Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зависимость Химический состав

Литые твердые сплавы в зависимости от химического состава делятся на три группы. Химический состав и механические свойства литых твердых сплавов приведены в табл, 14.16.  [c.261]

Содержит 320 марок сталей и сплавов черных металлов. Для каждой марки указаны назначения, виды поставки, химический состав, механические свойства в зависимости от состояния поставки, температуры испытаний, режимов термообработки, поперечного сечения заготовок, места направления вырезки образца, технологические и физические свойства.  [c.2]


Чтобы ввести переменные, выражающие химический состав, можно рассмотреть химически неравновесную систему с заторможенными превращениями веществ. В этом случае (см. 4) в числе аргументов термодинамических функций появятся дополнительные внутренние переменные. Вместо (6.2), например, можно тогда рассматривать функцию S=S U, v, п, п) условно равновесной системы. Внешние переменные п в этом выраже-яни целесообразно ради общности заменить на внутренние п, т. е. иметь дело с зависимостью S(U, v, n).  [c.65]

Идеальные кристаллы характеризуются свойствами однородности и анизотропии. Однородность определяет неизменность свойств при перемещении точки измерения на расстояние, кратное периодам решетки. Анизотропия — зависимость свойств от направлений. Она зависит от группы симметрии. Принимая среду однородной, пренебрегают влиянием дефектов решетки блоков, дислокаций и т. п. В сравнительно сложных соединениях от точки к точке в той или иной степени изменяется стехиометрия (т. е. локальный химический состав кристалла). Например, в кристалле ниобата лития соотношение между оксидами лития и ниобия может изменяться иногда даже от 0,9 до 1,1. От дефектов и состава зависят также свойства кристаллов, но так как эта зависимость сравнительна слабая, приведенные свойства приписываются однородному кристаллу с идеализированным составом.  [c.34]

Литейные сплавы в зависимости от режима термической -обработки отливок имеют дополнительные шифры при марке сплава Т1—искусственное старение Т2— отжиг Т4 — закалка Тб — закалка и старение. Химический состав сплавов по ГОСТ 2856—79.  [c.56]

Зависимость износа от механических характеристик материалов. На скорость изнашивания существенное влияние оказывают механические характеристики материала, его химический состав и структура. Поскольку отделение продуктов изнашивания возможно лишь при разрушении микрообъемов, все прочностные  [c.244]

Химический состав минеральной части большинства топлив изменяется в зависимости от зольности. Для примера на. рис. 1.1 приведена зависимость содержания оксида кремния и оксида кальция в золе некоторых топлив от их зольности на сухую массу.  [c.11]

Помимо метеорологических факторов, оказывающих влияние на продолжительность нахождения влажной пленки на поверхности металла, не менее важное значение при атмосферной коррозии металлов имеет химический состав атмосферных осадков. Осадки, выпадая, увлекают за собой частицы твердых, жидких и газообразных веществ самого различного происхождения, благодаря чему происходит увеличение концентрации электролитов. Постоянными компонентами атмосферы являются азот, кислород, углекислый газ, атмосферная вода и инертные газы. Концентрация промышленных газов, а также морских солей колеблется в довольно широких пределах в зависимости от характера промышленных районов, географических условий и сезонных циклов. В приморской зоне в атмосферных осадках доминируют хлоридно-натриево-сульфатные соли, а вдали от моря — гидро-карбонатно-кальциево-сульфатные. Атмосферные осадки в промышленных районах содержат в основном сернистые соединения, являющиеся коррозионноактивными веществами. Так на территории Батумского машиностроительного завода, расположенного на расстоянии примерно 1,5 км от морского побережья, скорость коррозии стали почти в 3 раза больше, чем в промышленном районе, удаленном от побережья, и приморских районах.  [c.19]


Валы, изготовленные из горячекатаной углеродистой стали, химический состав (%) и механические свойства которой (после нормализации) были С 0,45 Si 0,30 Мп 0,60 Р 0,025 S 0,023 Сг 0,15 Ni 0,16 Ов = 620 МПа ао,2 = 360 МПа 6=18 г[) = 40 %, испытывали на усталость при изгибе с вращением (частота вращения 2-10 мин- ). Пределы выносливости определяли на базе 10 млн. циклов нагружения. Поверхностный наклеп галтелей осуществляли с помощью приспособления, в котором обработка ведется одновременно двумя фиксированными роликами, расположенными один против другого в плоскости, пересекающей образец по линии начала галтельного перехода. Таким образом, направление нажатия роликов в этом случае было перпендикулярным оси вала. Упрочнение проводили по режимам, различная интенсивность которых достигалась изменением давления на ролики. В зависимости от размера вала и радиуса его галтели это усилие варьировали в пределах 0,5—25,0 кН. В каждом конкретном случае режим обкатки подбирали таким образом, чтобы получить на разных валах сопоставимые значения глубины наклепанного слоя.  [c.143]

Б кашей методике ударная вязкость сталей используется для сравнительной оценки аварийности реальных деталей машин, —л Методика ее определения остается общепринятой. Образцы ( для определения ударной вязкости вырезаются из разрушив- шихся деталей. В случае отсутствия необходимого количества образцов следует определить химический состав и вид тер-.мообработки стали разрушившейся детали. После этого нужно подобрать соответствующую марку стали, изготовить из нее образцы, термообработать их и провести необходимые испытания на ударную вязкость. По результатам испытаний на одном и том же графике строятся зависимости ударной вязкости и относительной частоты поломок от температуры (рис. 1).  [c.17]

Химический состав стали 45 даже по ГОСТу имеет разброс содержания элементов. Важно только, чтобы этот разброс находился в допустимых пределах, так как Каждый элемент в зависимости от его содержания оказывает самостоятельное влияние на физико-механические характеристики  [c.152]

Для экспериментального исследования зависимости характеристик прочности и пластичности при растяжении от скорости деформации в широком диапазоне ее изменения (Ю-" —3-10 с- ) были выбраны армко-железо, сталь 45 и алюминиевый сплав Д16, химический состав которых представлен в табл. 3. Выбор указанных материалов обусловлен их различной чувствительностью к скорости деформации, существенным различием характеристик прочности и пластичности, возможностью сравнения с результатами исследований, проведенных другими авторами.  [c.121]

Примечания 1. Допускается изготовление отливок из чугуна марок СЧ 21 и СЧ 24, предназначенных для автомобильной промышленности. 2, Отливки из чугуна марки СЧ 18 допускается изготовлять до 1984 г, 3, Химический состав для отливок из серого чугуна приведен в ГОСТ 1412 — 79. 4. Показателем механических свойств является предел прочности при растяжении, 5, Значения механических свойств чугуна в зависимости от толщины стенки отливки приведены на рисунке  [c.317]

Интервалы отбора проб для химического определения состава сплавов при плавке в печах периодического действия устанавливаются в зависимости от длительности цикла. В случае непрерывного ваграночного процесса химический состав рекомендуется определять при разных шихтах — от каждой новой шихты, а при неизменной шихте — каждые /2 часа содержание углерода и кремния и 2 раза в смену остальных элементов.  [c.352]

Приведенные выше данные о способах упрочняющей обработки деталей машин показывают, что в зависимости от применяемого способа упрочнения можно изготовлять детали машин с требуемыми физико-механическими и химическими свойствами их рабочих поверхностей. Кроме того, можно изменять твердость, предел прочности, химический состав, величину и характер распределения остаточных напряжений в рабочем поверхностном слое деталей. Внедрение процессов упрочняющей обработки в практику машиностроения позволяет в широких пределах изменять предел выносливости, износостойкость, коррозионную стойкость, жаростойкость и другие эксплуатационные свойства деталей машин.  [c.343]


Сталь для валков горячей прокатки. В зависимости от назначения и размеров валков применяемые для их изготовления марки стали приведены в табл. 1, а химический состав стали — в табл. 2.  [c.431]

Возможность упрочнения высоколегированных коррозионностойких сталей (переходного класса) за счет процессов, протекающих в твердых растворах в результате дополнительной термической обработки (высокий или низкий отпуск, обработка холодом) имеет важное значение для промышленного использования новых сталей высокой прочности. Степень неустойчивости у-твердого раствора зависит от химического состава хромоникелевых сталей, положения точки мартенситного превращения Мн), которая в системе хромоникелевых и никелевых сталей понижается с повышением содержания Ni, С, N, Мп и Сг. Химический состав стали этой группы подбирают таким образом, чтобы при высоких температурах она была практически полностью аустенитной и при быстром охлаждении сохраняла это состояние, но в виде неустойчивого аустенита. Этот аустенит под действием различных факторов в зависимости от точки Мн превращается в мартенсит, например, при холодной деформации или обработке холодом при —70° С, сообщая этим самым стали более высокие прочностные свойства.  [c.42]

Сталью называется сплав железа с углеродом (до 2%), поддающийся ковке. По способу получения сталь разделяют на бессемеровскую, конверторную (с продувкой кислородом), мартеновскую, электросталь и тигельную. Основным классификационным признаком является химический состав, который в своей массе не изменяется в зависимости от термической и других видов обработки, за исключением некоторого изменения поверхностных слоев при цементации, азотировании и других диффузионных процессах.  [c.11]

Медь черновая конверторная (ГОСТ 9475—60) в зависимости от величины примесей подразделяется на марки MK-t (не менее 99,35% содержания меди, серебра и золота и не более 0,65% суммы примесей) МК-2 (99,15%) МК-3 (98,8%) МК-4 (98,3) МК-5 (97,5%) и МК-В (96,0%) и поставляется слитками весом не менее 100 кг. Химический состав определяют по ГОСТу 10235—62, включая и содержание золота и серебра.  [c.83]

Порошок серебряный (ГОСТ 9724—61) изготовляют электролитическим способом и применяют для производства (методами металлокерамики) контактов и других токопроводящих изделий. В зависимости от гранулометрического состава изготовляют марок ПС1 и ПС2. Химический состав не менее 99,9% Аи и не более 0,02% Си Fe + Bi -f РЬ + Sb -f  [c.97]

При особо высоких скоростях температура повышается, происходит разупрочнение цементирующей связки и интенсивный диффузионный обмен атомов инструмента и атомов стружки и обрабатываемого металла. Вследствие этого изменяются химический состав и свойства трущихся пар в зоне резания, что приводит к быстрому износу резца. В этих условиях преобладает влияние температур над длительностью соприкосновения, прочность прилипания нароста к передней грани резца повышается, что и ведет к интенсивному износу режущего инструмента. Эта зависимость хорошо согласуется с результатами исследования износа резца от скорости резания, полученными при помощи радиоактивных изотопов [3—7].  [c.98]

Полученные формулы отражают общие закономерности, при помощи которых можно получить теоретическим путем график зависимости интенсивности узкого пучка у-лучей в функции плотности пульпы при условии, что известен химический состав твердой компоненты.  [c.180]

Старение мартенсита вызывает повышение прочности, снижение пластичности и вязкости. Различие в прочности (Од — 120 -i-270 кгс/мм ) достигается изменением химического состава стали (типа легирующих добавок, вызывающих старение, и их концентрации), и режимом старения (температура, время). В зависимо- сти от требуемого уровня прочности и вязкости, а также условий службы изделий, химический состав сталей со стареющим мартенситом может существенно различаться.  [c.98]

Примечания 1. Буквы СЧ обозначают серый чугун, цифры — значения 0 и сГц в кгс/мм . 2. Механические свойства в зависимости от толщины стенок отливок указаны в табл. 178. 3. Гарантируемыми характеристиками механических свойств для отливок всех марок (кроме чугуна марки СЧ 00) являются в с определением стрелы прогиба. 4. Химический состав приведен в ГОСТ 1412 — 70.  [c.475]

Химический состав 4 — 210 Сплавы лёгкие — Предел усталости при изгибе а зависимости от состояния поверхности 1 (2-я) — 448 Предел усталости при изгибе в условиях коррозии I (2-я)—449  [c.273]

Значения о для некоторых сталей, в зависимости от вида термообработки и от размера сечения заготовки, приведены в табл. 48. Так как маловероятен случай, когда химический состав стали находится на нижнем (что нежелательно с точки зрения прочности) или на верхнем (что нежелательно с точки зрения обрабатываемости) пределе по всем элементам, то значения о в табл. 48 были подсчитаны по среднему химическому составу сталей.  [c.321]

Полосы из биметалла сталь — томпак предназначаются для глубокой вытяжки. В зависимости от вида изделий выбирается соответствующий химический состав стальной карты. Химический состав томпака берётся по ГОСТ 1019-41. I  [c.238]

Химический состав пористых металлокерамических антифрикционных материалов выбирается в зависимости от условий работы подшипника и технологического процесса  [c.255]

Ферросилиций изготовляется в зависимости от содержания Si двух марок ФС-1 и ФС-2. Химический состав приведён в табл. 11.  [c.4]

Зеркальный чугун изготовляется в зависимости от содержания марганца трёх марок 3-1, 3-2 и 3-3. Химический состав приведён в табл. 12.  [c.4]


Электрохимический потенциал (7.8) служит примером пол-ного потенциала, так называют частные производные внутренней энергии по переменным, выражающим химический состав системы, при постоянстве всех остальных аргументов функции и, если эти производные объединяют в себе несколько взаимосвязанных обобщенных сил. Введение полных потенциалов — это метод исключения зависимых переменных в уравнениях типа (7.2), (7.3). Но, как уже указывалось, иногда бывает целесообразнее сохранить в уравнениях избыточные переменные, а связи между ими учесть отдельно в виде дополнительных  [c.64]

Работу ракетного двигателя можно представить в виде последовательности квазиравновесных процессов, таких как нагревание топлива, его горение, расширение продуктов сгорания до давления истечения из сопла. Особенность их состоит в зависимости химического состава продуктов сгорания от условий проведения процесса. Термодинамика позволяет рассчитать равновесный молекулярный состав газов на каждом из этапов работы двигателя, если известны необходимые свойства исходных веществ и продуктов сгорания. В итоге удается отделить термодинамические задачи от газодинамических и оценить удельную тягу двигателя при заданном топливе или, не прибегая к прямому эксперименту, подобрать горючее и окислитель, обеспечивающие необходимые характеристики двигателя. Другой пример — расчет электропроводности низкотемпературной газовой плазмы, являющейся рабочим телом в устройствах для магнитно-гидродинамического преобразования теплоты в работу. Электропроводность относится к числу важнейших характеристик плазмы она пропорциональна концентрации заряженных частиц, в основном электронов, и их подвижности. Концентрация частиц может сложным образом зависеть от ис- ходного элементного состава газа, температуры, давления и свойств компонентов, но для равновесной плазмы она строго рассчитывается методами термодинамики. Что касается подвижности частиц, то для ее нахождения надо использовать другие, нетермодипамические методы. Сочетание обоих подходов позволяет теоретически определить, какие легкоионизирующиеся вещества и в каких количествах следует добавить в плазму, чтобы обеспечить ее требуемую электропроводность.  [c.167]

Рис. 226. Механические свойства стали в зависимости от твердости. Статистически обработаны результаты испытания 486 плавок [2300 образцов, вырезанных из периферии проката диаметром 120 мм и закаленных (в обойме диаметром 120 мм) с 850° С в масле+отпуск при 540—600° С, охлаждение в масле]. Средний химический состав, % 0,24 С 0,27 Si 0,42 Мп 1,48 Сг 4,28 N1 0,99 W 0,014 Р с -1,18 ГПа 6s=14,2% 11 =60.3% МДж/м йотп = Рис. 226. <a href="/info/58648">Механические свойства стали</a> в зависимости от твердости. Статистически обработаны <a href="/info/677333">результаты испытания</a> 486 плавок [2300 образцов, вырезанных из периферии проката диаметром 120 мм и закаленных (в обойме диаметром 120 мм) с 850° С в масле+отпуск при 540—600° С, охлаждение в масле]. Средний <a href="/info/9450">химический состав</a>, % 0,24 С 0,27 Si 0,42 Мп 1,48 Сг 4,28 N1 0,99 W 0,014 Р с -1,18 ГПа 6s=14,2% 11 =60.3% МДж/м йотп =
Радиокерамические материалы с зависимости от назначения изготовляются следующих типов А — высокомастотные для конденсаторов Б — низкочастотные для конденсаторов В — высокочастотные для установочны.х изделий н других радиоте.хннчески.х деталей. Для каждою типа изготовляют материалы различны.х классов и групп с определенными техническими показателями. Химический состав и исходные сырьевые материалы не предусматриваются.  [c.172]

Во всех случаях начальное значение потенциала было равно 40-80 мВ и затем отмечалось быстрое его смещение в положительную сторону. После прохождения максимального значения наблюдается паде -ние потенциала, причем достигаются значения, которые отрицательнее начальных величин. Падение потенциала, по-видимому, обусловлено протеканием катодной реакции восстановления нитрата до нитрита. Большое различие в поведении сталей А I я Л 2 свидетельствует о том, что химический состав не окаэьшает опреде 1я(сшего впияйия на зависимость потенциала коррозии-время в pa Mai-риваемых условиях.  [c.34]

Зависимость скорости коррозии от потенциала для системы Fe— H2SO4 (в пассивной области по рис. 2.2) показана на рис. 2.12. При (/U = 1,6 В наблюдается транспассивная коррозия [28]. Легирующие элементы в стали и химический состав сред могут в ряде случаев существенно повлиять на эти предельные потенциалы [2], причем скорость коррозии металла в пассивной области уменьшается главным образом под влиянием хрома. На рис. 2.13 показан пример зависимости тока поляризации и скорости коррозии для хромоникелемолибденовой стали в серной кислоте от потенциала в области потенциалов активной коррозии и при переходе к пассивному состоянию. При =—0,15 В в принципе еще возможно применение катодной защиты. Однако ввиду очень высокой плотности защитного токэ —около 300 А-М —этот  [c.66]

Изменение магнитных свойств стали 1X13 в зависимости от температуры отпуска после закалки с разных температур исследовано авторами данной статьи, и результаты представлены на рис. 2, а (химический состав приведен в табл. 4). Наибольшее изменение структурно-чувствительные характеристики претерпевают в интервале температур отпуска 500— 600 °С. В области же температур, в которых эта сталь обрабатывается по 1 ОСТ, на кривых изменения магнитных свойств наблюдается почти прямолинейный участок, магнитные свойства изменяются очень слабо, в то время как механические продолжают монотонно убывать. Такое изменение магнитных свойств связано с процессами карбидообразования, как и для некоторых конструкционных сталей, для которых наблюдается аномальное изменение коэрцитивной силы в области высокотемпературного отпуска [18]. В интервале температур отпуска 600—770 °С контроль качества термической обработки этой стали по магнитным параметрам затруднителен.  [c.99]

Свойства стали ШХ-15 в зависимости от режима термической обработки изучались на образцах двух видов плоских (40X10X3 мм) — для измерения всех характеристик, кроме магнитных, и цилиндрических (/=150 мм, й =3 мм)—для магнитных измерений в переменном поле. Образцы были изготовлены из двух прутков стали ШХ-15 в состоянии поставки и имели следующий химический состав углерод—1,05%, марганец — 0,26 — 0,29, кремний — 0,28 — 0,30, хром — 1,49—  [c.175]

Химический состав водной вытяжки из разных почв очень разнообразен. В песчаных почвах содержание солей составляет всего 10—20 мг/л, в то время как в коррозионно-активных почвах концентрация хлор- и сульфат-ионов достигает 4000 мг/л. Более высокому содержанию солей соответствует более высокая агрессивность почвы. Эта зависимость служит основой для определения коррозионной активности почвы путем измерения ее удельного электрического сопротивления. Почвы с удельным сопротивленеим до 10 Ом-м высокоагрессивные, от 10 до 20 Ом-м — среднеагрессивные и выше 20 Ом-м — слабоагрессивные.  [c.31]

А. А. Великанова [24] при разработке методики испытания материала почворежущих лезвий на изнашивание испытывала стали марок 65Г и У8 с различной термической обработкой. В результате испытаний подтверждается прямо пропорциональная зависимость износостойкости от твердости. Сталь 65Г, закаленная с последующим отпуском при 200 °С, имеет относительную износостойкость в 2,39 раза, а сталь У8 закаленная, — в 3,82 раза большую, чем сталь 65Г в отожженном состоянии. Таким образом, износостойкость стали У8 в закаленном состоянии Б 1,5 раза больше, чем у стали 65Г при закалке с последующим отпуском при 200 °С. Влияние содержания марганил на износостойкость при абразивном изнашивании исследовалось также Ю. А. Шульте и др. [261] на специальных установ ках, моделирующих изнашивание проушин траков гусениц. Как показали исследования, наивыгоднейшими пределами содержания марганца в стали для траков являются 9—11%, что соответствует марке ГШЛ, химический состав которой должен быть следующим С 0,9—1,3% Мп 9-11% Мп/С > 8,0  [c.71]


В качестве исходного материала для изготовления металлокерамических фильтров используют бронзовую луженую дробь (ТУ 601—62) с частицами различной сферической формы диаметром до 0,3 мм (в зависимости от требуемой тонкости фильтрования). Химический состав бронзы медь 90,5—92,5%, олово 7,5— 9,5%. Форма фильтров в виде цилиндрических стаканов (может быть и любая другая форма). Бронзовый порошок насыпают в пресс-форму и спекают. Спекание производится в пресс-формах, изготовленных из стали 1X13, качество обработки внутренних поверхностей — 9-й класс шероховатости.  [c.282]

Электроды для наплавки слоев с особыми свойствами. Типы электродов установлены в зависимости от химического состава, приведенного в ГОСТе 10051—62, и твердости наплавленного слоя. В условных обозначениях типов электродов впереди стоит символ ЭН (электрод наплавочный), например ЭН-70Х11-25, где средняя группа цифр и букв обозначает химический состав сплава, а последняя двухзначная цифра — твердость наплавленного металла в единицах HR . Примерное назначение электродов приведено ниже.  [c.44]

Для образоваипя качественного сварного соединения и наплавочного слоя в зависимости от химического состава свариваемых пли защищаемых iie-таллов сварочные и наплавочные стали и сплавы должны иметь оиределенпый химический состав. При этом учитывается вид сварки (или наплавки). При сварке (наплавке) покрытыми электродами, сварке под слоем флюса и элек-трошлаковой сварке состав флюсов должен способствовать образованию высококачественного шва и наплавленного металла при сварке в среде инертных газов необходимо в состав сварочной проволоки ввести соответствующие элементы.  [c.62]

Коксовый литейный чушковый чугуи используется в качестве шихтового металла при производстве чугунных отливок. Выпускается семи марок, химический состав которых приведен в табл. 1. Чугуи каждой марки в зависимости от содержания Ма (%) подразделяется на три группы I — не более 0,5 II — 0,51—0,90 III — 0,91—1,50 в зависимости от содержания Р (7о)—на пять классов А — не более 0,08 Б — 0,081—0,12 В —0,13—0,3 Г —0,31—0,7 Д —0,71—1,2 в зависимости от содержания S (%)—на пять категорий I — не более 0,02 2 — 0,03 3 — 0,04 4 — 0,05 5 — 0,06 (для ЛК1, ЛК2 и ЛКЗ не нормируется).  [c.117]

Были исследованы химический состав, структура и твердость наплавленного металла в зависимости от марки электродной проволоки и содержания компонентов в флюсе АН-348А. В результате исследования даны практические рекомендации оптимальных составов флюса и марки проволоки для восстановления деталей с твердостью наплавленного металла в пределах 30—60 HR , а также разработана технология изготовления легирующего флюса для промышленного применения, обеспечиваюш,ая минимальную сепарацию легирующих компонентов.  [c.62]

Характеристика чугунного литья несколько отлична в зависимости от того, готовят ли кольца вырезкой из маслот или отливают индивидуально. Химический состав чугунного литья п,1 стандарту BESA и ОСТ для автомобильных и тракторных двигателей см. ЭСМ т. И.  [c.824]


Смотреть страницы где упоминается термин Зависимость Химический состав : [c.183]    [c.143]    [c.439]    [c.134]    [c.226]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.84 , c.85 ]



ПОИСК



12%-ные сложнолегированные жаропрочные 131—138 —Азотируемый слой — Глубина и твердость Марки и назначение 135—137 — Механические свойства — Зависимость литейные 202—206 — Марки и назначение 202, 204 , 206 •—Механические свойства 203—205 — Пределы прочности длительной и усталости 204, 205 — Термическая обработка 203, 204 — Химический состав

122 - Химический состав используемых низколегированных сталей 121, 122 Категории в зависимости от нормируемых

Вариант 7.1. Определение зависимости качества химического оксидного покрытия от состава рабочего раствора

Жердева Л. Г., Потанина В. А. Химический состав и свойства смазочных масел из сернистых нефтей в зависимости от глубины очистки

Зависимость внутреннего трения в сталях от их химического состава

Зависимость пластичности металла от температуры и химического состава

Зависимость положения интервала структурной перекристаллизации от химического состава стали

Зависимость свойств стекла от химического состава

Зависимость химического состава и свойств электролитических осадков сплавов от состава электролита и условий электролиза

КРЕМНИСТЫЕ СПЛАВЫ ВЫСОКОЛЕГИРОВАННЫ Зависимость от химического состава

Ковкий чугун Зависимость от химического состава

Обрабатываемость Зависимость от химического состав

Определение структуры чугуна в зависимости от толщины стенок и химического состава отливки

Павлишин. О зависимости химического состава слюд от состава вмещающих пород

СЕРЫЙ ЧУГУ Зависимость от химического состава

Свариваемость стали в зависимости от ее химического состава

Серый чугун Зависимость от химического состава

ТАНТА их зависимость от температуры 279282 — Физические свойства 279 Химический состав

Чугун с шаровидным графитом Зависимость от химического состава

Чугун см также под его Зависимость от химического состава



© 2025 Mash-xxl.info Реклама на сайте