Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Способы расчетов и область их применения

На рис. 87 приведено разграничение области применения различных случаев вытяжки квадратных и прямоугольных коробок. Как показал производственный опыт, несоблюдение указанного различия способов расчета и области их использования приводит к ошибкам и неудачам.  [c.143]

Книга начинается введением, в котором поясняются принципы работы тепловой трубы, описываются типы труб и области их применения. Затем следует подробное изложение теории тепловой трубы, конструкции и изготовления. Построение изложения теории тепловой трубы позволяет в процессе анализа тепловой трубы параллельно осветить фундаментальные законы термодинамики, теплопередачи, механики жидкости и материаловедения. Для удобства решения задач инженерами-практиками разработана методика расчета, в которой обобщена вся необходимая теоретическая информация. Кроме того, достаточно подробно обобщена обширная исследовательская информация. Наконец, описаны применяющиеся в настоящее время способы и технология изготовления тепловых труб. В последней главе описаны существующие и перспективные области применения тепловых труб в энергети-..ческих системах. Этот материал будет полезен инженерам, архитекторам и строителям, занимающимся вопросами экономии энер-  [c.7]


Следует подчеркнуть еще раз, что среднее значение величины у в любом случае, аналогичном приведенным выше, вообще говоря, не совпадает с коэффициентом готовности, определенным формулой/ = io/(io+ir)-Это обстоятельство показывает, что коэффициент А дает лишь частичное описание готовности системы. Однако до настоящего времени случайные величины типа у использовались редко, и невозможно в настоящее время представить в приемлемом виде способ и примеры их применения. Эта область может оказаться плодотворной в новых работах. Таким образом, в настоящее время расчет готовности основывается только на возможности определять надежность системы и плотность вероятности времени ремонта и вычислять средние значения для подстановки в формулу для величины Л.  [c.41]

Определение эксплуатационных расходов и капитальных затрат на контейнеры и тару. В общей сумме затрат при контейнерном и пакетном способах транспортирования грузов значительную долю составляют затраты на контейнеры и производственную тару. По существующей методике расчета этих затрат ряд показателей принимается по усредненным данным, что часто не дает возможности правильно оценить область применения контейнерного и пакетного способов транспортирования и рассчитать их экономическую эффективность. К таким показателям прежде всего относятся стоимость, срок службы и затраты на ремонт. Если рассчитывают вариант применения контейнеров или тары, серийно выпускаемых промышленностью, стоимость их принимают по прейскурантам или заводской калькуляции. Однако при выборе рационального способа перевозки приходится рассчитывать экономическую эффективность вновь создаваемых типов контейнеров и тары.  [c.363]

Описание транспортирующих машин включает общее устройство, принципы действия, современные конструкции машин и их элементов, области применения, теорию, основные параметры, способы расчета и эксплуатационные характеристики, перспективы дальнейшего развития.  [c.8]

В учебнике приведены общие сведения о строительных машинах как средствах механизации строительства, их приводах, ходовом оборудовании, технических средствах автоматизации управления, контроля и регулирования по каждому виду машин приведено их назначение, рациональные области применения, описаны устройство и рабочие процессы, приведены способы расчетов основных эксплуатационных параметров. Основные разделы учебника содержат исторические справки о развитии строительных машин, а также примеры расчетов. Контрольные вопросы для самопроверки весьма детализированы с целью лучшей ориентации студентов на основных аспектах изучения строительных машин.  [c.2]


Для правильного определения областей эффективного применения рассматриваемых способов изготовления тройников необходимо наряду с показателем себестоимости рассчитать по вариантам удельные капиталовложения. Это дает возможность определить второе слагаемое показателя приведенных народнохозяйственных затрат. Результаты расчетов удельных капиталовложений по вариантам изготовления тройников приведены в табл. 5.3. Данные, приведенные в ней, указывают на существенное различие величины и структуры удельных капиталовложений в производство тройников по сравниваемым способам их изготовления и разным объемам годового производства.  [c.205]

В книге изложены результаты исследований авторов в области постановки и решения задач оптимизации при схемотехническом проектировании электронных схем. Освещена сущность и основные особенности проектирования электронных схем как в дискретном, так и интегральном исполнении. Проанализированы возможности решения различных задач, возникающих на этапе схемотехнического проектирования электронных схем, с помощью ЦВМ. Описаны различные критерии оптимальности и способы постановок задач оптимизации в электронике. Изложены машинно-ориентированные модели компонентов и наиболее перспективные методы моделирования схем. Даны перспективные методы анализа электронных схем и определены области их предпочтительного применения. Проанализирован ряд методов оптимизации для целевых функций, обладающих гребневым характером. Значительное место уделяется одной из наиболее важных задач схемотехнического проектирования — задаче расчета параметров компонентов, сформулированной в виде задачи нахождения максимума функции минимума. Рассмотрены алгоритмы решения задачи расчета параметров компонентов, основанные на свойстве дифференцируемости функции минимума по направлению. Приводится проекционный алгоритм решения этой задачи, в котором уравнения гребня в виде ограничений типа равенств формируются в процессе поиска. Результаты теоретических исследований иллюстрируются большим количеством примеров и рисунков.  [c.2]

В учебнике рассмотрены основные типы транспортирующих машин непрерывного действия конвейеры, эскалаторы, элеваторы, пневматические и гидравлические транспортирующие устройства, а также вспомогательные устройства транспортирующих систем и основные типы погрузочных машин. Изложена общая теория транспортирующих машин непрерывного действия. Вводные сведения по транспортирующим машинам содержат их классификацию, основы технико-экономиче-ских расчетов, вопросы выбора машин, основные направления их современного развития, характеристику транспортируемых грузов. Описание транспортирующих машин включает общее устройство, принципы действия, современные конструкции машин и их элементов, области применения, теорию, основные параметры, способы расчета (с примерными расчетами) и эксплуатационные характеристики. Главное внимание уделено конвейерам рассмотрены ленточные, пластинчатые, скребковые, скребково-ковшовые, ковшовые, люлечные, подвесные, грузоведущие, качающиеся, винтовые и роликовые конвейеры. Более подробно рассмотрены новые разновидности конвейеров, получающие в настоящее время широкое развитие, — подвесные толкающие с автоматическим адресованием, специальные скребковые, вибрационные, шагающие и напольные тележечные.  [c.2]

Литье по выплавляемым моделям — Понятие 197 — Последовательность технологических операций 198, 199 — Расчет параметров для стальных отливок 204, 205 Литье под всесторонним газовым давлением — Влияние повышенного газового давления на форму 330 — Время затвердевания отливок 330 слитков 331 — Заполняемость форм 329—331 — Особенности литья сплавов алюминиевых 331, 332 магниевых 332 медных 332, 333 никелевых 334 стали 334, 335 — Природа используемого газа 330 — Способы 328, 329 — Сущность процесса 328 Литье под давлением — Гидродинамические условия удаления газов из полости формы 260 — Движение струи 253, 254 критические скорости ламинарного движения, максимальная скорость заливки 254 расчетное значение устойчивой длины струи 253 — Заполнение формы 254 — 256 — Номенклатура отливок, шероховатость их поверхности 251 — Область применения 249 — Параметры, влияющие на качество отливок 248 — Скорости впуска расплава и прессования 272, 273 — Скорости и давления при дисперсном и турбулентном потоке 256 при ламинарном потоке 257 — Удар впускного потока в стенку формы 254, 255 — Критическая скорость впуска 254, 255 Литье под низким давлением 287, 288 — Организация производства 316, 320 — Подготовка жидкого металла 295 — 297 — Преимущества 288 — Разновидности процесса 320 — Расчет теплосиловых параметров формирования отливки 297—299 — Технико-экономические показатели 316 Литье полунепрерывное вертикальное труб из серого чугуна 557 — Литейные свойства чугуна 557 — Недостатки 557 — Основные и технологические параметры 560 — Предельные усилия срыва и извлечения труб из кристаллизатора 558, 559 — Преимущества 557 — Производительность процесса 560 — Режимы вытягивания заготовки 558, 559 движения кристаллизатора 557 — Тепловые параметры 558 — Технологические основы 557, 558 Литье при магнитогидродинамическом воздействии — Физические основы 423 — 426 Литье с использованием псевдоожиженных  [c.731]


Информация о действительной нагруженности и несущей способности — важный элемент при решении вопросов расчета конструкций, совершенствования их схем и форм, применения поверхностного упрочнения и других способов повышения эксплуатационной надежности и ресурса. Далее рассматриваются некоторые вопросы оценки вероятности неразруше-ния (надежности) в связи с условиями нагружения и несущей способностью элементов конструкций. Отказы по прочности, оцениваемые как возникновение разрушения, повреждение опасными трещинами или недопускаемые деформации, могут возникать в результате однократных или кратных перегрузок как статических, так и динамических или же вследствие наличия дефектов, достаточных для разрушения элементов конструкций при свойственном им уровне эксплуатационной нагруженности. Разрушения такого типа рассматриваются как статические, их вероятностная оценка осуществляется с учетом кратности статического нагружения, статистики возможных статических нагрузок и дисперсии статической прочности во внересурсной постановке. Это, например, уже давно делается в области оценки надежности строительных конструкций, гидротехнических сооружений и ряда других, нагруженных в основном статической нагрузкой.  [c.137]

Несколько слов о стиле сборника. Статьи, входящие в него, представляют собой, по существу, небольшие и разные по степени подробности обзоры циклов работ по применению метода граничных интегральных уравнений в том или ином конкретном разделе механики. Каждую статью можно читать независимо от других. Этому способствует принятый а сборнике принцип построения статей. Сначала описывается способ вывода граничных интегральных уравнений применительно к выбранной области механики и рассматриваемому классу задач, затем излагается численный метод решения, приводятся результаты расчетов и, наконец, обсул<даются возможности обобщения предлагаемых схем и распространения их на другие классы задач. Большое внимание уделяется вопросам эффективности численной реализации описываемых алгоритмов и удобства составленных программ для потребителя, желающего их использовать при практических расчетах Напротив, почти не рассматривается математическое обоснование применяемых численных методов. Эти вопросы еще недостаточно изучены.  [c.6]

В книге изложена элементарная теория тепловых труб. Даны методика конструктивного расчета тепловых труб и практические ре-комепдацип по выбору рабочей жидкости фитильной структуры и корпуса тепловтлх труб. Подробно освещены вопросы технологии изготовления и испытанирг тепловых труб. Рассмотрены различные типы тепловых труб и способы их применения. Авторы — видные английские специалисты в области конструирования тепловых труб.  [c.2]

Сущность этого метода состоит в том, что заданные нагрузки, перемещения, а для несжимаемого материала и функция гидростатического давления в области их определения разлагаются в ряды по системе ортогональных функций. Такое разложение производится по координате, вдоль которой геометрия и свойства рассчитываемой детали остаются неизменными. Рассмотрим применение полуаналитического метода решения при расчете упругих элементов муфт в виде тел вращения при неосесимметричном нагружении. Так как такое рассмотрение будет вестись в рамках геометрических соотношений, указанный ниже способ решения одинаково применим и к слабосжимаемым, и к несжимаемым материалам.  [c.22]

Хорошо разработанные методы строительной механики для определения статических усилий, возникающих в упругих системах маншн, узлов и конструкций, потребовали во мнорих случаях экспериментального определения для машиностроения коэффициентов соответствующих уравнений, а также учета изменяемости условий совместности перемещений по мере изменения форм контактирующих поверхностей вследствие износа иди других явлений, нарастающих во времени. При относительно высокой жесткости таких деталей, как многоопорные коленчатые валы, зубья шестерен, хвостовики елочных турбинных замков, шлицевые и болтовые соединения, для раскрытия статической неопределимости были разработаны методы, основывающиеся на моделировании при определении в упругой и неупругой области коэффициентов уравнений, способа сил или перемещений, на учете изменяемости во времени условий сопряжения, а также применения средств вычислительной техники для улучшения распределения жесткостей и допусков на геометрические отклонения. Применительно к упругим системам металлоконструкций автомобилей, вагонов, сельскохозяйственных и строительных машин были разработаны методы расчета систем из стержней тонкостенного профиля, отражающие особенности их деформирования. Это способствовало повышению жесткости и прочности этих металлоконструкций в сочетании с уменьшением веса.  [c.38]

Займемся дальнейшим развитием, нестационарной теории профиля с тем, чтобы приспособить ее к анализу обтекания вращающейся лопасти. Хотя основы теории уже излагались в предыдущих разделах, приложение ее к лопасти несущего винта требует учета целого ряда дополнительных факторов. Применение схемы несущей линии разделяет задачу расчета нестационарных аэродинамических нагрузок при пространственном обтекании на две части внутреннюю, в которой исследуются аэродинамические характеристики профиля, и внешнюю, состоящую из расчета индуктивных скоростей, создаваемых в сечении лопасти вихревым следом винта. Что касается внутренней задачи, то при стационарном обтекании плоского профиля аэродинамические нагрузки могут быть получены из эксперимента и представлены в виде табулированных зависимостей их от угла атаки и числа Маха. При нестационарном досрывном обтекании применимы результаты теории тонкого профиля. Решение внешней задачи затруднено тем, что система вихрей винта имеет весьма сложную конфигурацию. За каждой из вращающихся лопастей тянутся взаимодействующие винтовые вихревые поверхности, деформирующиеся в поле создаваемых ими индуктивных скоростей с возникновением областей сильной завихренности в виде концевых вихревых жгутов. Аналитическое определение индуктивной скорости на лопасти без весьма существенных упрощений модели вихревого следа (например, представления винта активным диском) оказывается невозможным. На практике неоднородное поле индуктивных скоростей определяют численными методами, подробно обсуждаемыми в гл. 13. Ввиду сказанного ниже не предполагается отыскивать зависимость между индуктивной скоростью и нагрузкой путем введения функции уменьшения подъемной силы. Напротив, сами индуктивные скорости являются фактором, учитываемым явно в нестационарной теории профиля. Для построения схемы несущей линии желательно, чтобы вычисление индуктивных скоростей производилось лишь в одной точке по хорде. Проведенное выше исследование обтекания профиля на основе схемы несущей линии указывает способ, который позволяет аппроксимировать нестационарные нагрузки с достаточно полным отображением влияния пелены вихрей. Применительно к лопасти достаточно рассмотреть лишь часть пелены, расположенную вблизи ее задней кромки. При построении нестационарной теории обтекания вращающейся лопасти надлежит учесть влияние обратного обтекания и радиального течения. Теоретические нагрузки должны быть скорректированы таким образом, чтобы они отражали влияние  [c.480]


Так как в упругопластической области исходные дифференциальные уравнения становятся нелинейными, а коэффициенты переменными, методы их решения существенно усложняются. Однако в данной работе применен способ разбиения интервала интегрирования на участки, в пределах которых коэффициенты уравнений считаются постоянными. При этом использование решения в матричной форме метода начальных параметров также дает существенное преимущество [11]. Поскольку соответствующая этому способу физическая дискретизация конструкций, состоящей из разнородных оболочек, пластин и колец, не отличается, по существу, от случая упругого расчета, то матричный метод расчета, изложенный в работе [9], и составленная на ого основе сомпактная программа расчета для ЭЦВМ оказываются полностью пригодными для упругопластического расчета составных конструкций из элементов оболочек, пластин и колец. Эффективность предлагаемого метода упругопластцческого расчета определяется не только этим удобством. Выполненные расчеты показа-, ли значительно более быструю сходимость последовательных приближений по сравнению с методами, основанными на замене дифференциальных уравнений интегральными [3]. Еще в большей мере, чем при упругих расчетах, сказывается экономичность предлагаемого метода расчета на Э1],ВМ по сравнению с методами численного интегрирования нелинейных дифференциальных уравнений. ,  [c.124]

Удобным методом, позволяющим учесть условие непротекания на поверхности тела произвольной геометрии, является метод присоединенных вихрей [Белоцерковский, Пишт, 1978]. Поскольку поверхность тела, обтекаемого невязкой жидкостью, является линией тангенциального разрыва скорости, то ее заменяют присоединенной вихревой пеленой, которую, в свою очередь, моделируют набором точечных вихрей. Само же условие непротекания ставится лишь в конечном числе контрольных точек, расположенных мелоду вихрями. Вопрос о способе размещения присоединенных вихрей и контрольных точек и о выборе их числа наиболее полно изучен в работах Д.Н. Горелова [1980, 1990]. В отличие от обычно применяемого равномерного размещения (см. С.М. Белоцерковский, М.И. Ништ [1978]), здесь предлагается находить положение контрольных точек из условия равенства в них скорости, индуцированной присоединенными вихрями, и скорости, индуцированной непрерьшным вихревым слоем, что позволяет существенно повысить точность определения циркуляций сходящих вихрей или увеличивать шаг интегрирования по времени. Общая точность расчетов зависит и от числа присоединенных вихрей. Его увеличение ограничено возможностями ЭВМ - приходится решать системы линейных уравнений с большим числом неизвестных. По этой причине возникает сложность в применении метода присоединенных вихрей в задачах о движении завихренных областей вблизи протяженных границ (около плоскости, в каначе и т. п.).  [c.327]

После Великой Октябрьской социалистической революции осуществление грандиозного плана электрификации России (плана ГОЭЛРО), разработанного по заданию В. И. Ленина, потребовало решения ряда прикладных задач в области гидравлики, динамики русловых процессов и др. Многие из этих задач были решены Н. И. Павловским, И. И. Агро-скиным, И. И. Леви, Л. Г. Лойцянским, В. М. Маккавеевым, А. Я. Ми-ловичем, М. Д. Чертоусовым, Р. Р. Чугаевым и др. В их работах были предложены оригинальные способы интегрирования дифференциальных уравнений неравномерного движения воды в открытых руслах, разработаны новые методы построения кривых свободной поверхности в естественных руслах, расчета отверстий мостов и труб и решены многие другие сложные проблемы гидравлики. Впервые разработанные С. А. Христиановичем полные решения задачи о неустановившемся движении в открытых руслах на основе применения метода дифференциальных характеристик стали могучим средством инженерной гидравлики. Весьма полно исследовали. и значительно усовершенствовали теорию неустановившегося движения жидкости Н. М. Вернадский и др. Исследования М. В. Келдыша, М. А. Лаврентьева, Л. И. Седова и других ученых в области гидромеханики плоского безвихревого потока позволили заложить теоретические основы построения очертания струенаправляющих дамб и решения других прикладных задач.  [c.9]


Смотреть страницы где упоминается термин Способы расчетов и область их применения : [c.561]    [c.92]    [c.9]   
Смотреть главы в:

Подвижный состав и тяговое хозяйство железных дорог  -> Способы расчетов и область их применения



ПОИСК



Область применени



© 2025 Mash-xxl.info Реклама на сайте