Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие замечания. Основные уравнения

Общие замечания. Основные уравнения  [c.53]

В заключение этого параграфа сделаем следующее общее замечание о законах сохранения. Формулировка каждого из этих законов имеет следующий вид некоторое выражение, зависящее от координат точек и их скоростей, при движении системы не меняется . Эти выражения не зависят от ускорений точек и в этом смысле являются первыми интегралами уравнений движения. В дальнейшем (см. гл. VII) мы вернемся к понятию первый интеграл и дадим его точное определение. Там же будет показано, что найденные выше первые интегралы — законы сохранения — являются следствиями основного предположения классической механики об однородности и изотропности пространства и об однородности времени (см. гл. VII). Отложив поэтому уточнение этого понятия до гл. VII, мы в 7 настоящей главы на важном примере продемонстрируем, как классическая механика использует законы сохранения для того, чтобы упростить (а в некоторых случаях и решить) дифференциальные уравнения, описывающие движение.  [c.77]


Некоторые тонкие вопросы подверглись более точной обработке. Укажем, в качестве примеров, на вывод условия равновесия несвободной точки в предположении, что связи реализуются посредством опор на замечание в статике нитей, что второе основное уравнение для элемента нити является следствием принципа равенства действия и противодействия на разъяснение, внесенное в доказательство достаточности общего условия равновесия, даваемого началом виртуальных работ, и т. д.  [c.5]

Во всяком случае, как это всегда имеет место в случае линейной неоднородной дифференциальной системы, интегрирование уравнений (41) и (42) сводится только к квадратурам всякий раз, когда удается каким-либо способом определить общий интеграл соответствующей однородной системы. В настоящем случае член Ф уравнения (42), делающий уравнение неоднородным, объединяет в себе все, что относится к возмущающей силе. С другой стороны, однородная система, зависящая исключительно от уравнения (28") основной задачи, дает в силу этого последнего уравнения так называемые уравнения в вариациях, которыми мы будем заниматься в общем случае в 5 гл. VI. Мы увидим тогда, что если известен общий интеграл какой-нибудь дифференциальной системы, то из него можно получить посредством одного только дифференцирования общий интеграл соответствующих уравнений в вариациях. Применяя к нашему случаю это замечание и вспоминая сказан-  [c.114]

И последнее замечание — относительно способа вывода дифференциальных уравнений в частных производных. В наиболее общей форме эти уравнения весьма громоздки, и основные физические законы, на основе которых они получены, часто затемняются алгебраической сложностью самих уравнений. Чтобы сделать вывод дифференциальных уравнений простым и ясным, мы проводим его для двумерного случая и одновременно пользуемся обычным приближением пограничного слоя. Затем мы обобщаем уравнения на трехмерный случай, устраняем приближение пограничного слоя и, наконец, записываем уравнения в векторной форме. При таком подходе все выводы становятся ясными и очевидными, и мы не только ничего не теряем, но и значительно выигрываем в смысле простоты алгебраических преобразований.  [c.20]

Полученные уравнения (5.42), (5.44), (5.46) эквивалентны и выбор их должен определяться только простотой получения решения. Прежде чем приступить к решению уравнений, сделаем некоторые общие замечания об их свойствах. Все полученные уравнения нелинейны, так как в них искомые функции входят не в первой степени, что, как известно, чрезвычайно затрудняет получение решений. Кроме того, напомним, что согласно определению (5.39) на звуковой линии 5 = О, з < О соответствует дозвуковому, а 5 > О — сверхзвуковому потоку. Тогда легко заметить, что все основные уравнения [например (5.44) ] в дозвуковой области эллиптического типа, а в сверхзвуковой — гиперболического. Это также осложняет решение, так как методы его получения различны для эллиптических и гиперболических уравнений. Следует отметить, что задача о трансзвуковом потоке даже после упрощений остается одной из самых сложных в газовой динамике. Эти замечания касаются сложности решения краевых задач. Некоторые частные решения, имеющие практическую ценность, строятся достаточно просто. Рассмотрим два таких решения, которые позволяют выяснить особенность перехода через скорость звука в сопле Лаваля.  [c.133]


Замечание. Основная идея проделанных рассуждений содержится в первом доказательстве Пуанкаре общей теоремы о неинтегрируемости канонических уравнений, близких к интегрируемым ([13, 22]).  [c.98]

Сделаем несколько замечаний общего порядка [27]. Выше были рассмотрены вопросы решения основных краевых задач теории упругости на основе представления смещений в виде соответствующих потенциалов. Получены сингулярные интегральные уравнения и установлены условия их разрешимости в предположении, что граничная поверхность принадлежит классу поверхностей Ляпунова, а правая часть —классу Г. — Л. В этом случае и решение принадлежит классу Г. — Л.  [c.569]

Интегрирование дифференциального уравнения деривации. Согласно замечанию п. 23, мы заранее знаем, что общий интеграл уравнения (52) можно определить просто (посредством дифференцирования и квадратур), если известен общий интеграл соответствующей основной задачи. Здесь можно непосредственно подтвердить возможность такого перехода. Из уравнения  [c.123]

I. Исторические замечания. Уравнения движения механических систем можно получать исходя из весьма различных положений, которые могут рассматриваться, как основные принципы механики. Эти принципы должны полностью характеризовать движение системы материальных точек и быть эквивалентными всей системе дифференциальных уравнений движения. Все законы механики системы материальных точек, на которую наложены идеальные связи, могут быть получены из принципа Даламбера — Лагранжа (общего уравнения динамики). Тем не менее представляет интерес преобразовать общее уравнение динамики так, чтобы получить новую форму, эквивалентную этому уравнению, но отличную от него по структуре. Новые формы либо допускают некоторые обобщения, выходящие за рамки чисто механических задач, либо дают возможность получить новые формы дифференциальных уравнений движения. С теоретической точки зрения новые формы в некоторых случаях позволяют обнаруживать некоторые общие свойства системы, которые не всегда очевидны в первоначальной формулировке принципа. Полученный новый принцип может быть принят за основной закон, и из него можно вывести все свойства движения, если только он правильно отображает природу.  [c.500]

Замечания. О только что полученных уравнениях нужно сделать несколько замечаний. Сначала следует отметить, что для введения понятия тензора напряжений не привлекались соображения, связанные с рассмотрением тетраэдра. Далее, в рамках данной нелинейной теории было показано, что все взаимодействия априори входят в общее выражение для тензора напряжений Коши. Это непосредственно следует из введения объективных скоростей изменения во времени (7.2.2). Выражение (7.3.6) показывает, что тензор напряжений Коши может быть сильно нелинеен по поляризации, а добавочное слагаемое в тензоре напряжений, связанное с t " , войдет, за исключением случая полностью линейной теории, даже в линеаризованную теорию, когда имеются интенсивные начальные поля (такова ситуация в сегнетоэлектриках, см. 7.9). Для обобщенных внутренних сил а, и в рамках феноменологического подхода нужны определяющие уравнения. Для этого должны быть развиты исключительно термодинамические аспекты теории (см. ниже). Однако, хотя нас будет в основном интересовать термодинамически полностью обратимое описание (упругость), отметим, что эти три полевые величины сг, Е а Е, вообще говоря, имеют как диссипативные, так и не-  [c.438]

В заключение сделаем два замечания, касающиеся моделей среды, описывающих композиционные материалы. Рассматривая основные уравнения, соответствующие теориям, в которых упругие постоянные выражаются через микроструктурные параметры материала, можно отметить, что по математической структуре они эквивалентны уравнениям аксиом атических теорий, описанных ранее. Например, модель Сана и др. соответствует микрострук-турной теории Миндлина [1111, а модель Ву — микроморфной теории Эрингена. В работе Херрманна и Ахенбаха I72] обсуждается применение к композиционным материалам теории среды Коссера. Однако теории типа Сана и Ву обладают определенными преимуществами, связанными с тем, что они позволяют выразить упругие постоянные среды через микроструктурные параметры материала. В них заложена возможность непосредственной проверки предсказываемых соотношений дисперсии, в то время как в более общих аксиоматических теориях такая возможность не п редусматривается.  [c.295]


Поэтому ввиду того, что в некоторых случаях жидкость можно рас-сматрив ть как не облагающую трением, и при этом будут получаться результаты, не слишком далекие от действительных соотношений,— в дальнейшем сначала мы не будем учитывать трения совершенно. Конечно, при этом всегда будет не лишним дополнительно исследовать, имеются или не имеются условия д чя отрывания пограничного слоя, т. е. будут ли формы течения, получаемые в предположении отсутствия тре-нил, значительно отличаться от действительных или же эти формы будут хорошим приближением к действительным течениям. На этом закончим общие замечания по поводу проявлений вязкости и перейдем к составлению основного уравнения гидродинамики.  [c.99]

Динамическая природа турбулентности. Сделаем несколько общих замечаний о динамической природе турбулентности в нелинейной диссипативной газожидкой системе, которая может обмениваться с окружающими телами как энергией, так и веществом (в силу чего возможно образование различных пространственно-временных структур, последовательности которых и составляют процесс самоорганизации). При наличии турбулентности каждая индивидуальная частица такой среды движется случайно, так что ее координаты и направление движения изменяются со временем по закону марковского случайного процесса. Полное статистическое описание турбулентного течения сводится к определению вероятностной меры на его фазовом пространстве (г,/ ), состоящем из всевозможных индивидуальных реализаций характеризующих его случайных термогидродинамических полей. Поэтому турбулентность можно рассматривать на основе статистической механики многих частиц (см., напр., (Обухов, 1962)), или для ее описания использовать кинетическое уравнение, являющееся аналогом уравнения Больцмана в фазовом пространстве для некоторой условной функции плотности распределения вероятностей /турб Р О служащей основной статистической характеристикой пульсирующего движения (Клгшонтович,  [c.20]

Относительно природы самой основной задачи здесь нужно сделать одно существенное замечание. Вспомним, что если мы исключим частные законы сопротивления, плохо соответствующие действительности, то не сможем найти интегралы основной задачи точно, а определим их только приближенно, выводя из баллистических таблиц. Если некоторая функция определена посредством графика, вычерченного непрерывно механическими средствами или полученного путем графической интерполяции из какого-нибудь разрывного ряда точек, заданного в виде числовых таблиц, то интегрирование можно будет выполнить при помощи подходящих способов суммирования, с приближением, сравнимым с тем, которое имело место при построении графика. Наоборот, операция дифференцирования, поскольку требуется, чтобы от точки к точке оценивалось направление касательной, порождает неуверенность в том, что мы не придем таким путем к значительно ббльшим ошибкам. Поэтому в баллистическом случав нельзя прийти к приемлемым результатам, выводя общий интеграл уравнений (41) и (42) из интеграла основной задачи через интегралы соответствующих однородных уравнений (в вариациях). В этом случае лучше прямо получить последний интеграл, применяя к однородным уравнениям те же сгмые способы табличных и графических приближений, которые служат для решения основной задачи.  [c.115]

Вводные замечания. Исследование изотопического эффекта в колебательных спектрах многоатомных молекул еще важнэе, чем для двухатомных молекул. Так как изотопические молекулы имеют одну и ту же электронную оболочку, то потенциальная функция, определяющая движение ядер с очень большой степенью приближения, одинакова ). Однако ввиду различия масс колебательные частоты (уровни) не совпадают. Отсюда следует, что исследование колебательных частот изотопических молекул дает дополнительные уравнения для определения постоянных потенциальной энергии. Как уже упоминалось, число постоянных в квадратичной потенциальной функции общего вида обычно превышает число основных частот (см. стр. 178). Таким образом, если наблюдается спектр только одной молекулы, то без каких-либо упрощающих предположений невозможно определить все постоянные потенциальной энергии. Однако с помощью основных частот одной или нескольких изотопических молекул можно получить достаточное число дополнительных уравнений и определить все постоянные в наиболее общем квадратичном выражении потенциальной функции.  [c.246]

Мы не будем выписывать здесь дифференциальные уравнения равновесия элемента оболочки произвольной формы, поскольку они ничем не отличаются от уравнений, принятых в теории упругой устойчивости оболочек, и ограничимся лишь некоторыми замечаниями. В общем случае это система пяти дифференциальных уравнений первого порядка относительно сил STi, ЗГз, 85, моментов оМ , 8Я и перерезывающих сил oN , первые три уравнения получаются из условия равновесия проекций силЗГ,, ЬТ , 85, 8A/j, на направления осей X, у, г основного трёхгранника (рис. 90) последние два уравнения суть уравнения равновесия моментов сил относительно осей X, у. Ввиду того, что компоненты деформации ej, е , и искривления Zj, выражаются по известным формулам Лява  [c.291]


Смотреть страницы где упоминается термин Общие замечания. Основные уравнения : [c.642]    [c.154]    [c.24]   
Смотреть главы в:

Введение в термоупрогость  -> Общие замечания. Основные уравнения



ПОИСК



Замечание

Общее основное уравнение

Общие замечания

Общие уравнения

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте