Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реакторы ядерные энергетические

Реакторы ядерные энергетические 173, 175, 177—179, 180, 182, 185, 196 Реакции термоядерные 157, 167, 173 Реакции цепные 152 Регуляторы электромашинные 115 Регуляторы электронно-ионные 115 Резерв паровой 56  [c.464]

Форд А., Проекты ядерных энергетических реакторов, Госэнергоиздат, 1957.  [c.415]

Работа ядерной энергетической установки связана с переносом тепла от твэлов к устройствам, воспринимающим тепло. Среда, осуществляющая перенос тепла, называется теплоносителем. В качестве теплоносителя широко применяют обычную воду и двуокись углерода. Большое место в будущем отводится реакторам на быстрых нейтронах с натриевым теплоносителем. Для охлаждения реакторов используют также тяжелую воду, органические теплоносители, а иногда гелий.  [c.86]


Схема ядерной энергетической установки. Процесс преобразования энергии в ядерной энергетической установке (рис. 18.34) состоит в следующем в ядерном реакторе 1 в результате деления ядер расщепляющихся элементов (атомного горючего) выделяется количество теплоты Q при некоторой температуре 1р. Из реактора эта теплота отводится потоком теплоносителя в парогенератор 2 и передается там рабочему телу термодинамического цикла. Этот цикл аналогичен циклу обычной паросиловой установки (то обстоятельство, что пар образуется в парогенераторе, а не в паровом котле с огневым нагревом, не является существенным). Теоретический цикл паросиловой ядерной энергетической установки изображен на рис. 18.35, а линия аЬ представляет собой линию охлаждения первичного теплоносителя при передаче теплоты  [c.591]

Что касается типа атомного реактора для ядерных энергетических установок, то необходимо иметь в виду следующее. Пароводяные атомные реакторы в настоящее время могут обеспечить получение насыщенного или незначительно перегретого пара поэтому в них должны применяться паровые турбины насыщенного пара. Перспективными являются также атомные реакторы не с водяным, а с газовым охлаждением. Такие реакторы могут обеспечить получение перегретого пара высоких температур (особенно при применении гелия) и, следовательно, для силовой части установки можно использовать обычное технологическое оборудование.  [c.593]

Процесс преобразования энергии в ядерной энергетической установке (ЯЭУ) (рис. 8.37) заключается в следующем в ядерном реакторе в результате деления ядер расщепляющихся элементов (атомного горючего) выделяется теплота при некоторой температуре Гр. Из реак-  [c.549]

Применение графитового кермета для замедления реакции освоено на заводе им. Энрико Ферми по производству ядерных энергетических реакторов. Используется кермет в виде графитовой матрицы, содержащей частицы карбида бора. В космической технике графит как пиролитический, так и изотропный применяется в радиоизотопном термоэлектрическом генераторе типа Пионер (см. рис. 5).  [c.460]

При изучении радиационной стойкости ароматических углеводородов большое число экспериментов относилось к определению так называемой критической пороговой температуры при облучении в реакторе. Проведение подобных работ было вызвано необходимостью решения вопроса о возможном использовании органических соединений в качестве тепло-носителя-замедлителя в ядерных энергетических реакторах [30, 246].  [c.21]


Предполагается, что в конце текущего столетия будет построен опытный энергетический реактор ядерного синтеза, а в будущем столетии, вероятно, будет осуществляться промышленное использование реакторов этого типа. Меры предосторожности от радиоактивного облучения в этих реакторах значительно проще по сравнению с современными ядерными реакторами.  [c.319]

Гидравлическая система ядерной энергетической установки состоит из трубопроводов, коллекторов, каналов активной зоны и предназначена для прокачки теплоносителя. Дополнительными устройствами, входящими в гидравлическую систему, являются теплообменные аппараты, парогенераторы, арматура, дроссельные и сепарирующие устройства. Замкнутая гидравлическая система подводящих и отводящих трубопроводов, распределительных устройств внутри корпуса реактора и каналов (кассет) с тепловыделяющими элементами называется циркуляционным контуром.  [c.17]

Наряду с использованием детерминистского подхода к обоснованию безопасности АЭС большое распространение в последние годы получила оценка риска, связанного с эксплуатацией ядерных энергетических реакторов [18].  [c.98]

Важность вопросов обеспечения прочности и ресурса атомных энергетических реакторов определяется их возрастающей ролью в проблеме энергоснабжения. При этом повышение ресурса и прочности атомных реакторов следует рассматривать как один из наиболее результативных путей увеличения суммарной мощности ядерных энергетических установок.  [c.10]

В большинстве разрабатываемых конструкций ТЭП и ядер-ных установок имеются перегрузки и вибрации. Многие детали ядерных реакторов и ТЭП свариваются и имеют сложную форму. Поэтому полуфабрикаты, из которых они изготавливаются, должны обладать достаточно большим запасом пластичности при комнатной температуре, а сварные швы на деталях не должны растрескиваться. По этим причинам переход молибдена с понижением температуры из пластичного в хрупкое состояние оказался серьезным препятствием для широкого использования этого металла в ядерных энергетических установках.  [c.16]

О механизме взаимодействия. Цезий, литий и другие щелочные металлы обладают благоприятными теплофизическими свойствами для использования их в качестве теплоносителей в ядерных энергетических установках. При этом функцию теплоносителя эти металлы могут совмещать с функциями рабочей среды и смазочного материала, что позволяет во многих случаях уменьшить габариты и массу энергетических реакторов. Однако химическая активность жидкометаллических теплоносителей ограничивает их применимость из-за отсутствия достаточно коррозионно-стойких конструкционных материалов в этих средах. При контакте конструкционного металла с жидким или парообразным щелочным металлом могут происходить следующие процессы 1) растворение металла в расплаве, в том числе селективное растворение тех или иных компонентов сплава  [c.142]

Одноконтурная схема может быть применена также в ядерных энергетических установках (ЯЭУ) с реакторами, охлаждаемыми газом или перегретым паром. По такой схеме выполнен проект судовой газотурбинной установки закрытого цикла (рис. 5), в которой рабочим телом является гелий. Применение газа вследствие  [c.7]

Двухконтурные схемы применяют в большинстве ядерных энергетических установок. По этой схеме работают Ново-Воронежская АЭС, установка атомного ледокола Ленин , английские станции с газоохлаждаемыми реакторами, американские АЭС с Бодо-водяными реакторами и другие. На многих строящихся и проектирующихся установках также применена двухконтурная схема.  [c.10]

Азот (N2) не является окислителем, он рассматривается как возможный теплоноситель и рабочее тело ядерных энергетических установок с газотурбинным циклом. Как и воздух, азот обладает способностью активироваться в реакторе главным образом за счет образования радиоактивного изотопа аргона, присутствующего в атмосферном азоте.  [c.24]

В зависимости от типа реактора и схемы ядерной энергетической установки в качестве первичных теплообменных аппаратов могут применяться теплообменники, испарители, конденсаторы-нагреватели и конденсаторы-испарители.  [c.24]


В ядерных энергетических установках на водяном теплоносителе конструкционные материалы первого контура работают в чистой воде при относительно высоких температурах (250—350°С). В парогенераторе водоохлаждаемого реактора циркулирует радиоактивная вода первого контура, поступающая из реактора, и нерадиоактивная вода (иар) энергетического контура. В обычных энергетических установках требуемый состав котловой воды поддерживается непрерывной периодической продувкой котла (парогенератора) для удаления продуктов коррозии и других примесей вместе с водой.  [c.282]

Тепловыделяющие элементы современных ядерных реакторов способны выдерживать достаточно высокие температуры это позволяет отводить тепло из реактора на сравнительно высоком температурном уровне, что имеет существенное значение для повышения к. п.д. ядерной энергетической установки. Использование воды в качестве теплоносителя при высоких температурах становится затруднительным, так как это сопряжено с необходимостью значительного повышения давления. Поэтому в высокотемпературных реакторах целесообразно для отвода тепла применять жидкие металлы, которые могут циркулировать в условиях высокой температуры при сравнительно малых давлениях. Кроме того, некоторые из этих теплоносителей (например, натрий) обладают меньшим по сравнению с водой сечением захвата нейтронов, что является немаловажным обстоятельством. Однако жидкие металлы имеют и специфические недостатки, затрудняющие их использование в качестве теплоносителя в реакторах. Подвергаясь облучению нейтронами, они становятся радиоактивными, что создает определенные затруднения при обслуживании контура, отводящего тепло от реактора.  [c.37]

Тепловыделяющие элементы современных ядерных реакторов способны выдерживать достаточно высокие температуры это позволяет отводить тепло из реактора на сравнительно высоком температурном уровне, что имеет существенное значение для повышения к. п. д. ядерной энергетической установки. Поэтому в высокотемпературных реакторах целесообразно для отвода тепла применять жидкие металлы. Помимо указанных выше преимуществ, некоторые из этих теплоносителей (например, натрий) обладают меньшим по сравнению с водой сечением захвата нейтронов [5, 7, 11].  [c.52]

В настоящее время в связи с применением ядерных энергетических установок вновь приобретает значение цикл насыщенного пара, так как при эксплуатации многих типов реакторов недопустима высокая температура. В этих случаях для давлений от 15 до 20 бар рекомендуется включать промежуточный влаго-отделитель (рис. 40).  [c.119]

Внутриреакторные методы изучения выхода газообразных ПД (ГПД) из топливных образцов в газовую среду хорошо развиты, и с их помощью получена строгая экспериментальная информация [1, 2], данные же о выходе твердых ПД (ТПД) получены в основном при эксплуатации негерметичных твэлов на ядерных энергетических реакторах [3, 4] или в специальных петлевых экспериментах [5, 6]. Необходима осторожность при их интерпретации ввиду многообразия и сложности факторов, влияющих на утечку ПД из негерметичного твэла, в частности таких, как малоизученные вопросы влияния окисления топлива при контакте с теплоносителем на выход ПД из топлива и на температуру последнего, миграция ТПД в газовом пространстве под оболочкой  [c.115]

G 12 В Конструктивные элементы приборов, не отнесенные к другим подклассам G 21 <В — Реакторы для ядерного синтеза Ядерные (С — реакторы D — энергетические установки) F — Защита от рентгеновского излучения, гамма-излучения, корпускулярного излучения, бомбардировки частицами Обработка материалов с радиоактивным заражением. Устройства для устранения радиоактивного заражения таких материалов G— Преобразование химических элементов, Источники радиоактивности)  [c.41]

Рассмотрены основные типы ядерных энергетических установок, построенных и успешно эксплуатируемых В Великобритании, вопросы, связанные с применением различных сплавов и сталей, ядерного топлива, сваркой, коррозией в различных средах, действием облучения на материалы и др. Кратко изложена технология изготовления основных узлов атомных электростанций, включая активную зону реактора, трубопроводы, парогенераторы и турбогенераторы. Большое внимание уделено анализу дефектов, часто встречающихся в процессе изготовления и эксплуатации агрегатов атомных станций, и способам их предотвращения.  [c.4]

Перечень материалов, используемых в обычной электроэнергетике, сравнительно невелик. Для изготовления деталей и оборудования, испытывающих нагрузки, применяют стали, там, где необходимы проводники электрического тока, используют медь или алюминий, а в качестве изоляционных материалов выбирают органические соединения или керамику. Появление на энергетическом рынке атомных электростанций (АЭС) значительно расширило круг используемых материалов. В активной зоне реактора находятся делящиеся и воспроизводящие материалы, представляющие собой либо металлы (уран, плутоний и торий), либо их окислы или карбиды. В качестве конструкционных материалов активной зоны применяют магний и цирконий, в качестве замедлителя— графит. В системах управления и защиты реакторов используют такие материалы, как бор, гафний и редкоземельные металлы, в качестве теплоносителей ядерных энергетических установок могут быть использованы, например, углекислый газ, гелий, натрий.  [c.6]

В ядерно-энергетических установках с реакторами, в которых теплоносителем и замедлителем нейтронов является вода, иониты имеют широкое применение для следующих целей  [c.235]

По составу ядерного горючего различают урановые, плутониевые и тбриевые реакторы, по назначению — энергетические, исследовательские и реакторы-размножители. Энергетические  [c.9]


Термический к. п. д. цикла и эффективный к. п. д. установки. Воспользовавшись формулой (18.21), нетрудно найти значение термического к. п. д. ядерной энергетической установки. Термический к. п. д. теплосиловой части установки представляет собой отношение произведенной полезной внешней работы Т к количеству теплоты (2, выделившейся в реакторе (в предположении, что все процессы термодинамического цикла, за исключением процесса подвода теплоты, обратимы). При оптимальной температуре рабочего тела Тподи Т согласно уравнениям (18.20) и (18.21) значение  [c.593]

Серьезным недостатком ядерных энергетических установок крупного масштаба является образование большого количества радиоактивных отходов, надежное захоронение которых является сложной экологической проблемой. Радиоактивные отходы от термоядерных реакторов (при сравнимой полезной мощности) по оценкам специалистов могут быть примерно на три порядка ниже. Это различие сотрется при переходе к комбинированным ядерно-тер-моядерньш системам.  [c.598]

Рис. 8.37. Схемы ядерных энергетических установок а—в—соответственно одноконтурная, двухкоптурная, трехконтурная / — ядерпый реактор 2 — турбоагрегат 3 — генератор 4 — конденсационная установка 5 —конденсатный насос б — система регенеративного подогрева питательной воды 7 — питательный насос 5 — парогенератор 9 — и J0— циркуляционные насосы соответственно контура реактора и промежуточного контура Рис. 8.37. <a href="/info/12398">Схемы ядерных энергетических</a> установок а—в—соответственно одноконтурная, двухкоптурная, трехконтурная / — ядерпый реактор 2 — турбоагрегат 3 — генератор 4 — <a href="/info/121889">конденсационная установка</a> 5 —<a href="/info/27435">конденсатный насос</a> б — <a href="/info/310756">система регенеративного</a> подогрева <a href="/info/30192">питательной воды</a> 7 — <a href="/info/27444">питательный насос</a> 5 — парогенератор 9 — и J0— <a href="/info/27482">циркуляционные насосы</a> соответственно контура реактора и промежуточного контура
Воспользовавшись формулой (14-42), нетрудно найти значение эффективного к. п. д. ядерной энергетической установки. Эффективный к. п. д. t теплосиловой части установки представляет собой отношение произведенной полезной внешней работы L к количеству тепла Q, выделившегося в реакторе. Согласно уравнениям (14-41) и (14-42) значение достигаемое при оптимальной температуре рабочего тела (в предположении, что все процессы термодинамического цикла, за исключением процесса подвода тепла, обратимы), т. е. термический к. п. д. термодинамического цикла при 7 подв = 7 , равно  [c.467]

Ядерная техника более 30 лет успешно развивалась благодаря государственной политике, направленной на то, чтобы способствовать этому. Это можно объяснить в равной мере как исторической случайностью, так и планированием. Комиссия по атомной энергии США (The и. S. Atomi Energy ommision—AEG) была создана 31 декабря 1946 г. с целью подчинить гражданской администрации предприятия по производству ядерного оружия, которыми во время второй мировой войны управляла армия. Создание ядерных энергетических реакторов является естественным продолжением программы разработки ядерных подводных лодок. АЕС финансировала основную часть ядерных исследований, большинство из которых велось в национальных лабораториях. Этим лабораториям пришлось изменить направления своей деятельности в послевоенное время, в которой до этого преобладали работы в области ядерных вооружений.  [c.159]

Первый промышленный ядерный энергетический реактор начал действовать в Шиппинг-порте (штат Пенсильвания) 2 декабря 1957 г. В последующем до 1979 г. было построено много реакторов — в среднем примерно по 3 реактора в год. Разрешения на строительство и эксплуатацию ядерных реакторов выдавала АЕС. То, что АЕС приходилось одновременно проводить исследования и выдавать разрешения, явилось причиной внутренних конфликтов, которые до определенного времени оставались незамеченными. С появлением в середине 60-х годов крупных энергетических реакторов мощностью 1100 МВт (эл.) общественное недовольство по поводу ядерной энергетики, которое раньше было смутным и неорганизованным, выкристаллизовалось и стало гласным. В начале 70-хо годов в АЕС были проведены некоторые организационные изменения, но ко времени введения ОПЕК эмбарго на нефть (осень 1973 г.) стало ясно, что требуется более серьезное хирургическое вмешательство .  [c.159]

Изложены основные сведения по теплофизике ядерных энергетических установо1 , дана систематическая сводка формул, графиков и номограмм для теилогидравлического расчета ядерных реакторов, теплообменников и парогенераторов различного типа. Представлены рекомендации по расчету гидродинамики и теплообмена для различных теплоносителей.  [c.2]

Современная атомная энергетика, как отечественная, так и зарубежная, основана в первую очередь на реакторах, охлаждаемых водой (в СССР это реакторы ВВЭР и РБМК). Атомная энергетика будущего ориентируется на расширенное воспроизводство ядерного топлива, поскольку ресурсы последнего, как и традиционных топлив, ограничены. В СССР успешно эксплуатируются реакторы-размножители БН-350 и БН-600, проектируются более мощные реакторы с охлаждением жидким металлом. В последние годы (1979—1982) Атомиздатом и Энергоиздатом выпущена серия учебных пособий Ядерные реакторы и энергетические установки под общей редакцией академика Н. А. Доллежаля, в которых содержится описание характеристик ядерных реакторов, методик расчета теплофизических параметров каналов различного конструкционного исполнения, анализ теплотехнической надежности и др.  [c.3]

В книге приводятся общие сведения о получении и применении этого металла, рассматриваются требования к материалам термоэмиссионных преобразователей (ТЭП), основным из которых является молибден. Сделан краткий обзор по основным разработкам различного типа ядерных ТЭП, в которых используются молибден и его сплавы. Показана роль молибдена и его сплавов в конструкциях ядерных энергетических установок, реакторов, искусственных спутников Земли (ИСЗ) различного назначения и в радионзотопных термоэмиссионных и термоэлектрических генераторах (РТГ).  [c.5]

Возможны ситуации, когда время останова реактора или иной ядерно-энергетической установки, необходимое для осмотра, ремонта или Замены узла конструкции, работающего в условии высоких дозовых нагрузок, определяется временем выдержки Гвыд для снижения активационного излучения до допустимого уровня. Например, при разработке защиты сверхпроводящих обмоток термоядерных реакторов (ТЯР) одним из основных критериев защиты является снижение мощности дозы активационного излучения вблизи обмоток до 2,8 мбэр/ч через 36 ч после останова реактора. Причем в данном случае выбор значения Т ыа обусловлен целым рядом причин, а превышение его по условиям радиационной безопасности равносильно npo ioro реактора. Для времени такого простоя АГ справедливо выражение  [c.290]


Смотреть страницы где упоминается термин Реакторы ядерные энергетические : [c.103]    [c.87]    [c.97]    [c.14]    [c.161]    [c.36]    [c.16]    [c.5]    [c.227]    [c.171]    [c.225]   
Энергетическая, атомная, транспортная и авиационная техника. Космонавтика (1969) -- [ c.173 , c.175 , c.177 , c.178 , c.180 , c.182 , c.185 , c.196 ]



ПОИСК



Классификация ядерных энергетических реакторов

Реактор

Реакторы энергетические

Энергетические реакторы и воспроизводство горючего — Ядерная электроэнергетика

Ядерный реактор



© 2025 Mash-xxl.info Реклама на сайте