Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема о первых интегралах

Теорема о первых интегралах. Автономное уравнение с дифференцируемой правой частью в некоторой окрестности каждой неособой точки п-мерного фазового пространства имеет полную систему из (л—1) функционально независимых и не зависящих от времени первых интегралов h.....In-и Фазовые  [c.23]

ПРИМЕНЕНИЕ ПРЕДШЕСТВУЮЩЕГО ИССЛЕДОВАНИЯ К ИНТЕГРИРОВАНИЮ УРАВНЕНИЙ Б ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА И В ЧАСТНОСТИ К СЛУЧАЮ МЕХАНИЧЕСКИХ ЗАДАЧ. ТЕОРЕМА О ТРЕТЬЕМ ИНТЕГРАЛЕ, ВЫВОДИМОМ ИЗ ДВУХ ДАННЫХ ИНТЕГРАЛОВ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ДИНАМИКИ.  [c.237]


Теорема Пуассона о первых интегралах может быть переформулирована так  [c.190]

В этих трех случаях теорема о количестве движения дает первые интегралы дифференциальных уравнений движения. В первом и во втором случаях, т. е. когда сила постоянна или является функцией времени, теорема применяется в конечной форме, выражаемой уравнениями (147). Из уравнений (147) по заданным проекциям силы находят проекции скорости на координатные оси. третьем случае теорема применяется в дифференциальной форме.  [c.286]

Из изложенного видно, что, когда сила зависит только от времени t или только от расстояния х, для решения задач можно пользоваться первыми интегралами, которые в этих случаях дают соответственно теоремы об изменении количества движения и кинетической энергии точки. Примеры таких решений рассмотрены в 33 (п. 1 и п. 8). Если же сила зависит О от скорости движения, то общие теоремы первых интегралов не дают, и для решения соответствующей задачи необходимо непосредственно интегрировать дифференциальное уравнение движения.  [c.355]

Первые интегралы системы дифференциальных уравнений удобно получать из так называемых общих теорем динамики, когда выполняются некоторые дополнительные условия для действующих сил. Кроме того, общие теоремы динамики, даже когда по ним нельзя определить первые интегралы, дают ценную информацию о движении точки или системы. В некоторых задачах, где не требуется полного знания движения системы, эти сведения могут оказаться достаточными.  [c.256]

Из теоремы об изменении количества движения для точки и системы при некоторых условиях для внешних сил можно получить так называемые первые интегралы системы дифференциальных уравнений точки и системы. Эти первые интегралы называют законами сохранения количества движения или проекции количества движения на ось. Рассмотрим эти законы сохранения для точки и системы одновременно, считая материальную точку механической системой, состоящей из одной точки.  [c.261]

Первым интегралом является интеграл кинетического момента относительно вертикали (оси Ог- . Он следует непосредственно из теоремы о кинетическом моменте относительно оси Ог производная по времени от проекции на ось Ozj кинетического момента Ко равна проекции на эту ось главного момента внешних сил  [c.456]

Выясним, когда доказанные теоремы приводят к первым интегралам. Допустим, сумма проекций внешних активных сил па ось Ох тождественно равна пулю  [c.342]


Интегралы эти понятны непосредственно из общих теорем. Первый интеграл является интегралом живых сил, второй интеграл — интеграл момента количеств движения. В самом деле. Действительные неремещения твердого тела с одной неподвижной точкой находятся среди возможных. Работа активных сил, приводящихся к одной равнодействующей, проходящей через неподвижную точку, на действительном перемещении равна нулю следовательно, имеет место интеграл живых сил 2Т = h. Далее, твердое тело может вращаться вокруг любой неподвижной оси, проходящей через неподвижную точку О. Результирующий момент действующих сил относительно неподвижной точки равен нулю, поэтому из общей теоремы о моменте количеств движения следует,  [c.185]

Для любой замкнутой кривой, проведенной внутри поперечного сечения и целиком лежащей внутри материала, первый и второй интегралы (174) представляют собой линейный интеграл от тангенциальной компоненты касательного напряжения т, взятого вдоль кривой, и по аналогии с циркуляцией в гидродинамике, его можно назвать циркуляцией касательных напряжений. Тогда соотношение (175) сохраняет силу и его можно назвать теоремой о циркуляции касательных напряжений.  [c.336]

Очевидно, что материальная точка будет всегда оставаться в плоскости, содержащей центр сил и касательную к орбите. Так как в этой плоскости мы имеем две степени свободы, то нам нужны два диферен-циальных уравнения движения. Их можно составить разными способами, но проще всего исходить из двух первых интегралов, которые можно иметь на основании теоремы о моменте количеств движения и уравнения энергии.  [c.197]

Проверка показывает, что (fi, Н) = О и (/2, Н) = О, т. е. /1 г/ /2 — первые интегралы. Они представляют собой проекции момента количества движения материальной точки относительно центра О этот момент постоянен, так как рассматриваемое силовое поле является центральным) на оси Oqi и Oq2. Согласно теореме Якоби-Пуассона, функция (/i, /2) тоже должна быть первым интегралом. Имеем  [c.336]

Теорема Пуассона. Если F, G — первые интегралы системы с гамильтонианом Н, то F, О) —тоже первый интеграл.  [c.233]

Еще раз о локальности. Теорема Лиувилля, равно как и предыдущие теоремы, формально носит сугубо локальный характер. Из доказательства теоремы Дарбу следует, что всякая гамильтонова система вполне интегрируема в окрестности любой неособой своей точки. На практике, однако, нас не интересует потенциальное и бессодержательное существование интегралов в малом. Нам важны случаи, когда явно предъявляются первые интегралы движения, определенные во всем или почти всем фазовом пространстве задачи. Вместе с тем, поскольку на практике мы всегда имеем дело с аналитическими функциями, поведение которых в целом, как известно, определяется поведением в малом, то, опираясь на локальные теоремы, мы сможем в конце концов получать заключения нелокального характера о фазовом потоке.  [c.266]

Каковы необходимые и достаточные уравнения движения свободных механических систем необходимые, но недостаточные Что представляют собой буквенные обозначения формул (2.2.1) — (2.2.4) 2. К каким теоремам приводят необходимые, но недостаточные уравнения движения свободных систем 3. Какова роль теоремы о количестве движения в механике свободной системы и абсолютно твердого тела 4. Какие следствия вытекают из теоремы о количестве движения 5. Какие выражения называются первыми интегралами уравнений движения свободных механических систем Когда их можно записать  [c.68]

При исследовании движения материальной точки в пространстве следует обратить внимание на определение сил, дей-ствующ,их на материальную точку. Без этого невозможно определить траекторию и характер движения точки. Особенно большое значение имеют задача о движении тяжелой материальной точки в пустоте и задача о движении материальной точки в центральном силовом поле. При исследовании движения большое значение приобретают общие теоремы динамики материальной точки. При решении задач необходимо использовать эти теоремы и их первые интегралы. Рассмотрим несколько конкретных примеров.  [c.54]


Функции Я, (д) (г = 2,. .., п) представляют собой п — 1 функционально независимых инвариантов рассматриваемой группы, которые всегда существуют. Это следует из известной теоремы из теории обыкновенных дифференциальных уравнений о том, что система уравнений п-го порядка в окрестности любой неособой точки имеет ровно п — 1 локальных первых интегралов. Функция Н д) определяет инвариантное семейство гиперповерхностей.  [c.226]

Карапетян А. В. О теореме Рауса для систем с неизвестными первыми интегралами // Сборник научно-метод. статей по теор. мех. Вып. 23. — М. Изд-во МГУ, 2000.  [c.464]

Согласно теореме о выпрямлении, в малой окрестности любой точки Хо G М", не являющейся положением равновесия (г>(хо) Ф Ф 0), всегда существуют координаты xi,...,x , в которых дифференциальные уравнения приобретают простейший вид 1 = 1, 2 = = 71 = 0. Поэтому координаты Х2, , х составляют полный набор независимых интегралов любой интеграл — функция от Х2, . , Хп- Проблема интегрирования дифференциальных уравнений трактовалась классиками (вплоть до работ Пуанкаре) исключительно с точки зрения явных формул для интегралов. Эта задача, однако, чисто аналитическая, и ее решение никак не связано с особенностями поведения фазовых траекторий. Оказывается, в ряде случаев можно указать простые явные формулы для локальных интегралов, в то время как в целом динамическая система вовсе не имеет первых интегралов.  [c.62]

Теорема 1 [97]. Предположим, что квадратичная форма Но положительно определена. Тогда гамильтонова система с функцией Гамильтона Но -Ь Hi имеет полный набор формально аналитических по первых интегралов, независимых при е = О, в том и только том случае, когда точки множества А расположены на d п прямых, ортогонально (в метрике (, )) пересекающихся в начале координат.  [c.200]

Этим мы не хотим утверждать абсолютно, что ш существует других первых интегралов напротив, для всякой нормальной дифференциальной системы первого порядка с п неизвестными функциями от одного перемен-яого из теоремы существования общего решения, зависящего от п произвольных постоянных, необходимо следует существование и первых интегралов, которые теоретически можно получить, разрешая относительно произвольных постоянных уравнения общего решения. Если из этих п первых интегралов, зависящих от t, исключим это переменное, то придем во всяком случае к л — 1 первых интегралов, связывающих только неизвестные величины задачи. Но во все теоремы существования входят разложения в степенные ряды или другие виды последовательных приближений, т. е. бесконечные алгоритмы, которые, вообще говоря, не приводят к функциям, выражающимся элементарно (алгебраическим, показательным или тригонометрическим), а когда в механике говорят о первых интегралах, известных или подлежащих определению (если нет явно выраженной оговорки о противном), то подразумеваются именно интегралы, выражаемые в этой Элементарной форме.  [c.100]

Речь идет о следующей теореме все первые интегралы уравнений движения являются производящими функциями тех бесконечно малых канонических преобразований, при которых не изменяется гамильтониан системы, и обратно. Формулировка, более близкая, как мы увидим, к лиевской, гласит Интегралы динамической системы и контактные преобразования, переводящие системы в самое себя, представляют собой по сути дела одно и то  [c.232]

Теорема 9.6.3. (Теорема о посл(щдем множителе). Если известны т—1 независимых первых интегралов системы дифференциальных уравнений и множитель Якоби М, то интегрирование этой системы заканчивается квадратурой.  [c.676]

С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]

Проверка показывает, что (/i, //) = ( и (/ , 11)= О, т. о. / н /2 — первые интегралы. Они представляют собой проекции момента количества движения материальной точки отпоснгелыю центра О (этот мо.мент ностояноп, так как рассматриваемое силовое ноле является центральным) на оси Ogi и Одг. Согласно теореме Якоби — Пуассона, фупкция (/i, /2) тоже должна быть первым интегралом. Имеем  [c.284]

Этот ответ можно было получить и в примере 13.7, но там проводилог.ь интегрирование дифференциального уравнения прямолинейного движения точки. Целью этого примера было показать, что применение общих теорем динамики позволяет в ряде случае избежать интегрирования уравнений движения точки (13.7). Речь идет о тех случаях, когда общие теоремы динамики доставляют нам первые интегралы уравнений движения точки, достаточные для решения задачи. Мы обращаем внимание читателя на это заключепне.  [c.291]

Доказанные три теоремы могут привести к первым интегралам и, в частности, при выполнении специальных условий — к законам сохранении количества двигкения системы или его проекции па данную ось (см. п. 1.4 гл. XIX).  [c.448]

Обозначим через f и -f- Т" моменты первого и третьего прохождения нашей точкой положения s и через s — соответствующую скорость. Координата 5 движущейся точки, рассматриваемая как функция от t, дает решение s(f) уравнения (2 ), причем при t = t эта координата принимает значение s, а ее производная становится равной S. С другой стороны, зфавнение (2 ), не зависящее явно от t, не изменяется при замене t ка onst, следовательно, функция s t- -T) тоже будет интегралом уравнения (2 ). Но при t = t значения этой функции и ее первой производной дают координату и скорость при третьем прохождении, совпада(ощие с координатой и скоростью при первом прохождении. Отсюда на основании упомянутой теоремы о единственности решения (соответствующего указанным начальным условиям) будем иметь тождество  [c.32]


Последнее предварительное замечание. Если не вводится никаких специальных предположений относительно распределения масс, то общие теоремы о движении системы не приводят к другим первым интегралам, кроме интегралов живых сил и момента количеств движения (относительно вертикали) на системе уравнений (34), (35) это сказывается в том, что эта система, вообще говоря, не заключает в себе никаких соотношений в конечном виде между векторами о> и и, кроме соотношений (28), (32). Хотя, с аналитической точки зрения уравнение (35) допускает очевидный интеграл = onst.  [c.103]

Рассматривая частные случаи течения жидкости, Лагранж пришел к важной теореме о сохранении безвихревого движения идеальной баротропной жидкости в поле консервативных сил Для безвихревого движения идеальной жидкости он нашел один из первых интегралов движения, позже обоб-ш енный Коши и получивший имя внтетрала Лагранжа — Коши  [c.189]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]

Карапетян А. В., Рубановский В. Н. О модификации теоремы Рауса об устойчивости стационарных движений систем с известными первыми интегралами // Сборник научно-метод. статей по теор. мех. — М. Изд-во МПИ, 1986. Вып. 17.  [c.463]

В общем случае приведенная система невырождена, и по теореме 1 3 координата д +1 = At + 0(1), где А (= onst) зависит от постоянных первых интегралов h, ai,. .., an, Pn+i) a ограниченный остаток есть n-частот-ная квазипериодическая функция времени. Мы дадим сейчас доказательство этой формулы без предположения о невырожденности приведенной системы.  [c.220]

Обсудим теперь задачу о наличии у системы (4.17) дополнительных первых интегралов, полиномиальных по и и г . Легко видеть, что каждый такой интеграл является конечной суммой квазиоднородных полиномиальных интегралов, степени квазиоднородности которых по переменным ик. V равны соответственно 1 и 2. Итак, пусть Г и,ь) — квазиоднородный интеграл системы (4.15) степени т. Согласно теореме 1 3, если точка щ = [/ , Vi = Vi, где /7 , Vi определяются из (4,17), не является критической точкой функции Г, то число т совпадает с одним из указанных выше характеристических корней р. Следует отметить, что не все интегралы удовлетворяют этому условию исключение составляют тривиальные интегралы Ф из серии (4.16). Екли имеются к квазиоднородных интегралов одной и той же степени т, независимых в точке и, ь) = и, V), то корень р = т имеет кратность не менее к.  [c.356]


Смотреть страницы где упоминается термин Теорема о первых интегралах : [c.615]    [c.428]    [c.319]    [c.291]    [c.526]    [c.521]    [c.29]    [c.359]    [c.151]    [c.50]   
Смотреть главы в:

Динамические системы-1  -> Теорема о первых интегралах



ПОИСК



ЗАКОНЫ СОХРАНЕНИЯ И ОСНОВНЫЕ ТЕОРЕМЫ ДИНАМИКИ Первые интегралы уравнений движения и законы сохранения

Интегралы первые

Лагранжиан, функционал действия. Принцип Гамильтона-Остроградского (или принцип наименьшего действия) Первые интегралы. Теорема Нетер. Движение системы во внешнем поле. Лагранжиан заряженной частицы в заданном электромагнитном поле. Вектор-потенциал магнитного поля соленоида Движение относительно неинерциальных систем отсчета

Общий случай, когда теоремы проекций и моментов количеств движения дают первый интеграл

Первые интегралы гамильтоновых систем Теорема Якоби-Пуассона. Уравнения Уиттекера

Первые интегралы дифференциальных уравнений движения, вытекающие из теоремы об изменении момента количества движения

Первые интегралы уравнений Лагранжа второго рода Теорема Нетер

Первые интегралы уравнений движения, которые можно получить на основании теоремы об изменении количества движения Применение теоремы об изменении количества, движения

Первые интегралы. Скобки Пуассона. Теорема Нётер

Связь законов сохранения (первых интегралов) со свойствами пространства и времени. Теорема Эммы Нетер

Случай, когда теорема кинетической энергии дает первый интеграл

Теорема Брунса о несуществовании алгебраических первых интегралов задачи трех тел, отличных от классических

Теорема Пуанкаре о несуществовании однозначных аналитических первых интегралов гамильтоновой системы

Теорема Пуанкаре о несуществовании первых интегралов

Теорема первая

Теоремы о количестве движения и о моменте количества движения. Первые интегралы



© 2025 Mash-xxl.info Реклама на сайте