Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Числа вращения и их свойства

Числа вращения и их свойства  [c.44]

Все изложенное выше в этой главе касалось ядер в основном состоянии, тогда как в гл. 3 мы рассматривали возбужденные состояния ядер, приводящие к проявлению таких их коллективных свойств, как вращения и колебания относительно равновесной сферической формы. Здесь мы собираемся рассмотреть возбужденные состояния ядер, аналогичные возбужденным состояниям атома, в случаях одного валентного нуклона и конечного числа валентных нуклонов в незаполненной ядерной оболочке.  [c.126]


Твердые поверхности в турбулентных течениях вызывают снижение размеров молей н ограничивают их вращение и описанный эффект ослабляется. Турбулентные числа Прандтля и Шмидта практически не зависят от свойств жидкостей, а определяются формой движения и координатами точки. В этом они коренным образом отличаются от молекулярных аналогов. Если Pr=v/x для жидких металлов и масел отличаются в сотни тысяч раз (см. табл. 5.1), то, Prт = vт/xт и S т=vт/ )т, для подобных течений этих различных жидкостей, близки к единице.  [c.127]

Клапанные поршневые насосы просты по конструкции, могут работать при высоких давлениях и перекачивать различные, в том числе агрессивные и загрязненные, жидкости. Их недостатками являются лимитирование частоты вращения п вала насоса из-за трудности создания быстродействующих всасывающих клапанов, особенно при работе на вязких жидкостях значительная масса и габаритные размеры, как следствие ограничение п при заданной подаче трудности регулирования подачи и невозможность ее реверса, что сужает применение поршневых насосов в гидропередачах. Важным свойством, оказывающим существенное влияние на работоспособность поршневых насосов, является кавитация.  [c.241]

Закон площадей [или свойство, относящееся к вращению, которое было выражено уравнениями в частных производных (Р)], также всегда может быть выражен в относительных координатах он поможет нам раскрыть форму характеристической функции V,, показав, что эта функция включает только такие внутренние координаты (числом бл — 9), которые не меняются при любом общем вращении всех конечных и начальных точек вокруг центра тяжести или вокруг любого другого внутреннего начала, при условии, что при определении эффектов такого вращения это начало рассматривается как неподвижное, а величина Н, как постоянная. Таким образом, общая задача динамики, касающаяся движений свободной системы п точек, притягивающих или отталкивающих друг друга, сводится в конце концов при использовании метода, изложенного в данной работе, к отысканию и дифференцированию функции V,, зависящей от бл — 9 внутренних или относительных координат [ ] и от величины Н, и удовлетворяющей двум уравнениям в частных производных первого порядка и второй степени. При интегрировании этих уравнений мы должны проследить за тем, чтобы в принятом начале движения, а именно в момент, когда t = О, конечные или переменные координаты были равны их начальным значениям, причем ду, гг  [c.199]


Для оценки реологических свойств материалов необходимо располагать кривыми течения, полученными в широких пределах изменения скорости деформации исследуемого материала. Это достигается за счет установки ступенчатых и бесступенчатых коробок передач между измерительной поверхностью ротационного прибора и электродвигателем. Ступенчатые механические коробки передач (иначе называемые шестеренчатыми редукторами) позволяют получать (по числу передач) несколько значений скоростей деформаций, но они громоздки и имеют низкий коэффициент полезного действия. Их целесообразно применять в приборах для исследования ньютоновских материалов. Более предпочтительными являются бесступенчатые коробки передач, которые могут быть механического (фрикционного) и гидравлического типа. Бесступенчатые механические коробки передач (иногда называемые вариаторами) занимают небольшой объем и позволяют непрерывно изменять скорость вращения измерительной поверхности в широких пределах.  [c.57]

Использование комплексных вспомогательных функций (комплексных усилий и комплексных смещений) позволяет вдвое понизить порядок разрешающей системы уравнений и значительно уменьшить в них число членов. В результате уравнения становятся менее громоздкими и, значит, более обозримыми, что позволяет легче обнаруживать возможности их преобразования и упрощения. Всякие преобразования и выявление общих свойств решений гораздо удобнее выполнять, основываясь на уравнениях в комплексной форме. Наглядными примерами этому являются исследование уравнений теории оболочек вращения (см. гл. 4)  [c.66]

Режущие и калибрующие элементы входят в число основных конструктивных элементов рабочей части резца и характеризуются рядом геометрических параметров. К таким параметрам относятся углы режущей части, радиусы закругления вершины резца и главной режущей кромки. Влияние каждого из этих параметров на процесс резания многосторонне и различно, зависит от обрабатываемого и инструментального материалов, их физико-механических свойств, размеров сечения срезаемого слоя, режимов резания, состояния системы СПИД. В каждом реальном случае обработки с целью получения нужного экономического эффекта параметры должны определяться индивидуально. Приводимые ниже значения параметров стандартных резцов рассчитаны на достаточно широкую область применения и могут быть использованы как ориентировочные значения для последующих корректировок при эксплуатации. Геометрические параметры резцов, рассматриваемые ниже, не являются углами резания, так как последние кроме геометрических параметров резца характеризуются взаимным расположением резца и обрабатываемого изделия (углы резания в статике) или траекторией взаимного перемещения резца и обрабатываемого изделия (кинематические углы резания). Значение геометрических угловых параметров резцов будут соответствовать углам резания в статике в случае, когда вершина резца рассматривается на высоте центра вращения, а корпус резца перпендикулярен обработанной поверхности. При несоблюдении этих условий углы резания будут отличаться от углов резца. Это нужно иметь в виду при рассмотрении особенностей конструкции резцов вне связи с положением относительно обрабатываемого изделия и использовать за счет корректировки положения резца относительно обрабатываемого изделия для получения более рациональных углов резания. Это одна из особенностей, присущих данной конструкции инструмента, — резцам, которая позволяет при эксплуатации стандартных резцов использовать два пути оптимизации углов резания — переточку рабочей части резца и выбор рационального положения резца относительно обрабатываемой поверхности.  [c.125]

Оценка механической стабильности смазок основана на их разрушении в стандартных условиях и на определении изменения их структурно-механических свойств в процессе разрушения или непосредственно после его окончания. Для разрушения смазок чаще всего используют мешалку от пенетрометра. Недостатком данного метода являются неопределенность скорости деформирования, соответствующей разрушению, а также различия в числе ударов, диаметре и числе отверстий в перфорированном диске и т. п. За рубежом для оценки механической стабильности смазок широко используется роликовый прибор Шелл , представляющий собой полый цилиндр, в котором смазка разрушается роликом при вращении всей системы.  [c.98]


Нелинейный процесс обмена энергией между различными степенями свободы, по существу заложенный в л одели каскадного процесса преобразования энергии Ричардсона и усовершенствованный А. Н. Колмогоровым, привел Л. Д. Ландау к модели, в которой этот переход связывался с возбуждением в гидродинамической системе все возрастающего числа степеней свободы, В такой интерпретации перехода имеются определенные трудности. Шаг вперед в их преодолении был сделан А. М. Обуховым с сотрудниками 121, 22] и А. С. Мониным [23] на основе теоретического и экспериментального исследования простейшей системы, обладающей общими свойствами уравнений гидродинамики (квадратичная нелинейность и законы сохранения). Такой системой является система с тремя степенями свободы [триплет), уравнения движения которой совпадают в соответствующей системе координат с уравнениями Эйлера в теории гироскопа. Гидродинамической интерпретацией триплета может служить жидкое вращение в несжимаемой жидкости внутри трехосного эллипсоида, в котором поле скоростей линейно по координатам.  [c.32]

Вне полосы захвата в. зависнмости от свойств автогенератора и характера воздействия могут наблюдаться след, типы колебаний а) иериодич. колебания, напр. при близости частот и (p/q)(-0 , где р, q — целые числа их образы в фазовом пространстве — предельные циклы, расположенные ири слабом воздействии на торе с числом вращения, равным д/р б) кваянпернО дич. колебания, их образ в фазовом пространство — незамкнутая обмотка тора, нанр. при несоизмеримых а )б при слабом воздействии в) стохастические колебания, их образ в фазовом пространстве — либо ст.рапный аттрактор, либо сложные устойчивые траектории.  [c.59]

Этот метод, в частности, дает также возможность показать, как меняется характер спектра с ростом числа нуклонов вне заполненной оболочки. При числе частиц сверх занолнонной оболочки, большем четырех, в четных ядрах нижние уровни имеют спин и четность последовательно 0+— 2+—2+. Приблизительная эквидистантность и другие свойства этих уровней позволяют формально интерпретировать их как уровни, соответствующие колебаниям ядерной поверхности. Можно также рассчитать, когда при последовательном увеличении числа частиц характер спектра четночетного ядра вновь изменится, — появятся уровни с последовательностью сиипов 0—2—4—6 и с энергией, пропорциональной / (У-f 1). Свойства этих уровней совпадают со свойствами уровней в модели вращения несферич. ядра (см. Обобщенная модель ядра).  [c.464]

Надрессорное строение паровоза представляет собой систему с несколькими степенями свободы. Диференциальные уравнения колебаний такой системы, число которых равно числу степеней свободы, должны решаться совместно и их ренгение определяет главные виды колебаний и их частоты. Но такое решение сложно (см. стр. 188). Приближённые решения могут быть получены, если предположить, что главными видами колебаний будут а) подпрыгивание, б) продольная качка и в) поперечная качка. В каждом из этих видов положение системы, определяемое одной (так называемой нормальной) координатой, и паровоз рассматриваются как система с одной степенью свободы.При этом предполагается,что продольная и поперечная качки совершаются вокруг осей, проходящих через так называемый центр колебаний. Центром колебаний является точка, обладающая тем свойством, что приложенная в ней сила вызывает только параллельное смещение надрессорного строения паровоза без вращения.  [c.187]

В этой главе мы возвращаемся к анализу закручивающих отображений, который был начат в 9.2 и 9.3. Главный результат этих параграфов состоял в доказательстве существования по крайней мере двух специальных периодических орбит для любого рационального числа вращения из интервала закручивания (теорема 9.3.7). Эти орбиты (биркгофовы периодические орбиты типа (р, д)) могут рассматриваться с двух различных точек зрения. С одной стороны, они представляют собой критические точки функционала действия (9.3.7), минимум и минимакс типа перевала, на пространстве периодических состояний. Минимальные биркгофовы периодические орбиты характеризуются тем свойством, что каждый из их отрезков минимизирует функционал действия (9.3.12), определенный на пространстве состояний с теми же самыми концами. С другой стороны, эти орбиты сохраняют порядок, т. е. их угловые координаты находятся во взаимно однозначном соответствии с орбитами вращения на угол 2тр д, сохраняющем порядок (см. замечание после определения 9.3.6).  [c.426]

Ясно, что выбор п грузов из уравнений (И 1.77) устраняет, вообще говоря, только вибрацию в выбранных точках замера и только на скоростях Однако, как легко доказать (см. [170 ), если исходный ротор является всего п-массовым, то вибрация исчезнет и во всех точках машины во всем диапазоне рабочих скоростей. Известно, что в некотором диапазоне скоростей О <3 <3 (О < сощах динамические свойства ротора могут быть с достаточной точностью описаны моделью с п степенями свободы при этом выбор числа п зависит как от конструкции ротора, так и от того, сколько критических скоростей попадает в диапазон его рабочих оборотов. Практически можно считать достаточным брать п равным S + 2, максимум s + 3, где s — число критических скоростей, лежащих внутри диапазона рабочих оборотов. На основании этого, выбрав соответствующее число л = (s + 2)- - -(s + 3) балансировочных грузов и определив их экспериментально с помощью описанного выше процесса из уравнений вида (III.77), можно быть уверенным в достаточно хорошей уравновешенности ротора любой конструкции во всем диапазоне его рабочих скоростей вращения.  [c.137]


Если классификация калибровочных бозонов и лептонов не вызывает особых проблем, то большое число адронов уже в нач. 50-х гг. явилось основанием для поиска закономерностей в распределении масс и квантовых чисел барнонов и мезонов, к-рые могли бы составить основу их классификации. Выделение изотопич. мультиплетов адронов было первым шагом на этом пути. С матем, точки зрения группировка адронов в изотопич. мультиплеты отражает наличие у сильного взаимодействия симметрии, связанной с вращения группой, более формально, с унитарной группой 51/(2)—группой преобразований в комплексном двумерном пространстве [см. Симметрия SU(2)]. Предполагается, что эти преобразования действуют в нек-ром специфич. внутр. пространстве — т. н. изотопич. пространстве, отличном от обычного. Существование изотопич. пространства проявляется только в наблюдаемых свойствах симметрии. На матем. языке изотопич. мультиплеты суть неприводимые представления группы симметрии SU (2).  [c.602]

Подшипники качения и скольжения должны обладать такими свойствами, чтобы обеспечить вращение вала с минимальными потерями энергии и постоянством положения оси вала относительно системы координат, связанной с корпусом подшипника. Однако можно указать большое число погрешностей в элементах подшипника, которые приводят к нарушению этих требований. Так, например, в подшиннике качения источниками колебаний являются волнистость и овальность беговых дорожек, огран-ность тел качения, дисперсия их диаметров, наличие радиального зазора, что приводит к сложному характеру движения центра вала под влиянием переменной силы взаимодействия контактирующих деталей [21, 10]. При этом измеряемый сигнал имеет вид импульсов с высокочастотным заполнением, модулированных по амплитуде случайным процессом. Спектр этого сигнала широкополосный с наличием большого числа гармоник, кратных основным частотам возбуждения, приведенным в табл. 1.  [c.389]

Например,когда требуется глубокое регулирование по скоростям вращения, эффективное число Рейнольдса у такого вентилятора уменьшается в значительно меньшей степени, чем у двух-ступенчатого вентилятора с аппаратами, в которых скорости течения меньше. Это приводит к сохранению кпд в более широком диапазоне скоростей вращения (А. П. Арцы-ков, 1955). Исследования вентиляторов встречного вращения проводились также Г. М. Водяником (1960), Ю. А. Соколовым (1958) и др, Констру1Й ивное выполнение таких вентиляторов может вызвать трудности, связанные с приводом, что также отражается на их эксплуатационных свойствах — шум их больше. Другим примером целесообразности применения вентиляторов встречного вращения является случай, когда необходимо кратковременное реверсирование воздушной струи оно осуществляется только обращением направления вращения колес, в то время как у обычных вентиляторов при этом необходимо иметь еще специальные механизмы для поворота лопаток. Аэродинамически реверсирование также более эффективно у вентиляторов встречного вращения. При равных расчетных значениях коэффициентов осевой скорости и теоретического давления максимальный коэффициент давления у вентилятора встречного вращения может быть больше из-за того, что первое рабочее колесо служит как бы сепаратором (см. ниже и рис. 11) и способствует затягиванию отрыва потока во втором колесе. Максимальный кпд таких вентиляторов такой же, как у обычных двухступенчатых вентиляторов уменьшение потерь давления за счет отсутствия аппаратов компенсируется увеличением потерь за счет больших скоростей течения во втором колесе. При малых значениях расчетного коэффициента осевой скорости вентиляторы встречного вращения имеют даже несколько меньший кпд.  [c.839]

Поскольку в камерах сгорания различных двигателей выделяется разное количество теплоты, то для поддержания оптимальной температуры свечи должны обладать разной теплоотдачей. Для двигателей с высокой степенью сжатия и большой частотой вращения нужны свечи с повышенной теплоотдачей, их называют холодными . Этим свойством обладают свечи, имеющие укороченный тепловой конус (юбку) изолятора с небольшим диа метром расточки нижней части корпуса. Для двигателей с умеренным тепловым режимом, с низкой степенью сжатия требуются горячие свечи с длииной юбкой и широкой расточной корпуса, т, е. для разных двигателей нужны свечи с различной тепловой характеристикой — калильным числом.  [c.205]

Понятие центра тяжести тела, системы тел, впервые появившиеся в работах Архимеда, до сих пор является одним из важнейших в классической механике. Эта точка, именуемая еш,е центром масс, инерции, параллельных сил (тяжести, веса, инерции), суш,ественно характеризует движение и равновесие тел. Поэтому ее определению, вычислению посвяш,ены многие сочинения античных и средневековых ученых. В их числе и Книга о весах мудрости , которая содержит не только результаты самого ал-Хазини, но и трактаты ал-Кухи, Пбн ал-Хайсама и ал-Асфизари. Классические результаты Архимеда для плоских тел здесь распространяются на пространственные тела и системы тел. Причиной существования силы тяжести тела, как и у Аристотеля, является стремление тела к своему естественному месту , которое называется центром Мира . Рассматривая различные случаи расположения центра тяжести тяжелой балки, системы шаров, авторы получают соответствующие условия равновесия и впервые обсуждают свойства устойчивости и неустойчивости равновесия. Ал-Хазини рассматривает три вида равновесия безразличное (ось вращения балки проходит через центр тяжести системы), устойчивое (центр тяжести системы ниже опоры — оси вращения), неустойчивое (центр тяжести системы выше опоры — оси вращения балки).  [c.28]

Капельная смазка применяется там, где ручная смазка является неудовлетворительной или неудобной по условиям обслуживания. Преимущество капельных масленок они дают равномерное питание и допускают некоторую регулировку п подаче смазки. Недостатком их являются зависимость числа капель от 1° и уровня масла в масленке и необходимость неподвижной вертикальной установки их. По своему действию капельные масленки разделяются на несколько типов а) В к а-пельной масленке с отверстием (фиг. 30) количество капель в единицу времени регулируется винтом а путем открытия конич. отверстия. Постоянный уровень масла здесь поддерживается по принципу сообщающихся сосудов, находящихся под различным впешним давлением. Для исправности работы этой масленки смазка д. б. тщательно очищена от всяких механич. примесей, б) Штифтовая (бутылочная) масленка (фиг. 37) состоит из стеклянной опрокинутой масленки а, во внутреннем канале к-рой находится штифт, б, опирающийся непосредственно на вал. Вибрация и толчки со стороны вала передаются игле, к-рая приходит в движение, способствуя стеканию масла по зазору в канале. Регулировка достигается подбором штифта большего или меньшего диаметра, что является способом довольно несовершенным. Достоинство этой масленки—ее автоматичность (она работает лишь при вращении вала) и полная защита масла от засорения, в) Фитильная маслен-к а (фиг. 38) подает масло каплями на вал благодаря капиллярным свойствам фитиля. В качестве последнего применяется чистая шерсть. Фитиль не должен иметь узлов. Регулировка подачи масла в этой маслен-ке весьма ограничена. К достоинствам ее надо отнести способность фильт- ровать масло и возможность установки на подвижных машинных деталях, г) Клапанные масленки доставляют масло в нужные моменты периодически при помощи толкателя, связанного с подвижной деталью толкатель, действуя на клапан, выполняемый в форме шарика, открывает отверстие в масленке, создавая автоматически выход смазке. На фиг. 9 клапанная масленка применена к смазке дыропробивного пуансона. Тот же принхщп м. б.  [c.439]



Смотреть страницы где упоминается термин Числа вращения и их свойства : [c.47]    [c.66]    [c.206]    [c.197]    [c.11]    [c.130]    [c.23]    [c.227]    [c.403]   
Смотреть главы в:

Методы качественного анализа в динамике твердого тела Изд2  -> Числа вращения и их свойства



ПОИСК



Число вращения



© 2025 Mash-xxl.info Реклама на сайте