Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термическая при сварке стали легированной для

При сварке стали 3-й группы для получения качественных соединений применяют специальные технологические приемы (подогрев, проковку, промежуточную термическую обработку и т. д.). При ручной или автоматической дуговой сварке подогрев применяют для углеродистой стали с содержанием углерода выще 0,25%, а для легированной при эквивалентном содержании углерода (Сэ) — более 0,5.  [c.137]

Для изготовления сосудов высокого давления, тяжело нагруженных машиностроительных изделий и других ответственных конструкций используют среднелегированные высокопрочные стали, которые после соответствующей термообработки обладают временным сопротивлением 1000. .. 2000 МПа при достаточно высоком уровне пластичности. Для сталей этой группы характерно содержание углерода до 0,5 % при комплексном легировании в сумме 5. .. 9 %. В связи с весьма высокой чувствительностью к термическому циклу сварки стали с таким высоким содержанием углерода для изготовления сварных конструкций применяют только в особых случаях. Необходимый уровень прочности при сохранении высокой пластичности достигается комплексным легированием стали различными элементами, главные из которых хром, никель, молибден и др. Эти элементы упрочняют феррит и повышают прокаливаемость стали. Увеличение степени легирования при повышенном содержании углерода повышает устойчивость аустенита, и практически при всех скоростях охлаждения околошовной зоны и режимах сварки, обеспечивающих удовлетворительное формирование шва, распад аустенита происходит в мартенситной области. Подогрев изделия при сварке не снижает скорости охлаждения металла зоны термического влияния до значений, меньших w p, и способствует росту зерна, что вызывает уменьшение деформационной способности и приводит к возникновению холодных трещин.  [c.298]


Закономерности формирования химического состава металла шва изложены в разд. III Физико-химические и металлургические процессы при сварке . Материал первых двух разделов дает описание тех физических и температурных условий, которые создаются над поверхностью металла и в самом металле в процессе сварки. В этом плане материал первых двух разделов представляет собой как бы описание того физического фона, от которого зависит протекание реакций, переход различных легирующих элементов в металл шва или их удаление и окисление. Вопросы защиты металла шва и массообмена на границе металл— шлак и металл — газ — центральные в разд. III. Эти процессы предопределяют химический состав металла шва, а следовательно, во многом и его механические свойства. Однако формирование свойств сварного шва, а тем более сварного соединения, определяется не только химическим составом металла. Характер кристаллизации шва во многом влияет на его свойства. Свойства околошовной зоны и в определенной мере металла шва существенно зависят от температурного и термомеханического циклов, которые сопровождают процесс сварки. Для многих легированных сталей и сплавов эта фаза формирования сварного соединения предопределяет их механические свойства. Процесс сварки может создавать в металле такие скорости нагрева и охлаждения металла вследствие передачи теплоты по механизму теплопроводности, которые часто невозможно организовать при термической обработке путем поверхностной теплопередачи. Образование сварного соединения сопровождается пластическими деформациями металла и возникновением собственных напряжений, которые также влияют на свойства соединений. Эти вопросы рассматриваются в IV, заключительном разделе учебника — Термодеформационные процессы и превращения в металлах при сварке .  [c.6]

Во многих случаях, в особенности при сварке легированных сталей и различных сплавов, требуется прежде всего получение определенных механических свойств и структуры металла около-шовной зоны и шва, которые зависят от длительности пребывания металла выше определенной температуры, скорости охлаждения в необходимом интервале температур, повторного нагрева и многих других особенностей термического цикла сварки (см. разд. IV). Поэтому оценка эффективности процесса сварки по энергетическим критериям часто оказывается второстепенной. Однако для сталей, мало чувствительных к воздействию термического цикла сварки, оценка эффективности различных режимов сварки по энергетическим затратам необходима. Следует различать сварные соединения двух основных крайних типов соединения, в которых преобладает наплавленный металл (заштрихованные участки на рис. 7.20, вверху), и соединения, образуемые преимущественно в результате расплавления основного металла (рис. 7.20, внизу). Для последнего типа соединений, например стыкового, тепловую эффективность процесса целесообразно характеризовать удельной затратой количества теплоты на единицу площади свариваемой поверхности  [c.232]


Как правило, возможность появления трещин в сварном соединении и степень изменения свойств отдельных участков зоны термического влияния с увеличением легированности стали повышаются. Поэтому наиболее широко применяемые в энергомашиностроении легированные стали требуют при сварке соблюдения ряда технологических ограничений, связанных с введением подогрева изделия и термической обработки после сварки, жестко регламентированных сварочных режимов и т. д. При этом для каждой марки стали, намеченной к использованию в сварной конструкции, необходимо проведение большого объема исследования, связанного с выбором сварочных материалов и оценкой работоспособности сварных соединений в условиях работы конструкции.  [c.20]

На фиг. 9 показаны характерные структуры зоны термического влияния сварных соединений малоуглеродистой и легированной перлитной сталей в зависимости от максимальной температуры нагрева при сварке. Участки, нагретые при сварке выше точки Ас, (900—950°), проходят полную перекристаллизацию. В зависимости от уровня легированности стали в них могут наблюдаться мартенситная, бейнитная, трооститная или сорбитная структуры. При этом для наиболее высоко нагретых при сварке участков около-шовной зоны (Г = 1000—1300°) характерным является рост зерна, связанный с перегревом. В зоне, нагретой при сварке в интервале температур  [c.25]

Кромки под ЭШС разделывают, как правило, под прямым углом. При сварке изделий из металлопроката подготовку торцевых поверхностей кромок выполняют термическими способами разделительной резки, а для деталей, изготавливаемых из литья, поковок, а также из легированных сталей, - механической обработкой (токарной, фрезеровкой или строжкой). Допускаемая величина отдельных гребешков и выхватов при термической резке - до 3 мм, отклонение плоскости реза от перпендикуляра к поверхности детали - до 4 мм на ее толщине.  [c.213]

При сварке малоуглеродистых и низколегированных термически неупрочняемых сталей степень неоднородности сварного соединения минимальна. Наблюдаемое в исходном после сварки состоянии повышение твердости в околошовной зоне и шве близкого легирования к основному металлу, как правило, снижается последующим отпуском. Опыт эксплуатации таких соединений при высоких температурах показал отсутствие заметного влияния неоднородности на работоспособность конструкции. В то же время в отдельных случаях и для таких соединений наблюдается резкое снижение прочности конструкции, например, при развитии в условиях эксплуатации процесса графитизации на участке неполной перекристаллизации.  [c.56]

Второй вид составляют операции высокотемпературной термической обработки сварных узлов закалка или нормализация при нагреве до температур 900—1000° С е последующим отпуском для конструкций из сталей перлитного, бейнитного и мартенситного классов и аустенитизация при температурах 1050—1200° С без последующей стабилизации или с ее введением для изделий из аустенитных сталей. Основной их целью при изготовлении сварных конструкций является перекристаллизация созданных сваркой участков с резко ухудшенными свойствами, восстановление которых отпуском невозможно. Такими участками могут быть участки крупного зерна в шве и околошовной зоны сварных соединений, выполненных, например, электрошлаковой сваркой, а также мягкие прослойки в зоне термического влияния при сварке термически упрочняемых сталей. При высокотемпературной термической обработке может также проходить залечивание зародышевых дефектов на границах зерен, созданных в процессе сварки и способствующих проявлению склонности сварных соединений к локальным разрушениям при высоких температурах. Так как с повышением легированности сталей вероятность ухудшения границ зерен при сварке повышается, то и необходимость высокотемпературной обработки для них возрастает. Однако в связи с тем, что проведение ее значительно сложнее операций отпуска, а для крупногабаритных изделий зачастую и невозможно, то к ней обращаются лишь в ограниченном числе случаев, когда отпуск или стабилизация не дают желаемых результатов.  [c.82]


Причина возникновения МКК чаще всего — неправильно проведенная термическая обработка либо проведение технологических операций (сварка, штамповка, гибка и др.) в опасном температурном интервале. Кроме того, МКК может возникать при длительной эксплуатации оборудования при повышенных температурах, а также при неправильном выборе структурного класса стали или системы легирования для определенной коррозионной среды.  [c.50]

Для борьбы с внутренними напряжениями при сварке применяется главным образом термическая обработка для углеродистой стали — нормализация, а для легированной стали — закалка с последующим отпуском. Сварное изделие после правильно проведенной термической обработки приобретает  [c.353]

Для устранения этих явлений при сварке легированных сталей нужно строго соблюдать режим сварки, подогревать изделия перед сваркой и проводить термическую обработку изделий после сварки.  [c.254]

Для уменьшения перепада температур между нагретой частью основного металла трубы и нагреваемыми при сварке околошовными зонами применяют предварительный подогрев некоторых сталей, особенно перлитного и ферритного класса. Сварные соединения высокого качества получают при сварке легированных сталей с последующей термической обработкой, которая обеспечивает ликвидацию закалочных структур в околошовных зонах и металле шва, улучшение структуры металла шва и околошовной зоны, снятие внутренних напряжений. Однако термическая обработка является сложной, трудоемкой и дорогостоящей операцией, поэтому при разработке технологии сварки труб из легированных сталей избегают, где это возмож-  [c.151]

Аргонодуговая сварка неплавящимся электродом позволяет получить сварные соединения высокого качества при сварке углеродистых и легированных сталей, алюминия и его сплавов и медных сплавов. Аргонодуговая сварка обеспечивает полный провар корня шва с хорошим формированием обратного валика при сварке неповоротных сварных стыков. Зона термического влияния при этом способе сварки минимальная. Легирующие элементы почти не выгорают. Практически отсутствуют шлаковые включения. В результате использования аргонодуговой сварки получаются сварные соединения с хорошим внешним видом и высокими механическими свойствами. Стоимость сварного соединения относительно велика. Этот вид сварки используется для получения ответственных соединений, к надежности которых предъявляют высокие требования.  [c.127]

При сварке легированных сталей образуются тугоплавкие оксиды, которые остаются в сварных швах и придают им хрупкость. Поэтому для деталей, изготовленных из высокоуглеродистых, термически обработанных и легированных сталей, рекомендуется применять сварку электрической дугой, так как температура сварочной зоны у нее ниже, чем у газовой сварки.  [c.117]

Для сварных соединений конструкционных легированных сталей характерно понижение пластичности, а также прочности шва и околошовной зоны, если основной металл был выбран в состоянии упрочняющей термической обработки. Весьма неблагоприятным следствием сварки может быть переход металла в зопе соединения в хрупкое состояние. Эксплуатация таких соединений связана с опасностью мгновенного разрушения при динамическом нагружении или нри понижении темнературы. При сварке высоколегированных коррозионно-стойких сталей возможна потеря коррозионной стойкости металла в зоне сварки. При сварке  [c.371]

Изменения свойств металла в зоне шва в результате сосредоточенного местного теплового воздействия связаны с процессами плавления, кристаллизации, возможными структурными превращениями, а также с местными пластическими деформациями. Степень изменения свойств металла в районе шва зависит не только от теплового режима процесса сварки, который определяется выбором его параметров, но и от свойств основного металла. Соответствующим выбором режима сварки, а также применением специальных мер таких, как предварительный подогрев изделия перед сваркой, а также последующая его термическая обработка, можно ограничить степень изменения свойств металла в районе шва при сварке даже достаточно сложных легированных сталей. В отдельных случаях такие специальные меры необходимы, и они находят применение в промышленности при изготовлении некоторых изделий из легированных сталей. Однако эти меры значительно усложняют процесс изготовления и поэтому для широкого круга металлических конструкций они нецелесообразны.  [c.12]

Для предупреждения или устранения этих явлений при сварке легированных сталей рекомендуется не допускать их перегрев, строго соблюдать установленные режимы сварки, применять специальные составы флюсов и обмазок, подогревать изделия перед сваркой и проводить термическую обработку изделий после сварки.  [c.296]

Структурные изменения наплавленного и основного металлов в зоне термического влияния могут сопровождаться изменением объема. Напряжения, возникающие вследствие изменений структуры металла, имеют большое значение только для сталей, склонных к закалке (особенно легированных), так как образование мартенсита при закалке сопровождается увеличением объема металла. Величина деформаций и напряжений в значительной степени зависит от формы деталей, их размеров и зоны нагрева при сварке.  [c.310]


Для уменьшения деформаций применяют также предварительный подогрев свариваемой детали. В этом случае разность между температурой сварочной ванны и температурой всей детали уменьшается, и, следовательно, будут уменьшаться деформации от нагрева в процессе сварки. Данный способ нашел широкое применение при ремонте изделий из чугуна, алюминия, бронзы, высокоуглеродистых и легированных сталей. Изделий подогревают в специальных горнах, печах, индукторах. В некоторых случаях рекомендуется проковывать шов. Проковку проводят как в горячем, так и в холодном состоянии. Проковка металла шва улучшает механические свойства наплавленного металла и в значительной степени уменьшает усадку. Кроме того, для снятия возникших при сварке напряжений и улучшения структуры металла шва и зоны термического влияния применяют термическую обработку.  [c.120]

Ширина зоны термического влияния зависит от основных ус.то-вий процесса сварки, условий отвода тепла от места сварки. При сварке среднеуглеродистых и низколегированных сталей,, склонных к закалке, в зоне термического влияния возможно образование трещин. Зона термического влияния имеет особое значение пря сварке специальных легированных сталей, чувствительных к нагреву. При сварке таких сталей возможны как закалка с образованием твердых структур и трещин, так и отжиг со снижением прочности металла на участке. зоны термического влияния. Для сварки таких сталей приходится применять специальные меры для изменения теплового режима сварки (подогрев) и последующую термическую обработку сварных соединений.  [c.84]

Как известно, зависимости между температурой и продолжительностью нагрева для стабилизированных сталей, в том числе легированных молибденом, показывают, что при повышенных температурах и различной продолжительности нагрева они становятся склонными к межкристаллитной коррозии [31, 53, 58]. Кроме обычного растворяющего или сенсибилизирующего отжига, необходимо учитывать и время перегрева, имеющее значение, прежде всего, для определения поведения при сварке основного металла в зонах термического влияния.  [c.140]

Технологию сварки для этих сталей выбирают из условий соблюдения комплекса требований, обеспечивающих прежде всего равнопрочность сварного соединения с основным металлом и отсутствие дефектов в сварном соединении. Сварное соединение должно быть стойким против перехода в хрупкое состояние, а деформация конструкции должна быть в пределах, не отражающихся на ее работоспособности Металл шва при сварке низкоуглеродистой стали незпачительно отличается по своему составу от основного металла — снижается содержание углерода и повышается содержание марганца и кремния. Однако обеспечение равнопрочности при дуговой сварке не вызывает затруднений. Это достигается за счет увеличения скорости охлаждения и легирования марганцем и кремнием через сварочные материалы. Влияние скорости охлаждения в значительной степени проявляется при сварке однослойных швов, а также в последних слоях многослойного шва. Механические свойства металла околошовной зоны подвергаются некоторым изменениям по сравнению со свойствами основного металла — при всех видах дуговой сварки это незначительное упрочнение металла в зоне перегрева. При сварке стареющих (например, кипящих и полуспокойных) низкоуглеродистых сталей на участке рекристаллизации околошовной зоны возможно снижение ударной вязкости металла. Металл околошовной зоны охрупчивается более интенсивно при многослойной сварке по сравнению с однослойной. Сварные конструкции из низкоуглеродистой стали иногда подвергают термической обработке. Однако у конструкций с угловыми однослойными швами и многослойными, наложенными с перерывом, все виды термической обработки, кроме закалки, приводят к снижению прочности и повышению пластичности металла шва. Швы, выполненные всеми видами и способами сварки плавлением, имеют вполне удовлетворительную стойкость против образования кристаллизационных трещин из-за низкого содержания углерода. Однако при сварке стали с верхним пределом содержания углерода могут появиться кристаллизационные трещины, прежде всего в угловых швах, первом слое многослойных стыковых швов, односторонних швах с полным проваром кромок и первом слое стыкового шва, сваренного с обязательным зазором.  [c.102]

В сварных соединениях углеродистых и легированных закаливающихся сталей образуется шов с литой структурой и химическим составом, как правило, отличным от основного мрталла. Механические свойства отдельных зон сварного соединения в целом могут изменяться для одного и того же металла в зависимости от исходной структуры, химического состава присадочной проволоки, режима сварки и последующей термической обработки. В случае сварки стали в состоянии отжига минимальный предел прочности сварного соединения определяется прочностью основного металла, при сварке предварительно упрочненной закалкой стали - прочностью зоны отпуска, а при сварке стали с последующей упрочняющей термической обработкой сварного соединения - прочностью металла шва.  [c.431]

Технологическая и конструктивная прочность сварных соединений обеспечивается при отсутствии в различных слоях шва и зоны термического влийния хрупких и малопрочных участков. В связи с этим при выборе сварочных материалов для сварки разнородных сталей необходимо оценить структуру и свойства различных слоев шва. Такая предварительная оценка может быть сделана с помощью структурной диаграммы, построенной применительно к условиям кристаллизации и скоростей охлаждения при сварке сталей широкого круга легирования. В соответствии с правилами построения подобных диаграмм все аусте-нитизирующие элементы приводятся с соответствующими коэффициентами к эквивалентному содержанию никеля (Ы1экв), а все ферритизирующие элементы к эквивалентному содержанию хрома (Сг экв).  [c.426]

Последняя из перечисленных технологическая операция является широко применяемой и высокоэффективной мерой. На 80...90 % снижаются (релаксируются) остаточные сварочные напряжения путем проведения высокого отпуска при температуре 550...750 °С сварных соединений углеродистых и легированных конструкционных сталей. Одновременно обеспечивается повышение свойств сварных соединений и удаление (эвакуация) диффузионно-подвижного водорода из зон высокотемпературного нагрева при сварке. Для сварных соединений аустенитных сталей применяется термическая обработка по режиму аустенизации (закалка на аустенит) с температур 1050... 1100 °С или стабилизирующий отжиг при температуре 840...880 °С.  [c.40]

Приводимые в некоторых литературных источниках методы расчетно-экспериментального определения режимов сварки основаны на изучении уже готовых сварных соединений (определение F и F , уо и у ). Для определения химического состава шва нужно также учесть металлургические процессы (легирование или угар тех или иных элементов). В литературе они приводятся в общем виде, на практике же могут значительно различаться. Таким образом, имея экспериментальный шов, проще и точнее можно провести химический анализ металла. При этом, зная химический состав металла шва и термический цикл сварки, можно судить о его механических и других свойствах, а с учетом теплового цикла в ЗТВ и о свойствах сварного соединения в целом. Структура металла и его свойства определяются с помощью термокинетических и изотермических диаграмм распада аустенита. Для высоколегированных, хромоникелевых и аустенитных сталей фазовый состав металла можно приблизительно определить по диаграмме Шеффлера. Более подробные сведения приво-  [c.241]


Материалы для ручной сварки инаплавкисталь-н ы X деталей. Свариваемость стальных деталей зависит от содержания в них углерода. В общем случае детали из малоуглеродистых и углеродистых сталей свариваются хорошо, из среднеуглеродистых — удовлетворительно, из высокоуглеродистых — плохо. Следует иметь в виду, что в конструкциях автомобилей из малоуглеродистых сталей изготовляют преимущественно детали и узлы из тонкого стального листа (кабины, оперение, облицовку и т. д.), сварка которых затруднена из-за опасности прожога металла Сварка деталей из легированных сталей затруднена вследствие того, что легирующие элементы дифунднруют в металл шва, вызывают образование тугоплавких окислов, остающихся в металле после его остывания, могут приводить к частичной самозакалке остывающего металла, различной тепловой усадке металла шва и детали, к хрупкости металла в горячем состоянии и в результате всего этого к возникновению значительных внутренних напряжений, деформаций и трещинообразований. Кроме того, при сварке полностью или частично нарушается термическая обработка деталей, восстановление которой в условиях ремонтных предприятий не всегда возможно или экономически нецелесообразно.  [c.100]

Наиболее часто встречается неоднородность свойств хварного шва, зоны термического влияния и основного металла, обусловленная различием в структуре, величине зерна и другими причинами. Так, например, при сварке углеродистых и легированных сталей вследствие значительных скоростей охлаждения, характерных для процесса сварки, происходит закалка металла в зоне термического влияния (рис. 197). Закаленная зона 2 имеет более высокую твердость и пониженную пластичность по сравнению с основным металлом 3 и сварным швом /.  [c.421]

Ограниченно сваривающиеся легированные стали. Термическая обработка до сварки для различных сталей различна. Для сталей 18Х14А и СХНА обязателен отпуск при температуре 650- 710° с охлаждением на воздухе. Для других сталей рекомендуется закалка в воде от температуры 1050—1100".  [c.190]

Плохо сваривающиеся легированные стали. До сварки рекомендуется отпуск по определенным режимам для различных сталей. Допускается сварка инструментальной стали в термически обработанном состоянии, если шов наплавляется не на режущую часть инструмента. Для стали Г13Л обязательна закалка. При сварке обязателен предварительный подогрев до 200—300°, за исключением стали РФ 18 и Р9, подогрев которых должен быть не ниже 600°. Сварка стали Г13Л в состоянии закалки должна производиться без подогрева.  [c.190]

Детали, от которых требуется высокая коррозионная стойкость или высокая окалиностойко с т ь, могут изготовляться либо из кислотостойких или окалиностойких легированных сталей, либо из простой низкоуглерс-дистой стали, которая затем для повышения ее коррозионной стойкости или окалиностойкости подвергается соответствующей химико-термической обработке. В большинстве случаев результаты получатся почти равноценными ведь коррозионное разрушение или окисление происходит с поверхности детали. Сразу возникает вопрос если окалиностойкость подвергнутой химико-термической обработке углеродистой стали и легированной окалиностойкой стали одинакова, то зачем вообще применять последнюю, ведь она наверняка дороже. Все это совершенно верно, но нельзя упускать из виду, что поверхностный окалиностойкий слой сравнительно тонок, и если при сборке он может быть нарушен (при сбал-чивании, сварке) хотя бы в одном месте, то смысл химико-термической обработки пропадает. Исходя из этого, конструктор и решает в отношении каждой детали изготовлять ли ее из легированной стали или из простой углеродистой с последующей химико-термической обработкой.  [c.177]

Сварка конструкционных среднеуглеродистых, легированных сталей. Свариваемость сталей ухудшается с увеличением содержания углерода. Содержание углерода больше 0,3% вызывает склонность сталей к закалке и образованию холодных трещин в свариваемом соединении и пор в металле шва. Во избежание образования пор и трещин при ручной сварке применяют электроды с фтористокальциевым покрытием (с малым содержанием водорода) типов Э-55 Э-85, а также предварительный подогрев и последующий высокотемпературный отпуск. Для изготовления сварных изделий из сталей типа 25ХГСА и ЗОХГСА с пределом прочности 110— 130 кгс/мм применяют термическую обработку (закалку и отпуск). Изделия больших габаритов можно изготавливать из предварительно термически обработанных элементов. Для сварки сталей 25ХГСА и ЗОХГСА используют все виды сварки.  [c.672]

Степень проявления сварочных напряжений во многом определяется свойствами свариваемого металла и металла шва. Необходимо различать случаи сварки конструкций из малоуглеродистой и легированной стали. В последнем случае, кроме напряжений, уравновешивающихся в макрообъемах (напряжения первого рода), появляются структурные напряжения, уравновешивающиеся в пределах микрообъемов (напряжения второго рода). При этом происходят значительные изменения прочностных свойств металла в районе шва. В связи с этим технология сварки конструкций из легированной стали существенно отличается от технологии сварки конструкций из малоуглеродистой стали. Для сохранения требуемой структуры металла в районе шва при сварке конструкций из легированной стали применяются предварительный подогрев и последующая термическая обработка, которая наряду с изменением структуры одновременно снимает и структурные напряжения. При этом в готовой конструкции не будет также и остаточных напряжений первого рода.  [c.94]

Сталь ЗОХГС применяется в конструкциях, которые после сварки проходят соответствующую термическую обработку, повышающую прочность и пластичность сварных соединений. Технология сварки этой стали должна обеспечить такой тепловой режим, при котором твердость околошовной зоны получилась бы минимальной. Для сварки этой стали толщиной от 2 до 10 мм рекомендуется применять проволоку Св-20ХМА. В процессе сварки нужно предотвратить выгорание хрома и марганца, поэтому сварка ведется под флюсами с пониженным содержанием кремнезема. Лучшим для этой цели является флюс АН-10. Сварку выполняют проволокой диаметром 3 мм при силе тока 340—370 а со скоростью сварки 30 м час или диаметром 4 мм при силе тока 650—570 а со скоростью сварки 14 м/час. При сварке металла толщиной более 10 мм усиливается легирование шва элементами основного металла. Поэтому металл большой толщины, например 80 мм, рекомендуется сваривать с закладкой в разделку низкоуглеродистой проволоки марки Св-08А. Второй и последующие слои следует сваривать проволокой Св-20ХМА. Применение присадки, уложенной в шов и расплавленной при наложении первого шва, не всегда гарантирует полный провар, особенно при сварке кольцевых швов. После сварки изделие подвергают термической обработке по режиму закалка в масле от 880° и отпуск при температуре 520°.  [c.84]

Многие из отмеченных выше недостатков в свариваемости мартенситных сталей не присущи малоуглеродистым хромистым сталям, дополнительно легированным никелем. Мартенсит, образующийся при закалке хромоникелевой стали 06X12НЗД с низким содержанием углерода, отличается высокими пластичностью и вязкостью, не приводит к ХТ в сварных соединениях. Высокие пластические свойства малоуглеродистого мартенсита способствуют получению надежных сварных соединений, прежде всего при сварке без подогрева. Однако чувствительность сварных швов к водородной хрупкости вызывает необходимость сваривать такие стали с предварительным подогревом до 100 °С. Улучшению свариваемости таких сталей способствует также остаточный аустенит. Однако для достижения максимальных значений прочности, пластичности и ударной вязкости рекомендуется охладить сварные соединения хромоникелевых мартенситных сталей до нормальной температуры для полного у—>а-превращения, а затем подвергнуть термическому отпуску для снятия остаточных напряжений.  [c.68]

Кроме трещин, у ряда легированных и вь]сокоуг, ероднсты. сталей после сварки иаблюллетгя значительное ухудшение механических и физико-.химических свойств металла в зоне термического влияния по сравнению с его исходными свойствами. Для предотвращения появления трещин и ухудшения свойств металла в зоне термического влияния при сварке ряда сталей принимаются специальные меры. Например, сварка таких сталей должна проводиться с предварительным и сопутствующим подогревом, а сварные соединения должны подвергаться термической обработке.  [c.149]


Смотреть страницы где упоминается термин Термическая при сварке стали легированной для : [c.240]    [c.77]    [c.40]    [c.167]    [c.194]    [c.95]    [c.350]    [c.118]    [c.124]    [c.76]    [c.114]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.0 ]



ПОИСК



Легированные стали —

Сварка легированной стали

Сварка стали

Термическая при сварке

Термическая при сварке стали легированной конструкционной

Термическая стали



© 2025 Mash-xxl.info Реклама на сайте