Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние деформации и напряжений на коррозию

Влияние деформации и напряжений на коррозию  [c.55]

В соответствии с этими представлениями, в условиях коррозионной усталости отдельные участки поверхности металла, вследствие многочисленных причин, находятся под действием различных по величине напряжений. Напряжения облегчают разрушение металлической связи между ион-атомами металла и снижают работу выхода. Поэтому электродные потенциалы различно напряженных участ сов различны — участки с максимальными напряжениями имеют более низкие потенциалы, т. е. под действием этих напряжений они становятся анодными. Разрушение защитной пленки на металле при действии механических нагрузок приводит к появлению наиболее раз-благороженных анодных участков. Далее, напряжения могут вызвать распад пересыщенного твердого раствора под влиянием деформации и образование новых фаз с новыми электрохимическими характеристиками. Все это усиливает электрохимическую неоднородность металла и вызывает коррозию, протекающую избирательно.  [c.170]


Влияние напряжений и деформаций на коррозию. . Влияние напряжений на коррозию других металлов.  [c.884]

Влияние напряжений на скорость коррозии в 7-н. растворе серной кислоты и скорости деформации на анодное растворение в этом же электролите изучали на проволочных образцах низкоуглеродистой стали Св-08 (диаметром 2 мм), предварительно отожженных в вакууме (при 920° С). Методика была описана выше. Параллельно определяли потери массы на аналогичных образцах, предварительно деформированных до заданного уровня.  [c.72]

Исследования зависимости электродного потенциала от пластической деформации и влияния ее, на скорость коррозии меди в проточной дистиллированной воде [78] показали, что приложение напряжений приводит к увеличению скорости коррозии и фактором, ее лимитирующим, является разрушение и залечивание (после стабилизации или снятия напряжения) окисной пленки. Изучение влияния упругого и упруго-пластического растяжения на потенциал меди в морской воде также показало, что скорость растворения металла контролируется скоростью залечивания пленки.  [c.90]

В книге изложены основы механохимии твердого тела применительно к проблеме защиты деформированных металлов от коррозии. На основе термодинамического и кинетического анализа механохимических явлений на границе фаз твердое тело — жидкость и экспериментальных исследований рассмотрена модель механохимического эффекта (ускорения растворения металла при деформации) и описано явление, названное хемомеханическим эффектом. Установлены закономерности влияния напряженного состояния и тонкой структуры металла на коррозионную стойкость и образование коррозионных элементов на поверхности неоднородно деформированных участков металла и сварных соединений. Рассмотрены некоторые методы защиты металлов, вопросы коррозионно-механической прочности труб, способы механохимической обработки поверхности металла.  [c.2]

Как будет показано ниже, это явление не наблюдалось в растворе серной кислоты более высокой концентрации, где значительное изменение электрохимической гетерогенности не так вероятно. В таких условиях активного растворения изменение знака упругих напряжений (растяжения или сжатия) не изменяло отрицательного знака изменения стационарного потенциала, и в обоих случаях напряжения практически одинаково увеличивали скорость коррозии. Однако, в условиях пассивации или ингибирования коррозии влияние знака приложенных напряжений усложняется в результате их воздействия на состояние поверхностных пленок и адсорбционного взаимодействия металла с поверхностно-активными компонентами среды (например, вследствие чувствительности потенциала деформации к знаку деформации, что в свою очередь влияет на работу выхода электрона и на до-норно-акцепторный электронный обмен металла с адсорбатом).  [c.32]


Большая часть проведенных в последнее время исследований посвящена коррозионному растрескиванию высокопрочных алюминиевых сплавов, в частности сплава 7075, представляющего систему А1 — iZn — Mg—Mn. В 1972 г. Американская алюминиевая компания опубликовала данные о влиянии легирующих добавок или замещения компонентов этого сплава другими элементами на коррозию под напряжением [197]. Короткие поперечные образцы испытывали на растяжение при постоянной деформации в промышленной атмосфере (Нью-Кенсингтон, Пенсильвания, США) и в условиях периодического погружения в  [c.191]

На растрескивание под напряжением оказывают влияние величина напряжения, состав сплава, окружающая среда и температура. Распространение трещин, по-видимому, происходит неравномерно их размеры увеличиваются до критического, после чего в соответствии с законами механики разрушения происходит внезапное и катастрофическое разрушение. Рост трещин при коррозионном растрескивании статически нагруженной детали происходит в условиях взаимодействия в области вершины трещины процессов механического деформирования и хи.мической коррозии. Наибольшее значение коэффициента интенсивности напряжений в условиях плоской деформации в коррозионной среде, при котором трещина не растет, обозначается через К сс- Во многих случаях поведение при коррозионной усталости также связано с величиной  [c.602]

В связи с тем, что процесс концентрации напряжения или разрушения пленок при длительном или циклическом нагружении может быть процессом непрерывным, то и процесс сдвига электродного потенциала в этих локальных местах детали также является процессом непрерывным, что необходимо иметь в виду при рассмотрении влияния деформации на коррозионные процессы. На основании этого принято считать, что влияние деформации на коррозионные процессы заключается не в усилении общей коррозии, а в значительном увеличении электрохимической неоднородности металла, приводящей  [c.31]

Особенно благоприятные условия для развития усталостных трещин появляются у коленчатых вал"ов, подвергавшихся ремонту. После механической обработки значительно снижается твердость металла на рабочей поверхности, существенно перераспределяются остаточные напряжения, понижается жесткость вала. Вместо имевшихся в поверхностном слое остаточных напряжений сжатия могут возникнуть напряжения растяжения, благоприятствующие развитию усталостных трещин. При ремонте обычно уменьшается поперечное сечение шеек коленчатого вала и, следовательно, понижается его жесткость, поэтому во время работы двигателя при той же нагрузке возрастают деформации и повышается напряженность отдельных участков вала. При повышении напряженности увеличивается влияние адсорбции и коррозии и возрастает интенсивность развития усталостных трещин. Для увеличения долговечности при ремонте шейки коленчатых валов целесообразно подвергать поверхностной пластической деформации, термической обработке и другими способами упрочняющей технологии.  [c.104]

Рассмотренные закономерности влияния разных факторов на ширину зон, свободных от выделений неоднократно устанавливались при изучении алюминиевых и титановых сплавов. Роль этих зон при эксплуатации состаренных сплавов во многих случаях окончательно не ясна. Например, по поводу их роли в высокопрочных сплавах на базе системы А1—Zn—Mg высказываются прямо противоположные точки зрения. Одно время усиленно подчеркивали, что свободные от выделений зоны вредны. Во-первых, из-за меньшей прочности в них должны локализоваться пластическая деформация и начинаться преждевременное разрушение. Во-вторых, локализованное растворение пластически деформированных зон, являющихся анодом по отношению к остальному зерну, служит причиной ускоренного развития межзеренных трещин при коррозии под напряжением. Однако получены экспериментальные данные, показывающие, что с уширением свободных от выделений приграничных зон пластичность растет (при пони-  [c.312]


Влияние напряжений и деформаций на коррозию 603  [c.603]

Б. ПРАКТИЧЕСКИЕ ВОПРОСЫ Влияние напряжений и деформаций на коррозию  [c.603]

Предварительная деформация может влиять на окисление стали при температурах, не превосходящих температуру возврата или рекристаллизации. Установлено, что предварительная деформация металла несколько ускоряет окисление в его начальной стадии (за счет повыщенной энергии металла и влияния на структуру образующейся первичной окисной пленки), а растягивающие напряжения увеличивают возможность протекания местной, в частности межкристаллитной коррозии.  [c.57]

Коррозионные исследования рекомендуется проводить одновременно, в связи с трудностью в ряде случаев точного воспроизведения всех условий, и ставить их как сравнительные исследования коррозионную стойкость новых сплавов сравнивать со стойкостью наиболее распространенных и хорошо изученных сплавов, эффективность противокоррозионного легирования определять сравнением с коррозионной стойкостью нелегированного металла, защитный эффект замедлителей коррозии оценивать по скорости коррозии металла в электролите с добавкой замедлителя и без нее, влияние напряжений и деформаций на коррозионный процесс оценивать относительно коррозии металла в их отсутствии и т, д.  [c.431]

Согласно сказанному выше, сталь, прошедшая холодную механическую обработку, корродирует в природных водах с той же скоростью, что и отожженная [1]. Однако в кислотах скорость коррозии нагартованной стали увеличивается в несколько раз (рис. 7.1). Традиционно многие авторы приписывали этот эффект остаточному напряжению в металле, которое увеличивает склонность к коррозии. Но эта интуитивная концепция, вероятно, неверна, так как остаточная энергия, приобретенная в результате холодной деформации (по калориметрическим данным обычно <7 кал/г), недостаточна, чтобы обусловить значительное изменение энергии Гиббса [3]. Вероятно, наблюдаемое увеличение скорости коррозии обусловлено скорее сегрегациями атомов углерода или азота по дефектным местам, образовавшимся вследствие пластической деформации (рис. 7.2), чем влиянием самих дефектов (рис. 7.3). На этих участках водородное перенапряжение ниже, чем на цементите или на железе [2], и это, возможно, наиболее важный фактор. Второстепенными факторами являются  [c.130]

Реальность данного механизма коррозионной усталости подтверждают исследования, показавшие что ползучесть (медленная пластическая деформация), которая также осуществляется путем переползания дислокации, ускоряется общей коррозией напряженного металла. Чем выше скорость коррозии, тем выше и скорость ползучести. Прекращение коррозии, например путем катодной защиты, ведет к уменьшению скорости ползучести до исходного значения. Влияние коррозии на ползучесть мелкозернисты, металлов наблюдается у меди, латуни [82], железа и углеродистой стали [831.  [c.164]

Описанные уравнения роста трещин многоцикловой усталости используют также и для оценки долговечности конструкционных элементов, работающих на циклические нагрузки в условиях воздействия агрессивных сред. При этом физико-химические свойства среды, а также условия нагружения, прежде всего такие, как частота и температура металла и среды, отражаются определенным образом на коэффициентах Вит. Имеющиеся в обширной литературе по коррозионной усталости экспериментальные данные о характере этого влияния достаточно разноречивы, причем в любом случае большую роль играют индивидуальные свойства металла и агрессивной среды. По некоторым данным рост трещин под воздействием агрессивной среды ускоряется, по иным данным, наоборот, замедляется, что объясняют образованием защитного слоя из продуктов коррозии, усиленным теплоотводом от зоны местных напряжений перед фронтом трещины в жидких средах и т. п. Однако в целом следует считать, что по мере углубления и расширения коррозионно-усталостных трещин влияние агрессивной среды (каким бы оно не было) должно ослабевать в сторону преобладания чисто механического фактора. Достаточно развитые трещины должны распространяться при прочих равных условиях в агрессивной среде примерно с той же скоростью, что и на воздухе. Это вытекает из тех очевидных соображений, что деструкция материала в зоне местных напряжений перед устьем трещины определяется в первую очередь местными пластическими деформациями, которые зависят в свою очередь от циклического напряженного состояния всего конструкционного элемента, а не от свойств агрессивной среды. Однако среда играет  [c.135]

Большой цикл испытаний проведен для определения влияния деформаций и напряжений на коррозионное поведение сталей и сплавов в среде N2O4 при высоких температурах и давлениях. Исследования образцов после испытаний в N2O4 с деформациями, превышающими предел текучести, показали, что ни один из испытанных материалов при температурах 200, 300, 400 °С и давлениях 50—150 бар не обнаружил усиления коррозии под напряжением или коррозионного растрескивания [1.19, 2.17].  [c.48]

Влияние напряжений на скорость коррозии в 7 н. H2SO4 и скорости деформации на анодное растворение в том же электролите изучали на проволочных образцах низкоуглеродистой стали Св-08 (диаметром 2 мм), предварительно отожженных в вакууме (при 920 °С). Методика была описана выше. Параллельно определяли потери массы на анало- .  [c.75]


Предварительно изучали влияние статических напряжений на скорость коррозии трубной стали на деформированных изгибом (по трехточечной схеме) образцах стали 17ГС в термостатированных условиях и перемешиваемой среде, представляющей смесь нефти с 3%-пым хлоридом натрия в отношении 1 1. Скорость коррозии определяли по потере массы за 720 ч выдержки. Как следует из рис. 104, с увеличением напряжений до предела текучести (350 МПа) скорость коррозии увеличивается, а затем при достижении текучести уменьшается вследствие наступления стадии легкого скольжения и релаксации напряжений, обусловленной выбранной схемой нагружения с заданной величиной деформации. Это указывает на возможность усиления коррозионного взаимодействия трубной стали с рабочей средой даже при нагружении в упругой области с возникновением коррозионных поражений, которые в дальнейшем могут стать концентраторами напряжений и после инкубационного периода инициировать возникновение коррозионно-механических трещин. Если в концентраторе отсутствуют условия для существенной релаксации напряжений, что обычно имеет место при циклическом (повторно-статическом) нагружении с накоплением микроискажений решетки, процесс коррозионного взаимодействия будет ускоряться на протяжении всей стадии деформационного упрочнения, как это указывалось в гл. П.  [c.230]

Рис. 111-36. Влияние холодной деформации и образования мартенсита в аустенитной хромоникелевой стали на скорость коррозии под напряжением 20 кГ1мм Рис. 111-36. <a href="/info/666246">Влияние холодной деформации</a> и образования мартенсита в аустенитной <a href="/info/36275">хромоникелевой стали</a> на <a href="/info/39683">скорость коррозии</a> под напряжением 20 кГ1мм
Растягивающие напряжения (до предела текучести) не увеличили скорости коррозии циркония. Влияние деформации в холодном и горячем состоянии на коррозионную стойкость циркония весьма незначительно. Деформация выше 10—20% при температурах 843—954° С приводит к несколько более низкой коррозионной стойкости при температуре 343° С по сравнению с материалом, отожженным при этих же температурах. Деформация порядка 60% при температурах от комнатной до 788° С, по-видимому, на скорость коррозии не влияет. Двойные и многокомпонентные сплавы циркония исследовались Р. С. Амбарцу1цяном и его сотрудниками [111,243]. Высокую стойкость в воде при температуре 350° С имеет сплав с концентрацией 0,5% тантала. Сплавы с более высокой концентрацией тантала не перспективны ввиду возрастающего сечения поглощения тепловых нейтронов. После испытаний в течение 6500—8000 час при температуре 350—400° С на этом сплаве образуется черная блестящая плотная окисная пленка, толщиной не болеее 20—35 мк. При температуре 450° С по проществии 1400—2500 час испытаний на поверхности этой пленки появляются участки коричневого цвета со стекловидной поверхностью. На этих участках имеются микротрещины, а впоследствии на них происходит вспучивание и отслаивание пленки и начинается этап ускоренного разрущения металла. Сплавы циркония, легированные 0,4—0,5% вольфрама, ведут себя также, как и сплавы, легированные 0,5% тантала. При совместном легировании циркония 0,3% тантала и 0,4% вольфрама, период ускоренной коррозии не наступает в течение 6000 час испытаний.  [c.224]

Анализ только что рассмотренных повреждений металла дает основание утверждать, что существенное влияние на возникновение коррозионного растрескивания оказывают как внутренние, так и внеилние факторы коррозии. К наиболее важным в этом отношении внутренним факторам следует отнести состав и структуру металла, механические напряжения и виды обработки (термообработка и деформация) к внешним же факторам — состав водной среды, конструктивное оформление парогенераторов и его отдельных узлов, от которого зависят условия службы металла, а также давление и температуру воды и пара.  [c.344]

Исследования по эксплуатации деталей машин показывают, что с повышением класса чистоты поверхности коррозионная стойкость повышается. Это объясняется тем, что корродируюшие вещества при химической коррозии собираются на дне впадины гребешков и образуют очаги коррозии. Чем меньше глубина впадин, тем меньше условий для образования очагов коррозии и разрушения поверхности металла. При электрохимической коррозии в первую очередь разрушаются гребешки. Поэтому с уменьшением шероховатости разрушение поверхности уменьшается. Кроме того, пассивирующие пленки, более устойчивые на гладкой поверхности, также защитят металл от коррозии. С увеличением наклепа и остаточных напряжений в поверхностном слое уменьшается коррозионная стойкость деталей. Коррозионная стойкость снижается также с увеличением упругих деформаций, возникающих при нагрузках в процессе эксплуатации машин. Это объясняется тем, что первичная защитная пленка на деформированном металле менее прочна, чем основной металл, и легко разрушается от влияния внутренних напряжений в металле. Для увеличения коррозионной стойкости необходимо повышать чистоту поверхности деталей, уменьшать наклеп и остаточные напряжения в поверхностном слое.  [c.408]

Процесс коррозии расчленяется на стадии возникновения и разрушения. Стадия возникновения коррозии носит электрохимический характер и протекает медленно. В латунях она вызывается пластической деформацией защитной поверхностной пленки под воздействием местных напряжений постепенно эта пленка разрывается у выходов плоскостей скольжения к поверхности или над границами зерен [54]. Это объяснение подтверждается измерениями потенциала и тока образцов, подвергаемых растяжению до наступления пластической деформации. При пластическом растяжении происходят дискретные процессы, характеризующиеся тем, что при увеличении растяжения синхронно уменьшается потенциал и возрастает ток или величина максимумов тока [55]. С другой стороны, трещины под напряжением наблюдаются у сплавов, образующих защитные пленки в условиях, при которых образование защитной пленки маловероятно. Поэтому в качестве общей гипотезы принимается положение [53, 56], что, кроме электрохимического взаимодействия между более благородным и менее благородным компонентами, должен оказывать свое влияние также и так называемый эффект твердого раствора. Упомянутее явление состоит в том, что  [c.260]

Процесс ползучести под влиянием длительного действия температуры и напряжений сопровождается структурными изменениями, процессами возврата и рекристаллизации, фазовыми превращениями, старением, коагуляцией карбидов, тепловой хрупкостью и коррозией. У стали в процессе ползучести происходит сфероидизации перлита, снижающая предел ползучести. Испытания на ползучесть очень длительны и, чтобы ускорить получение результатов, их ведут одновременно на многих установках. У каждого образца, выдерживаемого при постоянной телшературе и нагруженного постоянным грузом, деформация очень - очж) измеряется соответствующим экстензо-метром. Температура должна поддерживаться автоматически с большой точностью, например, + 1,5° до 660°, 3°—от 6(50° до 870° и +5°—  [c.361]


Согласно существующим представлениям, механизм хрупкого растрескивания зависит от того, что происходит с атомами, расположенными на границах кристаллов. По мнению Паркинса [50], это явление вызвано искаженной структурой феррита в области границ зерен. Хехт, Партридж, Шредер и Уэрл в Справочнике коррозиониста Улига [12] утверждают, что атомы на границе зерен принадлежат одновременно кристаллам различной ориентации и удерживаются в этом положении за счет атомных связей, искаженных по сравнению с их нормальным направлением. Удаление таких атомов из их напряженного состояния осуществляется поэтому значительно легче, чем из середины кристалла. Это меж-кристаллитное растрескивание может вызываться концентрированными растворами щелочей. Были предложены также и другие теории, связывающие это явление с водородом [50, 51], различного рода осадками [50], окисной пленкой [51], коллоидами [52] и с влиянием механических деформаций и деформации по границам зерен [50]. Обычно в трещинах обнаруживаются окислы. Кроме того, в них могут присутствовать отложения солей. Имеется сообщение относительно более быстрого образования трещин в присутствии силиката. Согласно предположениям, высказанным Акимовым [53], взаимодействие щелочи с железом приводит к образованию феррита натрия МагРеОг и водорода. Далее коррозия протекает вдоль границ зерен и усиливается внутренними напряжениями, которые ослабляют связи между зернами по нарушенным границам. При этом появляются трещины, вода проникает в ослабленный металл, что создает условия для дальнейшего развития межкристаллитной коррозии. Помимо этого, усилению разрушения может благоприятствовать абсорбция металлом выделяющегося водорода.  [c.38]

Значительное влияние на коррозионную устойчивость оказывает фазовое и структурное состояние сплавов. Наибольшим сопротивлением коррозии обладают однофазные сплавы — твердые растворы и химические соединения, так как при этом создаются менее благоприятные условия для работы микрогальванических элементов. Многофазные сплавы корродируют быстрее. Однако известны случаи, когда многофазные сплавы имеют высокие антикоррозионные свойства (например, силумины — сплавы алюминия с кремнием). На коррозию влияет чистота поверхности чем чище поверхность изделия, тем сопротивление коррозии выше. Напряженность поверхности металла повышает коррозию металл, подвергнутый пластической деформации, корродирует быстрее. Большое влияние на коррозиеустойчивость оказывает термическая обработка.  [c.183]

Рассматриваемый поверхностный слой металла представляет собой колшлекс зерен, расположенных на свободной поверхности и поэтому обладающих пониженным сопротивлением пластической деформации и подверженных влиянию лпгкронеровностей поверхности, остаточных напряжений, изменений химического состава материала, коррозии и т. д. Минимальная толщина слоя х определяется путем анализа сопротивления зерен металла деформации в предположении гладкой поверхности детали и с учетом ослаб-  [c.337]

Поскольку водород не снижает, как правило, прочности титановых сплавов и они имеют низкий коэффициент диффузии водорода, то при совместном воздействии. коррозии и напряжения не следует ожидать резко выраженного ускоряющего влияния наводороживания на хрупкое разрушение титановых сплавов, подобно тому, как это наблюдается в некоторых случаях на стали. Тем не менее, появление хрупкости в поверхностном слое титанового сплава благодаря поглощению водорода при длительной коррозии металла в напряженном состоянии, особенно при наличии деформации металла, может привести к развитию миюротрещин и преждевременному разрушению также и титановых сплавов.  [c.79]

Считают, что коррозия ускоряет пластическую деформацию напряженного металла путем образования поверхностных решеточных вакансий, в частности сдвоенных вакансий (дивакансий). Последние при комнатной температуре диффундируют внутрь металлической решетки сквозь зерна и границы зерен металла на порядок быстрее, чем моновакансии . Появление дивакансий облегчает пластическую деформацию вдоль плоскостей скольжения вследствие процесса переползания дислокаций. Чем выше скорость коррозии, тем больше доступность дивакансий и, следовательно, тем более выражено образование выступов и впадин, включающихся в процесс развития усталости. Существование минимальной скорости коррозии, необходимой для развития коррозионной усталости, позволяет предположить, что с уменьшением скорости коррозии снижается и скорость образования дивакансий. Концентрация див.акансий падает, и прекращается их влияние на движение плоскостей скольжения возможно такое падение концентрации, при котором дислокации аннигилируют или заполняются атомами металла.  [c.163]

Состав и структура стали оказьтают на стойкость к СВУ гораздо большее влияние, чем на общую коррозию. Существенно влияет на сульфидное растрескивание углерод. С увеличением количества углерода склонность закаленных сталей к сульфидному растрескиванию растет вследствие увеличения внутренних напряжений, прочности стали. Малое количество водорода, проникающего в металл, не может вызвать достаточных для развития трещин локальных пластических деформаций в прочном материале. Считается, что сталь теряет пластичность при окклюзии водорода 7-12 см на 100 г металла. Однако водородное охрупчивание может происходить даже при незначительном количестве поглощенного водорода. Так, для стали марки 4340 (предел прочности 1600 МПа) химический состав следующий.  [c.36]

V Сопротивленад стали коррозионной усталости зависит и от формы цикла (от закономерности, по которой изменяются напряжение и деформации при циклическом нагружении). Форма цикла определяется условиями эксплуатации деталей и конструкций и бывает различной синусоидальной, пилообразной, трапецеидальной и прямоугольной. Цикл нагружения может быть как симметричным, так и асимметричным. Форма цикла влияет на процессы упрочнения металла в зоне перед вершиной трещины (зона предразрушения), а также на процессы накопления искажений кристаллической решетки, отдыха и перераспределения там напряжений. Кроме того, форма цикла, определяя скорость деформирования, а также время пребывания материала в деформированном состоянии, влияет на электрохимические (коррозия и наводороживание) процессы в трещине. При малоцикловом нагружении в синтетической морской воде и других средах наименьшая долговечность наблюдается для синусоидальной формы цикла при переходе к трапецеидальной форме, а затем к прямоугольной долговечность металла несколько возрастает. Отмечено, что форма цикла сказывается на сопротивлении усталости также при многоцикловом усталостном нагружении, однако в условиях малоцикловой усталости это влияние проявляется сильнее [21,71,72].  [c.51]

Деформационное старение нержавеющих сталей (при отсутствии напряжений) приводит к увеличению параметров в 1,1 раза и пгф, в 1,2 раза старение после предварительного пластичес-кого деформирования сказывается в основном на дополнительном увеличении тпф (в 1,05 раза на каждый 1% деформации) [37, 431. У низколегированных хромистых сталей увеличение за счет старения составляет 5—10% [44]. Коррозия аустенитных нергкаве-ющих сталей в жидком натрии (при скоростях потока до 1,5 м1сек) приводит к увеличению примерно в 1,05—1,08 раза (при температурах до 600° С и выдержках до 1,5-10 час) величины при этом практически не изменяются. Влияние выдержки в пото-  [c.104]

При холодной деформации сталей типа Х18Н9 в аустените появляются мартенситные а - и е-фазы. Их влияние на КР гораздо сложнее, так как они создают высокие межфазные и вну-трифазные напряжения, но при массивном выделении делокали-зуют коррозию (см. рис. 1.95).  [c.123]

Описанные опыты дают возможность предположить, что в таких поликристаллических металлах, как сталь (которая имеет на разделе двух фаз среда — металл огромное количество микрокатодных и. микроанодных участков), в процессе ее деформации при одновременной коррозии с водородной деполяризацией происходит достаточно быстрое наводороживание пластически деформируемых катодных участков. Очевидно, эти участки будут слабыми местами, в которых может возникнуть хрупкое разрушение. Такое разрушение возможно, например, при больших амплитудах циклических напряжений, если оно происходит вскоре после нагружения образцов. Это объясняется тем, что другие слабые места еще не возникли, так как времени в этом случае еще недостаточно для значительного коррозионного поражения анодных участков, т. е. для возникновения слабых мест в стали под влиянием уменьшения ее прочности вследствие коррозионного поражения..  [c.173]


Смотреть страницы где упоминается термин Влияние деформации и напряжений на коррозию : [c.57]    [c.2]    [c.28]    [c.174]    [c.38]    [c.233]    [c.124]    [c.78]    [c.99]    [c.115]   
Смотреть главы в:

Коррозия химической аппаратуры и коррозионностойкие материалы  -> Влияние деформации и напряжений на коррозию



ПОИСК



597 — Деформации и напряжения

Влияние деформации

Влияние напряжений

Долговечность малоаиклопая — Влияние асимметрии напряжений 98—100Влияние вибраций 132, 133 — Влияние коррозии 132 — Зависимость от пластической деформации в цикле 96 Определение

Коррозия влияние

Коррозия деформации

Коррозия лод напряжением и влиянием

Коррозия под напряжением



© 2025 Mash-xxl.info Реклама на сайте