Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка магнитных материалов

Сварка магнитных материалов  [c.117]

Помимо этого, важно понять роль и преимушества применения различных промежуточных слоев при диффузионной сварке магнитных материалов.  [c.120]

При рассмотрении сварки никеля НВК не следует забывать о том, что при диффузионной сварке магнитных материалов верхний предел температуры процесса ограничен точкой Кюри. Кроме того, в состав магнитных материалов входят химические элементы, которые при определенных условиях могут образовывать хрупкие интерметаллиды, способные ухудшить механические свойства соединений. Поэтому параметры сварки должны быть такими, чтобы объемное взаимодействие ограничивалось лишь формированием в зоне контакта межатомных связей и релаксацией напряжений в той степени, в какой это необходимо для сохранения образовавшихся связей. Следовательно, при Т< 0,57] , когда интенсивность диффузионных процессов мала, кинетика роста прочности сварных соединений будет отражать кинетику активации и схватывания контактных поверхностей.  [c.147]


Дальнейшие эксперименты по сварке магнитных материалов выполняли через промежуточные слои в виде УДП никеля, его  [c.152]

В качестве примера одной из таких установок, применяемой для получения методом диффузионной сварки композиционных материалов на основе нихрома, упрочненного волокнами молибдена и вольфрама, можно привести установку, описанную в работе [22]. Схема этой установки показана на рис. 60. Установка представляет собой гидравлический пресс с вакуумной камерой. Нижняя часть разъемного корпуса камеры через сильфон связана со штоком пресса, на который устанавливается пакет из заготовок композиционного материала. В верхнюю часть корпуса вмонтирован индуктор. В рабочем состоянии, т. е. при сомкнутых верхней и нижней частях корпуса, пакет располагается внутри индуктора. Для предотвращения нагрева деталей пресса и корпуса камеры пакет изолирован от штока пресса и упора верхней части корпуса изоляционными огнеупорными плитами из хромомагнезита. Для обеспечения равномерного нагрева пакета, между ним и огнеупорными плитами устанавливали более массивные, по сравнению с пакетом, молибденовые пластины, в результате чего основная часть магнитного потока, создаваемого индуктором, поглощалась этими пластинами. Для предотвращения схватывания композиционного материала с молибденовыми пластинами на  [c.127]

Лазерный луч применяют для прошивания отверстий, резки материалов, маркирования, сварки, поверхностной термической обработки и других операций. Лазерным методом изготовляют отверстия диаметром d от нескольких микрометров до нескольких десятков миллиметров, глубиной Я до 13...15 мм в таких труднообрабатываемых материалах, как титановые, твердые, жаропрочные и специальные сплавы, магнитные материалы, алмазы, ферриты, керамика и т.п. Отверстия изготовляют в волоках, фильерах, форсунках, часовых камнях, в ферритовых пластинках памяти, диафрагмах, в подложках микросхем и других деталях.  [c.748]

Длинные швы при роликовой сварке заготовок из магнитных материалов, вводимых в контур машины, рекомендуется разбивать на два или более участка. При разбивке на два участка швы сваривают от середины к концам. При большем количестве одинаково расположенные участки выделяют в отдельные группы, которые затем сваривают на разных ступенях трансформатора. Это позволяет предупредить непровар шва вследствие уменьшения силы тока при введении в контур машины магнитных материалов.  [c.279]

К отдельной группе следует отнести способы сварки давлением, при которых соединение завершается на стадии схватывания контактных поверхностей. В этой группе стадия объемного взаимодействия не получает развития вследствие низких температур (холодная сварка, сварка взрывом, магнитно-импульсная) или ввиду сравнительно высоких скоростей деформирования (сварка прокаткой, термокомпрессионная сварка). В этих условиях зона контакта, как правило, четко выражена. Способы этой группы сварки давлением наиболее пригодны для сварки разнородных материалов при опасности образования интерметаллидов в контакте.  [c.487]


Одним из перспективных путей одновременного снижения температуры и давления сварки и получения высококачественных соединений магнитных материалов с требуемыми механическими свойствами без изменения исходных электрофизических характеристик является использование промежуточных слоев на основе никеля, облегчающих образование физического контакта и формирование соединений.  [c.152]

При сварке продольных швов сосудов с нахлесточным соединением, а также при продольной сварке листов их приходится вводить в контур машины. Если деталь или листы сделаны из немагнитного материала (нержавеющая сталь, цветные металлы или их сплавы), это не отражается на процессе сварки. Введение же в контур машины магнитных материалов приводит к увеличению индуктивного сопротивления и соответственно к снижению сварочного тока, что может вызвать непровар. Для предупреждения непровара длинные швы рекомендуется разбивать на два и более участка. При разбивке на два участка продольный шов сваривается от средины к концам или от концов к средине. Если шов разбит на большее число участков, участки, одинаково расположенные, выделяются в отдельные группы, сварка которых производится на разных ступенях включения трансформа-  [c.341]

Настройка машины на заданный режим осуществляется после ее подготовки к сварке (проверки механических узлов и их смазки, удаления магнитных материалов от сварочного контура, проверки электрических узлов и др.) и опробования по требуемому циклу без включения сварочного тока (вынуты ножи переключателя ступеней или отключена силовая электрическая часть машины).  [c.201]

На рис. 74 показана простейшая схема ультразвуковой сварки. Свариваемые заготовки 5 помещают на опоре 6. Наконечник 3 соединен с магнитострикционным преобразователем 1 через трансформатор упругих колебаний 2, представляющих вместе с рабочим инструментом 4 волновод (на рис. 74 показано, как изменяется амплитуда колебаний по длине волновода). Ультразвук излучается непрерывно в процессе сварки. Элементом колебательной системы, возбуждающей упругие колебания, является электромеханический преобразователь 1, использующий магнитострикционный эффект. Переменное напряжение создает в обмотке преобразователя намагничивающий ток, который возбуждает переменное магнитное поле в материале преобразователя. При изменении величины напряженности магнитного поля в материале возникает периодическое из-  [c.119]

Трещины а) В переходной зоне (горячие) (фиг. 319) Трещины по зоне перехода от шва к основному материалу извилистые, в изломе темного цвета (сильно окисленные), сквозные и несквозные. Возникают при сварке сталей малой толщины при температуре выше 900 а) Высокая сварочная чувствительность стали (высокая склонность к образованию трещин) б) Неправильная технология и техника сварки в) Неправильная конструкция детали или расположение швов Внешний осмотр рентгеновское просвечивание металлографический контроль контроль магнитным порошком  [c.556]

Область применения сварные швы соединений конструкции 113 ферромагнитных материалов с относительной магнитной проницаемостью не менее 40, выполненные дуговой и газовой сваркой.  [c.471]

Система с пневматическим датчиком обладает рядом преимуществ система одинаково применима для сварки самых разнообразных толщин и материалов, без разделки и с самой разнообразной разделкой швов. Электрические и магнитные свойства материалов не влияют на работоспособность системы. Система применима для сварки швов с любыми зазорами, начиная примерно с 0,5 мм.  [c.260]

При воздействии переменного и постоянного магнитных полей на процессы кристаллизации сварочной ванны удается измельчать кристаллиты в 1,5 раза, улучшать структуру, снижать пористость и химическую неоднородность металла шва. Сварка в щелевую разделку позволяет уменьшить расход дорогих материалов и повысить производительность.  [c.474]

В особую группу проблем этой области можно выделить вопрос об устойчивости слоев различных материалов при динамическом действии на них массовых или поверхностных сил. Примерами могут служить поведение горизонтального слоя магнитной жидкости после включения магнитного поля, направленного против силы тяжести [1], или образование периодических структур на поверхности раздела двух соударяющихся с большой скоростью под углом металлических пластин при сварке взрывом [2].  [c.204]


Магнитные керамические материалы представляют большой интерес для ультразвуковой технологии. Установки с ферритовыми преобразователями могут найти широкое применение. Такие установки отличаются простотой, дешевизной, малыми габаритами. Это обстоятельство должно привести к расширению области применения ультразвуковой техники. Однако следует иметь в виду, что простая замена преобразователей из магнитострикционных металлических материалов ферритовыми в уже имеющихся установках недопустима. При конструировании установок с ферритовыми преобразователями необходимо учитывать их специфические особенности — высокую добротность и ограниченную механическую прочность. Первое свойство требует более тщательного согласования преобразователя с концентратором, чем для преобразователей из металлов в установках, предназначенных для работы с малой нагрузкой (типа установки ультразвукового резания, сварки), необходимо применение автоподстройки частоты питающего генератора.Относительно невысокая механическая прочность требует применения ограничителей по амплитуде, более тщательного выбора режима работы преобразователя. Однако эти дополнительные требования не снижают большой практической выгоды, которую дает применение таких преобразователей. Уже сейчас ясно, что ферритовые преобразователи во многих случаях могут успешно конкурировать даже с преобразователями из пьезоэлектрической керамики.  [c.147]

Цветной контроль. Для обнаружения самых различных поверхностных трещин цветной контроль незаменим. Особенно он ценен при сварке ответственных изделий. Контроль выполняется следующим образом. На предварительно очищенную контролируемую поверХ ность наносится смачивающая жидкость. При проверке небольшой поверхности жидкость наносится кистью. При больших размерах поверхности изделия (если это возможно) его окунают в жидкость. Смачивающая жидкость наносится на поверхность два раза. Перед нанесением второго слоя деталь должна быть просушена на воздухе в течение 1—2 минут. Под действием капиллярных сил нанесенная таким способом жидкость проникает в полости дефектов. После этого ее удаляют с поверхности изделия, и контролируемую поверхность покрывают белой проявляющей краской. Белую краску наносят сразу же после удаления проникающей жидкости. Через 5—6 минут в месте дефекта на белом фоне проявляется красный рисунок, соответствующий форме дефекта. Контролируемую поверхность рекомендуется осматривать при хорошем освещении невооруженным глазом или с помощью лупы. Цветной дефектоскопией можно проверять качество сварных соединений у изделий из магнитных и немагнитных материалов, черных и цветных металлов, пластмасс. Простота контроля, отсутствие необходимости в электроэнергии дает цветной дефектоскопии большие преимущества перед другими методами контроля.  [c.180]

Следовательно, получение сварных соединений, однородных по химическому составу и структуре, весьма желательно как в отношении эксплуатационной надежности, так и надежности контроля качества, в частности магнитной дефектоскопии сварных соединений. Получение сварных соединений, однородных по составу и структуре, в некоторой степени можно обеспечить за счет применения соответствующих сварочных материалов и соблюдения определенного термического цикла сварки. Идеальным выполнением этого условия является использование сварочных проволок того же состава, что и основной металл. Однако условия технологического процесса сварки и природа образования сварного соединения таковы, что почти всегда получаются сварные соединения, в которых образуется химическая и структурная неоднородность. Так, например, с целью предупреждения образования кристаллизационных трещин, как правило, применяют сварочные проволоки  [c.72]

Авторы стремились уделить внимание прогрессивным способам производства и обработки металлов, например рассмотрению новых способов выплавки сталей и других сплавов, специальных способов литья, прогрессивной технологии прокатки, электрофизических и других способов обработки металлов, электроннолучевой, лазерной сварке и т. п. При описании технических сплавов основное внимание уделено рассмотрению состава, структуры и свойств машиностроительных сплавов — конструкционных углеродистых и легированных сталей, чугунов, цветных сплавов, нержавеющих сталей. Вместе с тем изложены необходимые сведения об инструментальных и жаропрочных сталях и сплавах, магнитных и других электротехнических материалах. В разделе VII достаточно подробно рассмотрены свойства пластмасс, резины и металлокерамических материалов.  [c.12]

Одним из достоинств ультразвуковой сварки является простота изготовления изделий и невысокая стоимость сварочных машин. Для получения ультразвуковых колебаний используют магнито-стрикционный эффект, состоящий в изменении размеров некоторых металлов, сплавов и керамических материалов под действием переменного магнитного поля. Магнитострикционный преобразователь I выполняют в виде пакета штампованных пластин из магнитострик-ционных материалов (см. рис. 306), например чистый никель или железокобальтовые сплавы толщиной 0,1—0,2 мм с размещенной на нем обмоткой.  [c.481]

Использование в качестве промежуточного слоя УДП формиатного никеля позволяет получать высококачественные соединения при пониженном термодеформационном воздействии. Однако реализация этой технологии связана с рядом трудностей, характерных и для процесса сварки через порошки формиатов. Главная из них — невозможность достижения воспроизводимых результатов по прочности соединений из-за проблем, связанных с дозировкой порошков, наносимых на свариваемые поверхности. Кроме того, восстановленный УДП никеля обладает магнитными свойствами и при сварке магнитных материалов распределяется по соединяемым поверхностям неравномерно, в соответствии с направлением силовых линий магнитного поля.  [c.84]


Изучение нагрева тлеющим разрядом (В. И. Дятлов, Д. И. Котельников) привело к разработке технологии диффузионной сварки различных материалов с нагревом тлеющим разрядом. Велись исследования (Г. Б. Сердюк, С. И. Жук) технологических свойств сварочной дуги в магнитном поле и разработана экспериментальная установка для сварки труб дугой, вращающейся в магнитном поле. В результате изучения катодного распыления в сварочной дуге (В. А. Фурсов) разработан метод тонкослойной и дозированной наплавки без проплавления основного металла. Исследован процесс полигонизации в сварных швах при кристаллизации (М. А. Абралов).  [c.24]

Дюраникель, известный ранее как никель 2, представляет собой ковкий закаливающийся при старении сплав, содержащий 4,00—4,75% алюминия. По механическим свойствам он занимает промежуточное положение между монелем К и инконелем X. Свойства сплава в мягком состоянии могут быть улучшены холодной обработкой. Как мягкий, так и отожженный материал можно закалить путем температурной обработки. Выбор дюра-никеля по сравнению с более мягкими сортами никеля основывают обычно лишь на механических, а не каких-либо других физических свойствах. В условиях отжига и старения он проявляет незначительное пластическое последействие. Поэтому он полезен для изготовления пружинящих деталей, подвергаемых длительное время относительно сильным натяжениям при температурах до 350° С, и может применяться при нагреве до 400" С при слабых натяжениях, а кратковременно — при более высоких температурах. В мягком состоянии этот сплав является слабо магнитным материалом при комнатной температуре и магнитным — после закалки старением. По сопротивляемости коррозии он сравним с никелем А. Для получения лучшего состояния поверхности рекомендуется старение в сухом водороде, но при этом образуется тонкая прочная пленка окиси алюминия, которую необходимо удалять перед сваркой или пайкой.  [c.231]

Соединение магнитных материалов посредством сварки плавлением (аргонно-дуговая, электронно-лучевая, лазерная) невозможно вследствие нарушения их химического состава, связанного с выгоранием некоторых компонентов и обильным газовыделени-ем. Кроме того, расплавление соединяемых материалов приводит к необратимой потере магнитных свойств.  [c.120]

При установке сварочного трансформатора в корпус особое внимание надо уделять его материалу и возможности протока воздуха для охлаждения, притом чтобы верх был закрыт, предохраняя трансформатор от возможного дождя. Корпуса или хотя бы некоторые их части лучше делать из не магнитных материалов латунь, дюраль, ге-тенакс, пластмассы... В режиме сварки трансформатор создает мощное магнитное поле, что притягивает к нему стальные элементы. Если корпус сделан из жести или напротив оси первичной обмотки привинчены стальные панели, то при работе вся эта конструкция бу-,дет втягиваться внутрь и вибрировать. Звук при этом иногда бывает такой, что его можно сравнить разве что с работой пилы — мощной циркулярки . Поэтому устанавливать сварочный трансформатор можно либо в цельновыгнутый жесткий стальной корпус, который не так поддается вибрациям, или делать панели напротив хотя бы первичной обмотки из немагнитных материалов.  [c.97]

Технология диффузионной сварки магнитных сплавов. При разработке технологии ДСВ конкретных материалов оптимальные параметры режима определяются обычным способом. Разработка технологии ДСВ магнита с магнитопроводом проводилась на магнитных материалах, состав которых приведен в табл. 2, с низко-углеродистой сталью ЭАА. Для снижения температуры сварки использовались промежуточные прокладки с более низкой температурой плавления в виде порошков, гальванических покрытий и фольг. В качестве материала промежуточной прокладки использовался порошок формиатного никеля дисперсностью частиц  [c.184]

Подготовка свариваемых поверхностей осуществлялась для армко-железа — точение Яа < 2,5 мкм) для магнитного сплава — шлифование [Ка С 0,8 мкм) и обезжиривание ацетоном. На свариваемые поверхности наносились гальванические покрытия слой меди до 3 мкм и слой гальванического никеля до 8—10 мкм. Затем за 30 мин до начала сварки наносился порошок никеля, замешанный на специальной пасте. Режимы ДСВ некоторых магнитных сплавов с низкоуглеродистой сталью приведены в табл. 4. На рис. 13 показана зависимость магнитных характеристик сплава ЮН14ДК24 от параметров сварки этих материалов через порошок никеля. Даже при температуре сварки 823—873 К снижение достигает 5—7%. Однако последующий дополнительный отпуск по режиму 893 К —  [c.185]

Ферриты относятся к керамическим магнитным материалам, в основе которых лежит окись железа Ре Оз и легирующие компоненты, в основном из окислов цинка, никеля и марганца. Основные требования, предъявляемые к технологии изготовления ферритно-металлических узлов механическая прочность, сохранение магнитных характеристик, обеспечение эффективного теплоотвода. В настоящее время освоен обширный диапазон ферритов, соединяемых диффузионной сваркой (ДС), например иттрий-годолиниевых ферритов-гранатов марок ЗОСг-6 и 40Сг-4 с медью никель-цинковых, марганец-цинковых ферритов марок 2000 НН, 2000 НН-ГГ, 5000 НМ, 5000 МТ-ГП через стеклянные прослойки никель-марган-цевых ферритов марки 700 НМ при низкой температуре через комбинацию легкоплавких металлов.  [c.238]

Ультразвуковая сварка относится к продесса.м, в которых используют давление, нагрев и взаимное трение свариваемых поверхностей. Силы трения возникают в результате действия на заготовки, сжатые осевой силой Р, механических колебаний с ультразвуковой частотой. Для получения механических колебаний высокой частоты используют магннтострикциоииый эффект, основанный на изменении размеров некоторых материалов под действием переменного магнитного поля. Изменения размеров магнитострикцпоипых материалов очень незначительны, поэтому для увеличения амплитуды и концентрации энергии колебаний и для передачи механических колебаний к месту сварки используют волноводы, в большинстве случаев сужающейся формы.  [c.223]

Сварку давлением без подогрева выполняют, как правило, с высокоинтенсивным силовым воздействием. К этим видам относятся сварка взрывом, холодная, магнитно-импульсная и др. Ультразвуковая сварка относится к сварке без подогрева при низкоинтенсивном внешнем силовом воздействии. Параметры этих видов сварки (давление, температура нагрева, время нагрева, удельное давление, интенсивность приложения давления и температуры) зависят от свойств соединяемых материалов, состояния их поверхностей, конструктивных особенностей и т. д.  [c.114]

Много исследований проводится по разработке методов управления электрической дугой магнитным полем. Создана возможность получения вращающейся дуги, конусной дуги, применяемой главным образом для сварки стыков труб, а также для приварки труб к трубным доскам. Разработаны методы управления характеристиками сварочных дуг, особенно малоамперных дуг, применяемых при сварке очень тонких материалов. Исследуются методы управления плазменной дугой, электронным лучом и другими видами интенсивных излучений.  [c.114]

Угловые профили изготовление прокаткой В 21 В 1/08 Углы [измерение с использованием (комбинированных 21/22 механических 5/24 оптических 11/26 электрических или магнитных 7/30) средств текучей среды 13/18) конусов, измерение 3/56] G 01 В Удаление (воздуха из камер пневматических шин В 29 D 30/00 окалины с проволоки В 21 С 43/04 пены при наполнении сосудов В 65 В 3/22 продуктов загрязнения из мест их скопления В 08 В 15/(00-04) твердых отходов В 09 В 1/00-5/00 см. также извлечение) Ударная обработка листового и профильного металла В 21 D 31/06 Ударное прессование металлов В 21 С 23/00 Ударные волны, использование при проведении химических реакций или для модификации кристаллической структуры веществ В 01 J 3/08 Укладка [запасных колес на транспортных средствах В 62 D 43/(00-10) В 65 (изделий (в стопки перед упаковкой В 35/(50-52) в штабели G 57/(00-32)) нитевидных материалов в кассеты Н 54/(76-84) тонких изделий в стопки Н 29/00, 31/00) труб F 16 L 1/00-1/036] Уклоны, измерение G 01 (С 9IOO-9f36-, В 21/22) Уключины и их крепление В 63 Н 16/(06-073) Ультразвук [использование <В 23 (при газовой сварке К 5/20 в процессах электроэрозионной металлообработки Н 7/38 для расточки В 37/00 при сварке К 5/20, 11/12, 20/10) в гальванотехнике С 25 D 5/20 для изменения материалов В 02 С 19/18 G 01 (в измерительных устройствах В 17/00 при испытаниях на герметичность М 3/24))]  [c.199]


Электрические [средства (использование в путевых устройствах для управления подвижным составом на ж. д. В 61 L 3/(08-12, 18-24) для испытания систем зажигания F 23 Q 23/10 F 02 ((для обработки воздуха, топлива или горючей смеси М 27/(00, 04) для подогрева топлива М 31/12) перед впуском в ДВС распределителей в системах зажигания ДВС, размещение Р 7/03) для разбрасывания песка и других гранулированных материалов с транспортных средств В 60 В 39/10) схемы ((дуговой сварки или резки К 9/06-9/10 устройств (для контактной сварки К 11/(24-26) для эрозионной обработки металлов Н 1/02, 3/02, 7/14) В 23 магнитных выключаемых муфт F 16 D 27/16) тяговые системы транспортных средств В 60 L 9/00-13/10 В 01 D у.тпрафи./ыпры 61/(14-22) фильтры для разделения материалов 35/06) устройства на ж.-д., связанные с рельса.ми В 61 L 1/02-1/12] Электрический ток [переменный В 60 L (электрические тяговые системы двига1елей 9/16 электродинамические тормозные системы 7/06) транспортных средств переменного тока постоянный (использование (при сушке твердых материалов F 26 В 7/00 в шахтных печах F 27 В 1/02, 1/09 в электрических тяговых системах транспортных средств В 60 L 9/04) электрические тяговые системы транспортных средств с двигателями постоянного тока В 60 L 7/04, 9/02)] Электрическое [F 02 (эджмс-дине газотурбинных установок С 7/266 управление и регулирование ДВС D (41-45)/00) оборудование, изготовление крепежных средств для монтажа В 21 D 53/36 поле, использование (высокочастотных электрических полей в системах для анализа и исследования материалов G 01 N 21/68 при кристаллизации цветных металлов или их сплавов С 22 F 3/02 для очистки воды и сточных вод С 02 F 1/48 для термообработки металлов и сплавов С 21 D 1/04 для удаления избытка нанесенного покрытия С 23 С 2/24) разделение газов или паров В 01 D 53/32] Электричество, использование при литье В 22 D 27/02  [c.219]

Сплавы, в которых суммарное содержание примесей менее 0,1% и 5Тлерода менее 0,02%, называются технически чистым железом, а при содержании С менее 0,04% — техническим железом (армко-же-лезо). Техническое железо имеет высокую магнитную проницаемость (ц = 4500 Гс/Э) и является электротехническим магнитно-мягким материалом, применяемым для сердечников, полюсных наконечников, электромагнитов, пластин аккумуляторов. Железный порошок в больших количествах применяется при сварке.  [c.146]

Существует несколько способов контроля и испытания сварных соединений. Эти способы применяются в зависимости от назначения, степени ответственности и характера сварного изделия. Самыми распространенными видами контроля являются внешний осмотр, просвечивание рентгеновыми лучами и гамма-лучами радиоактивных веществ, магнитный контроль, механические и металлографические испытания. В целях профилактического контроля перед сваркой тщательно проверяют доброкачественность исходных материалов (основной металл, электроды, присадочная проволока и т. д.), сборку (правильность закрепления детали, установление требуемого зазора между свариваемыми кромками, скос кромок и т. д.) и соблюдение технологического процесса сварки.  [c.355]


Смотреть страницы где упоминается термин Сварка магнитных материалов : [c.426]    [c.119]    [c.114]    [c.557]    [c.558]    [c.266]    [c.253]    [c.441]    [c.18]    [c.11]    [c.143]    [c.41]   
Смотреть главы в:

Диффузионная сварка разнородных материалов  -> Сварка магнитных материалов



ПОИСК



Магнитные материалы —

Сварка Материалы



© 2025 Mash-xxl.info Реклама на сайте