щелочных металлов).  [c.297]

Дуговая электрорезка металлическим электродом. Дуговая электрорезка металлическим электродом менее экономична, чем резка графитовым, вследствие расхода более дорогих электродов. В отношении производительности этот способ резки не уступает предыдущему, особенно при небольших толщинах разрезаемых металлов. Электроды для данного способа резки применяются преимущественно с толстым шлако-образуюшим покрытием, которое допускает применение больших сил тока и содержит компоненты, выделяющие кислород в атмосфере вольтовой дуги. Это приводит к частичному окислению расплавленного металла с выделением тепла. Скорость резки возрастает с увеличением диаметра электрода и силы тока ширина реза примерно равна диаметру электрода с обмазкой.  [c.312]


Смотреть страницы где упоминается термин Шлаки компонентов : [c.324]    [c.324]    [c.14]    [c.324]    [c.64]    [c.356]    [c.372]    [c.390]    [c.278]    [c.286]   
Металлургия и материаловедение (1982) -- [ c.380 ]



ПОИСК



Шлаки



© 2025 Mash-xxl.info Реклама на сайте