Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Карбиды Применение

Легированная сталь, В рассмотрение входят следующие присадочные металлы марганец, никель, хром, вольфрам, молибден, ванадий и кобальт. Из них марганец и никель оказывают действие на увеличение области — гамма (аустенит). Применение конструкционная сталь. Хром, вольфрам, молибден и ванадий должны быть отмечены как возбудители образования карбида. Применение инструментальная сталь.  [c.1032]

Сплавы вольфрамовой группы отличаются повышенной вязкостью, но меньшей твердостью. Изменяя состав сплавов (карбид и С от 97 до 85%, остальное Со), получают различные свойства в зависимости от области применения. Сплавы титановольфрамовой группы имеют более высокую твердость и износоустойчивость, но меньшую вязкость.  [c.256]


Детали, работающие при высоких температурах, рассчитывают на ограниченную долговечность. Срок их службы можно только повысить конструктивными приемами (снижением уровня напряжений, рациональным охлаждением) и главным образом применением жаропрочных материалов. В последнее время для изготовления термически напряженных деталей применяют металлокерамические спеченные материалы (керметы) ва основе оксидов, нитридов и боридов Т1, Сг, А1, карбидов и нитридов В и 51, со связкой из металлов N1. Со, Мо.  [c.29]

Для сталей III группы (среднеуглеродистых среднелегированных, содержащих карбидообразующие элементы) при сварке в широком диапазоне режимов характерно мартенситное превращение. Для них важно значение />ю, поскольку гомогенизация аустенита и рост зерна в связи с наличием специальных карбидов в исходной структуре замедлены и их можно регулировать с помощью режима сварки. Поэтому для получения благоприятной структуры при сварке этих сталей эффективно снижение q/v, применение концентрированных источников теплоты (плазменной, электронно-лучевой и лазерной сварки). Так-  [c.528]

Несовершенный вакуум (наличие паров масла от диффузионного насоса) вызывает науглероживание. Тонкие пленки вольфрама, прогретые в вакууме 10 Па без применения охлаждаемых жидким азотом ловушек, превращаются через 1 ч при 900—1000 °С в карбиды W2 и W , причем уже при 800 °С обнаруживается около 30 % W2 . При 1000—1800 °С в вакууме 10 Па с двойной системой вымораживания жидким азотом процесс науглероживания происходит лишь в небольшой степени [1].  [c.138]

В практике машиностроения находят также применение такие методы поверхностного упрочнения, как плазменное напыление и плазменная наплавка сверхтвердыми материалами, в том числе карбидами, боридами, окислами и др. Они позволяют др пяти и более раз увеличивать срок службы деталей. Возможно применение различных комбинированных методов упрочнения, например, сочетание плазменного напыления с последующей термической обработкой тонкого поверхностного слоя.  [c.448]

Для поднятия температурного потолка испытаний до 4000 К, близкого к температурам плавления соединений тугоплавких металлов (карбидов и др.), применен индукционный нагрев токами высокой частоты. Индуктор 6 расположен внутри герметичной камеры непосредственно вокруг исследуемого образца. Изменяя расположение и конфигурацию витков индуктора, сравнительно легко можно достичь равномерного нагрева образца.  [c.89]


Детали двигателя работают в более напряженных температурных режимах, чем элементы планера. Температура вентилятора и передних ступеней компрессора изменяется в пределах от окружающей температуры до 150° С, достигая в задней зоне компрессора 650° С. В указанном диапазоне температур возможно использование большого числа композиционных материалов как полимерных, так и металлических. По-видимому, наиболее эффективно применение композиционных материалов на основе металлических и термостойких полимерных (в частности, полиимидных) матриц, упрочняемых борными или углеродными волокнами. Было обнаружено, что наносимое на борные волокна покрытие карбида кремния исключает взаимодействие между наполнителем и алюминиевой или титановой матрицами в процессе изготовления материала. Рассматривается применение полимерных композиционных материалов (как полиимидных, так и эпоксидных) в корпусах двигателя и редуктора (коробки скоростей).  [c.55]

В дальнейшем были разработаны новые перспективные волокна для композиционных материалов. К ним относятся углеродные волокна с различным сочетанием жесткости и прочности, борные волокна большого диаметра, органические волокна РНВ-49, волокна карбида кремния, непрерывные волокна окиси алюминия. Некоторые из этих волокон более пригодны для применения в сочетании с металлическими, а не полимерными матрицами.  [c.131]

Применение графитового кермета для замедления реакции освоено на заводе им. Энрико Ферми по производству ядерных энергетических реакторов. Используется кермет в виде графитовой матрицы, содержащей частицы карбида бора. В космической технике графит как пиролитический, так и изотропный применяется в радиоизотопном термоэлектрическом генераторе типа Пионер (см. рис. 5).  [c.460]

Действие этих компонентов заключается в измельчении микро- и макроструктуры, увеличении твердости аустенита за счет равномерного вкрапления в вязкую матрицу твердых мелкодисперсных карбидов, нейтрализации вредных примесей. В результате исследований отработаны оптимальный состав марганцовистой стали с применением комплексного легирования хромом, титаном и бором, а также режим термической обработки отливок.  [c.239]

Диффузионное хромирование позволяет получать покрытие, которое может содержать до 30% хрома. Толщина слоя в зависимости от способа получения и вида применяемой стали составляет 60—120 мкм. Для того чтобы предотвратить образование карбида хрома, рекомендуется применять стали с максимальным количеством углерода 0,08 7о или сталь, стабилизированную титаном. Диффузионное хромирование находит широкое применение для крепежных деталей благодаря исключительной коррозионной стойкости и легкому демонтажу болтовых соединений. Срок службы таких деталей в 5 раз больше срока службы оцинкованных деталей. Температура диффузионного процесса составляет 1200— 1300° С, и дополнительная термическая обработка целесообразна только для болтов, рассчитанных на высокие нагрузки. Предельная температура применения их составляет 800° С. Кратковременно болты могут работать при температуре до 1100°С (резкие изменения температуры не являются препятствием). Диффузионное хромирование используют также для повышения срока службы измерительного инструмента, форм для прессования стекла, для литья под давлением легких сплавов и т. д.  [c.83]

Химическая инертность гелия и возможность высокой степени его очистки от примесей в контуре опытных реакторов ВГР позволяют использовать в качестве оболочек твэлов не только нержавеющие стали, но и ванадий, пироуглерод, карбид кремния и другие керамические материалы [21]. По-видимому, одно из основных преимуществ применения гелия — это возможность использовать в качестве топлива карбиды урана и плутония, что сулит существенное увеличение коэффициента воспроизводства по сравнению с окисным топливом. Нулевая активация гелия, отсутствие существенного замедления им быстрых нейтронов при прохождении через активную зону реактора БГР, а также успешное решение задачи удержания продуктов деления в микротвэлах с керамическими защитными слоями при больших значениях глубины выгорания и возможность непосредственного охлаждения микротвэлов газовым теплоносителем — все эти положительные факторы позволяют реактору БГР конкурировать с реактором-размножителем БН. Основной недостаток гелиевого теплоносителя по сравнению с натриевым — трудности отвода тепла остаточного тепловыделения в аварийных ситуациях при потере герметичности основным  [c.31]


Это положение позволяет указать условия образования карбидов в али при наличии нескольких карбидообразующих элементов, последователь- "ть растаорения в аустените различных карбидов и другие факторы, паж-[c.353]

Высокая стойкость против межкристаллитной коррозии достигается в ста-, ях этого тина применением стабилизирующего отжига (температура стабилизирующего отжига обычно около 850°С), при котором карбиды полностью выделяются из раствора и присутствуют в скоагулированном виде, а хром  [c.490]

При дуговой сварке для предупреждения межкристаллитной коррозии сварных соединений рекомендуются сварка на малых погонных энергиях q/v, Дж/см) с применением теплсотводящих медных подкладок в целях получения жес1ких термических циклов и уменьшения времени пребывания металла при высоких температурах термическая обработка после сварки нагрев до температуры 1100 °С и закалка в воду. При нагреве происходит растворение карбидов, а закалка фиксирует чисто аустенитную структуру.  [c.233]

При холодной сварке чугун сваривают без подогрева стальными, медножелезными, медноникелевыми электродами и электродами из аустенитного чугуна. В случае применения стальных электродов валики наплавляют низкоуглеродистыми электродами небольшого диаметра со стабилизирующей или качественной обмазкой, Применяют также стальные электроды со специальным покрытием, содержащим большое количество карбидообразующих элементов, дающим наплавленный металл с мягкой основой и вкраплениями карбидов. Эти способы не исключают образования отбеленных и закалочных структур в з. т, в., но они просты и обеспечивают мягкий хорошо обрабатываемый шов.  [c.234]

Для увеличения степени черноты обмуровки топочной камеры могут использоваться покрытия на основе алю-мофосфатных связующих с наполнителями из карбида кремния или покрытия, полученные непосредственным нанесением с помощью плазменных распылителей тита-ната кальция. Кроме того, покрытие может быть нанесено плазменным методом на металлический щит толщиной 2—3 мм. Такой щит крепится с тыльной стороны экранных труб или непосредственно с помощью болтов к футеровке. Щиты, кроме того, снижают присос воздуха в газовый тракт котла, увеличивая тем самым его к. п. д. Кроме того, применение покрытий с высоким значением степени черноты позволяет уменьшить эрозию материалов футеровок [174].  [c.216]

Заметное повышение износостойкости валков достигается применением высокохромистых чугунов, имеющих структуру тонко-дисперсного перлита с равномерными включениями карбидов хрома или хромистой эвтектики. Для легирования, как правило, применяют чугуны ОАО НОСТА" - Орско-Халиловского металлургического комбината (ОХМК).  [c.333]

Стали перлитного класса содержат до 0,16% С и молибдена до 0,7%, который увеличивает температуру рекристаплизации феррита и тем са.мым повышает жаропрочность. Аналогично, но слабее действует хром. Присадка ванадия измельчает зерно, а также повышает жаропрочность Обычный режим термической обработки - закалка в масле или нормализация при температурах 950.. 1030 с и отпуск при 720. 750 С (Ас1 = 760 С). Предельная рабочая температура 550.. 580 С. Структура сталей после охлаждения на воздухе перлит и карбиды МзС. Область применения сталей приведена в табл 13.  [c.102]

Основное применение изделий из твердосплавных материалов на основе карбидов вольфрама, как было сказано выше, - резание, сверление, штамповка п т.п. труднообрабатывасмыл материалов (например, сплавов на титановой, никелевой основе и т.п.). В технологических процессах наиболее широко используются неперетачиваемые твердосплавные пластины. Срок службы некоторых из них (например, на авго- юбпльных конвейерах) вследствие низкой износостойкости ограничен  [c.222]

Наибольшее применение в качестве износостойких покрытий для материалов триботехнического назначения получили титансодержащие покрытия, в частности нитриды и карбиды титана. Нитриды характеризуются высокой твердостью, термо- и износостойкостью они не взаимодействуют с расплавленными металлами и со многими агрессивными средами (H2SO4, НС1 и другие кислоты). Однако нитриды хрупки, имеют низкую стойкость против окисления, плохую сцеп-ляемость и высокий коэффициент теплового расширения. Карбид титана более стоек к окислению, чем нитрид, является хорошим проводником при высоких температурах, устойчив в среде азота при 2500°С, не растворяется в H I.  [c.247]

Окись бериллия применяется в качестве высококачественного onieynopai и в атомной технике. Окись, карбид и борид бериллия предложены для применения в атомной технике как материалы для замедлителей и отражателей.  [c.519]

В последние годы в номенклатуре марок сплавов видиа произошли значительные изменения. Вместо сплавов карбид вольфрама—карбид титана—кобальт, обозначавшихся как F1, S1, S2, S3, появились сплавы с добавками карбида тантала (карбида ниобия) и повышенным содержанием кобальта. Эти новые марки сплавов носят обозначения FT1, TTI, ТТ2, ТТЗ и соответствуют по областям применения прежним маркам F1, S1, S2, S3. Кроме того, введены марка ТТ4, для особо тяжелых работ и марка А1—универсальная, т. е. пригодная как для обработки чугуна, так и для обработки сталей.  [c.557]

Номенклатура сплавов карбид вольфрама—кобальт пополнилась марками с высоким содержанием кобальта 20—30% (G4, G5, G6) предназначаюшимися для оснащения инструмента при обработке металлов давлением (штамповкой и т. п.). Перечень марок сплавов видиа, их состзвов и областей применения представлен в табл. 17 и 18,  [c.557]

Применение методов порошковой металлургии для изготовления жаропрочных материалов связано со следующими преимуш,ествами возможностью получения таких жаропрочных композиций, которые в настоящее время нельзя получить другими методами (алюминий с окисью алюминия, карбид титана с ни-кельхромокобальтовыми добавками) возможностью получения пористых охлаждаемых жаропрочных материалов структурными особенностями, обеспечивающими более высокую термостойкость и лучшую иибростойкость, чем у литых материалов легким и экономически выгодным получением готовых деталей сложной формы из жаропрочных материалов (лопатки, сопла).  [c.605]


Карбидами называют соединения углерода с другими элементами. Широкое применение имеет карбид кремния Si —карборунд—ио-ликристаллический полупроводник. Карборунд получают в электрических печах при температуре 2000° С из смеси двуокиси кремния SiOa и угля. Кристаллы карборунда гексагональной структуры в чистом виде бесцветны, но благодаря примесям технический материал имеет светло-серую или зеленоватую окраску. При нормальных условиях энергия запрещенной зоны = 2,86 эв. Характер электропроводности определяется составом примесей или отклонением от стехио-метрического состава Si . Электронная проводимость получается при избытке Si, а также при наличии примесей из V группы — фосфора, мышьяка, сурьмы, висмута или азота. Дырочная проводимость достигается при избытке С и наличии примесей элементов II группы (Са, Mg) и III группы (А1, In, Ga, В). При введении примесей изменяется также окраска карборунда. Подвижность носителей низкая гг = = 100 см 1в-сек. Up = 20 см /в-сек. Порошкообразный карборунд применяют для изготовления нагревателей электрических печей с температурой до 1500° С. Кроме того, из него изготовляют нелинейные объемные резисторы — варисторы, в которых значение R падает с ростом приложенного напряжения (рис. 14.2). Нелинейность таких резисторов резко вырастает при одновременном введении небольших примесей алюминия (IM группа) и азота (V группа), вблизи точки перехода  [c.188]

Проведенные исследования показали возхможность применения карбидов и нитридов кремния и титана для получения тонкослойных стеклокерамических покрытий с растворной стеклосвязкой.  [c.106]

Во многих случаях попытки улучшения жаростойкости материалов металлургическим путем не дали положительных эффектов. Результаты, достигнутые в последние годы в этол1 направлении, позволяют считать, что применение загцитных жаростойких покрытий для ответственных конструкций, работающих при температурах выше 800°С,— наиболее реальный и перспективный путь повышения конструктивной прочности. Защитные покрытия могут формироваться из различных ншростойких материалов тугоплавких металлов и сплавов, керамико-металлических соединений, керамик (тугоплавких оксидов, боридов, карбидов).  [c.125]

Дальнейшие исследования особенностей влияния шлифовки на усталостную прочность титановых сплавов показали [172], что существенное значение имеет материал и зернистость абразива, режимы и шлифовальное оборудование. Определено, что по производительности и по меньшему снижению усталостной прочности лучшими являются круги из зеленого карбида кремния, борсиликокарбида и карбида бора, худшими—хромистый электрокорунд и монокорунд. Так, после шлифования образцов из сплава ВТЗ-1 кругами из зеленого карбида кремния усталостная прочность оказывается в 2 раза выше, чем после шлифования кругами из монокорунда. В некоторых странах (США, Япония) для шлифования деталей из титана применяют новые виды абразивных материалов - карбид циркония, корунд с присадками диоксида циркония и др. Важнейшими параметрами режима шлифования, оказывающими наибольшее влияние на усталость, являются смазочночэхлаждающая жидкость, величина подачи и скорость круга. Так, сухое шлифование приводит к микротрещинам в поверхностном слое даже при отсутствии при-жогов [ 172]. Охлаждение простой эмульсией уже повышает предел выносливости на 17 %, а применение в качестве охлаждения 10 %-ного раствора нитрата натрия и 0,5 %-ного бутилнафталинсульфоната увеличивает усталостную прочность по сравнению с сухим шлифованием на 33 %. Увеличение величины подачи заметно снижает усталостную прочность. Так, даже при охлаждении раствором нитрита натрия с увеличением  [c.180]

Специальная работа была посвящена выяснению возможности применения инденторов из карбида бора и ди-борида титана для измерения твердости карбидов при высоких температурах в вакууме [71, 178]. Исходными материалами для изготовления заготовок инденторов служили аморфный бор (чистотой 99,5%), ламповая сажа зольностью 0,2%, а также мелкодисперсный порошок карбида бора состава 76,8% В, 21,9% Си порошокдиборида титана состава 69,3% Ti, 30,4% В.  [c.56]

Подобный способ травления, примененный для сплава, содержащего 12,8% Мп и 0,46% С (термообработка нагрев 1250° С, 12 ч, аргон + закалка + нагрев, 640° С, 150 ч + закалка), позволил выявить серые аустенитные кристаллы с четкими полосами скольжения при этом феррит выглядит светлым, а карбиды темными. При травлении пикратом натрия темнеет только карбид. После одновременного травления реактивом 4 и раствором, в котором вместо пикриновой кислоты применялся паранитрофенол, Глузанов и Петак [9] в белом чугуне с 4% Мп наблюдали в первичных иглах цементита среднюю зону с измененной окраской, в то время как подобный тип цементита в чугуне с 14% Мп выглядит гомогенным. Авторы считают, что сложный железомарганцевый карбид в точке превращения (точка Кюри) цементита распадается на две фазы, так как а-карбид железа может содержать в твердом растворе лишь небольшое количество марганца. Цементит в марганцовистом чугуне с 14% Мп остается гомогенным, поскольку уже при 8% Мп точка превращения расположена при 0° С и с ростом концентрации марганца температура точки превращения снижается.  [c.111]

Снайд [35] изучал совместимость изготовленных им волокон диборида титана с титаном. Совместимость в данной системе оказалась существенно выше, чем в системе титан —бор, однако в дальнейшем это направление не развивалось под действием ряда факторов. Главный из них — низкая прочность и высокая плотность волокон диборида титана. Поэтому основное внимание стали уделять второму и третьему из перечисленных выше направлений. Разработка покрытий, особенно для высокотемпературных применений, связана с трудностями, поскольку при наличии покрытия вместо одной поверхности раздела появляются две. Однако удачный выбор покрытия, совместимого с упрочнителем, позволяет свести проблему совместимости матрицы с волокном к совместимости матрицы с покрытием. С этой точки зрения волокна бора с покрытием из карбида кремния (торговое наименование борсик ) должны взаимодействовать с титаном так же, как карбид кремния. Значит, поверхность раздела должна удовлетворять тем же гЬизико-химическим требованиям, и в дальнейшем обсуждение может быть ограничено характеристиками композитных систем либо типа матрица — покрытие, либо типа матрица — волокно. В табл. 1 есть примеры системы, в которой волокно защищено покрытием (алюминий — бор, покрытый нитридом бора), и системы, в которой, как полагают, покрытие взаимодействует с матрицей так же, как волокно (система алюминий — карбид кремния, характеризующая поведение системы алюминий — бор, покрытый карбидом кремния).  [c.28]

Потребность в композитных материалах, состоящих из термодинамически несовместимых компонентов, при искусственном объединении которых происходят диффузия через поверхность раздела и сопутствующие вредные эффекты, привела к интенсивной разработке барьерных слоев, предотвращающих диффузию между составляющими композита. Применение воло кон бора, покрытых карбидом кремния (борсик) и нитридом бора для упрочнения алюминиевых сплавов, заметно снизило скорость реакции между волокном и матрицей (гл. 3). Благодаря этому были созданы композиты, прочность которых в условиях повышенных температур сохранялась много дольше. Таким образом, дополнительная стоимость защиты волокон компенсируется улучшением свойств композитов.  [c.48]


Прево и Маккарти провели детальное исследование поверхности раздела образцов композитов с применением сканирующей и трансмиссионной электронной микроскопии. Они пришли к выводу, что покрытие из карбида кремния прочно связано с алюминиевой матрицей, хотя химическое вза имодействие и не было обна-  [c.225]

Улучшение механических свойств наполненных полимерных материалов благодаря применению силановых аппретов наблюдается при использовании многих минеральных наполнителей (гл. 5). Наиболее эффективно аппретирование двуокиси кремния, окиси алюминия, стекла, карбида кремния и алюминия (табл. 4). Несколько хуже результаты, полученные с тальком, волластонитом, порошком железа, глиной, цирконом и фосфатом кальция. Аппретирование асбестина, асбеста, двуокиси титана и титаната калия малоэффективно обработка силанами карбоната кальция, графита и бора безрезультатна.  [c.196]

Крепежные детали паровых турбин работают в условиях температур, не превышаюших 565 °С. Высокие эксплуатационные свойства материала в этих условиях обеспечиваются применением хромомолибденованадиевых сталей. Наибольшая релаксационная стойкость в этих сталях достигается в результате дополнительного легирования их такими элементами, как ниобий и титан, образуюшими термически устойчивые карбиды НЬС и Т1С. Существенное влияние на свойства крепежной стали оказывает способ ее выплавки. Так, применение электрошлакового переплава позволяет получить более высокие служебные свойства по сравнению со свойствами металла, выплавленного в дуговой печи.  [c.41]

В. С. Попов и сотрудники [52] считают, что наиболее высокого сопротивления изнашиванию можно достичь, увеличив способность стали к упрочнению, поскольку доля энергии, затрачиваемой на упрочнение, составляет приблизительно 90% в балансе всех энергетических затрат при изнашивании. Одним из путей повышения износостойкости деталей, работающих в контакте с образивной средой, может быть применение метастабильных аустенитных сталей с включениями мелкодисперсных карбидов в аустенитной основе.  [c.12]

Однородность сплава Fe—Со—2 V в большой степени определяется его чистотой. Примеси ухудшают магнитные свойства сплава, нарушают кристаллическую структуру, вызывая неоднородность намагниченности. Показателем степени чистоты является коэрцитивная сила. Гоулд и Веннн [3S] получили для сплава Fe—Со—2V минимальные значения коэрцитивной силы Не путем применения очень чистых шихтовых материалов и тщательного переплава [42, 43]. Келлер и Гилман, [39] получили сплавы Fe—Со и Fe—Со—2V с минимальными значениями Не путем применения зонной плавки с последующим отжигом образцов в водороде. К существенному росту Не приводит наличие в сплавах остаточного углерода [41]. При содержании С>0,01% в сплавах Fe—Со—2V, как правило, присутствуют карбиды ванадия, отрицательно влияющие на магнитные свойства и однородность.  [c.233]


Смотреть страницы где упоминается термин Карбиды Применение : [c.142]    [c.279]    [c.423]    [c.61]    [c.103]    [c.112]    [c.128]    [c.55]    [c.141]    [c.103]    [c.101]    [c.240]   
Материалы в машиностроении Выбор и применение Том 5 (1969) -- [ c.425 , c.426 ]



ПОИСК



Другие области применения карбида титана

Карбиды

Области применения карбида титана

Применение карбидов плутония в атомных реакторах

Сплавы карбидов 420 — Обрабатываемость 424, 425 — Применение



© 2025 Mash-xxl.info Реклама на сайте