Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура сварного шва и зоны термического влияния

При микроисследовании производится анализ структуры сварного шва и зоны термического влияния при  [c.299]

СТРУКТУРА СВАРНОГО ШВА И ЗОНЫ ТЕРМИЧЕСКОГО ВЛИЯНИЯ  [c.40]

Влияние нагрева сварочного пламени на структуру сварного шва и зону термического влияния  [c.101]

Различие в поведении указанных сварных соединений можно предположительно объяснить различиями в химическом составе швов швы, выполненные электродами с рутиловым покрытием, содержат в 4—5 раз меньше кремния и имеют весьма мелкозернистую структуру. Пластичность ферритной составляюш,ей материала этих швов выше, что должно благоприятствовать релаксации остаточных напряжений. В некоторой мере может проявляться легирующее действие титана, который был в незначительном количестве обнаружен только в швах, выполненных электродами с рутиловым покрытием. Действие отжига, в значительной степени снимающего остаточные напряжения и укрупняющего зерно (причем с ростом температуры увеличивался эффект), показывает преимущественную роль выравнивания структуры металла шва и зоны термического влияния.  [c.224]


При микроисследовании сварных соединений, выполненных газовой сваркой, на элементах из стали перлитного класса не допускается наличие в металле шва околошовной зоны зерна первого балла стандартной шкалы (ГОСТ 5639—82) (см. гл. 1) и участков с мартенситной структурой. При микроисследовании сварных соединений на элементах из стали аустенитного класса не допускается наличие в основном металле шва околошовной зоны зерна крупнее первого балла стандартной шкалы. Структура металла шва и зоны термического влияния должна быть аустенитной с незначительным количеством карбидов, равномерно распределенных по сечению шва. Распределение феррита в сварных соединениях из стали аустенитно-ферритного класса также должно быть равномерным.  [c.168]

Процесс образования сварных швов сопровождается нагревом и расплавлением присадочного металла и свариваемых кромок, их совместной кристаллизацией и охлаждением, нагревом и охлаждением основного металла в зоне термического влияния. При этом в зависимости от режимов и технологических особенностей сварки и термообработки структура металла шва и зоны термического влияния будет различной. Соответственно будут отличаться их свойства и химический состав. Изучение структурных составляющих металла различных зон сварных соединений производится при металлографических исследованиях, которые помогают выявить изменения, происходящие в металле при различных режимах сварки и термообработки.  [c.159]

Кроме того, для снятия возникших при сварке напряжений и улучшения структуры металла шва и зоны термического влияния применяют термическую обработку. Какие виды термической обработки применяются для сварных соединений  [c.76]

При расчете на прочность сварных конструкций необходимо учитывать известное несовершенство структуры металла шва и зоны термического влияния основного металла. Чем сложнее сварка металла, тем ниже качество металла шва и околошовной зоны. Например, сварка высокоуглеродистых сталей требует применения предварительного, сопутствующего и последующего подогрева, а также последующей термообработки на заданную прочность. Однако на практике не всегда возможна полная термообработка сварной конструкции (закалка, отпуск, нормализация). Поэтому прочность сварного соединения должна определяться действительной возможной прочностью сварного шва или околошовной зоны. Снижение прочности сварного соединения в околошовной зоне по сравнению с исходным металлом связано не только с отпуском стали, по и со структурными изменениями, происходящими в результате воздействия термического цикла сварки (рост зерна, старение, выделение избыточных фаз, сегрегация легирующих элементов и примесей, образование микротрещин, возникновение пористости и т. д.).  [c.73]


Известно [27, 30], что ограничение значений твердости металла сварного шва является одним из практических методов снижения склонности сварного соединения к сероводородному растрескиванию. Как следует из [11, 12, 25, 31], на образование трещин в сварном соединении оказывает влияние неоднородность структуры металла, наличие в ней зон, склонных к растрескиванию, уровни действующих и остаточных напряжений. Именно в сварных соединениях локализуется большая часть разрушений металла, связанных с сероводородным растрескиванием. Наиболее негативное влияние оказывает быстрое охлаждение шва с образованием перлитно-бейнитной смеси с мартенситом. Стойкость к сероводородному растрескиванию металла сварного шва меньше, чем основного металла не только из-за наличия остаточных напряжений, но и вследствие присутствия различных дефектов. Для сталей повышенной прочности характерно сероводородное растрескивание по сварному шву и зоне термического влияния. Для сталей обычной прочности избирательное разрушение по шву и зоне термического влияния отмечается лишь при переохлаждении.  [c.63]

Рядом со швом в основном металле под действием тепла, распространяющегося из зоны сварки, происходят структурные изменения (зона термического влияния). Таким образом сварное соединение, т.е. металл шва и зоны термического влияния характеризуется разнообразием структур и значит и свойств. Последующая термическая обработка позволяет уменьшить это различие.  [c.8]

При сварке плавлением сварные соединения имеют два ярко выраженных участка закристаллизовавшийся металл шва и зону термического влияния в основном металле. При сварке давлением в твердой фазе обнаруживается только вторая зона. При этом роль пластической деформации в формировании структуры и свойств сварных соединений настолько возрастает, что эту зону более правильно называть зоной термомеханического влияния.  [c.12]

Общая протяженность околошовной зоны при газовой сварке в зависимости от толщины металла составляет примерно от 8 до 28 мм. Для улучшения структуры и свойств металла шва и зоны термического влияния, выполненных газовой сваркой, применяют горячую проковку металла шва, термообработку нагревом сварочной горелкой и общую термообработку сварного изделия нагревом в печах и медленным охлаждением.  [c.218]

Для сталей этого класса характерными особенностями при сварке являются образование закалочных структур в шве и зоне термического влияния, склонных к хрупким разрушениям, возможность возникновения горячих и холодных трещин в сварном соединении и пор в металле шва. Многолетний опыт изготовления сварных конструкций из рассматриваемых материалов показывает, что для предупреждения этих явлений часто необходим подогрев при сварке и термообработка после сварки, усложняющие технологию.  [c.430]

Металл шва и зоны термического влияния (ЗТВ) сварных соединений имеют, как правило, феррито-перлитную структуру, так как реализуемые при получивших распространение видах сварки значения тз-б оказываются большими, чем величина Тф.  [c.163]

В сварных соединениях возникают участки (металл шва и зоны термического влияния) с иными механическими свойствами, чем у основного металла. Отличия обусловлены иным химическим составом металла шва и его структурой по сравнению с основным металлом. В зонах термического влияния могут происходить глубокие изменения вследствие ослабления границ зерен в результате перегрева, дисперсионного упрочнения этих зон в процессе действия рабочих температур.  [c.180]

Угловой шов, соединяющий заготовку из деформированного сплава (слева) с отливкой (справа). Для отливки характерна грубая структура игольчатого строения. Структура сварного шва и отливки одинакова. В зоне термического влияния деформированного металла размер зерна увеличился. 2 1,  [c.103]


Строение сварного шва после затвердевания и распределения температуры малоуглеродистой стали показаны на рис. 152. Наплавленный металл 2 получается в результате перевода присадочного и частично основного металлов в жидкое состояние, образования жидкой ванночки и последующего затвердевания, в процессе которого расплавленный металл соединяется с основным 1. В узкой зоне сплавления 3 кристаллизуются зерна, принадлежащие основному и наплавленному металлу. Во всяком сварном шве образуется зона термического влияния 4, которая располагается в толще основного металла. В этой зоне под влиянием быстрого нагрева и охлаждения в процессе сварки изменяется лишь структура металла, а его химический состав остается неизменным.  [c.301]

Изучение изломов швов производится невооруженным глазом или с помощью лупы. Макроанализ сварных швов заключается в изучении макрошлифов невооруженным глазом или при небольшом увеличении. Макрошлифы вырезаются из сварных пластин или из изделия. Вырезка может производиться поперек или вдоль шва, но с расчетом, чтобы все участки шва, включая зоны термического влияния, поместились на шлифе. Поверхность шлифа шлифуется наждачной бумагой и травится специальными реактивами. Цель макроанализа — выявление в шве таких дефектов, как поры, трещины, шлаковые включения, непровары. Макроанализом можно обнаружить неоднородность структуры металла и даже величину и направленность зерен.  [c.136]

Известно [20, 134], что ограничение твердости металла сварного шва является одним из практических методов снижения склонности конкретного материала к СР. Как следует из публикаций [11, 39, 81, 125], на образование трещин в сварном соединении влияют неоднородность структуры металла, наличие в структуре зон, склонных к растрескиванию, и уровень действующих и остаточных напряжений. Именно в сварных соединениях локализуется большая часть разрушений вследствие СР сварных конструкций. Анализ влияния различных технологических факторов на процесс СР показал, что наиболее неблагоприятное влияние оказывает быстрое охлаждение шва с образованием перлитно-бейнитной смеси с мартенситом. Стойкость к СР в зоне сварного шва соединения меньше, чем основного металла не только из-за остаточных напряжений, но и вследствие дефектов сварного шва. Для сталей повышенной прочности характерно СР по шву и зоне термического влияния (ЗТВ), для сталей обычной прочности избирательное разрушение по шву и ЗТВ отмечается лишь при переохлаждении. С увеличением твердости сварных швов склонность их к СР возрастает.  [c.63]

Предварительная термическая обработка заключается в отжиге (полном, изотермическом или низкотемпературном — смягчающем) и применяется в том случае, если сварке подвергают неоднородный металл, имеющий внутренние напряжения. Сопутствующая сварке термическая обработка заключается в подогреве, осуществляемом до сварки, во время сварки и после сварки (выравнивающий нагрев) с последующим замедленным охлаждением. Последующая после сварки (окончательная) термическая обработка проводится для улучшения структуры сварного шва и зоны термического влияния и получения необходимых механических свойств. Наиболее полно это достигается закалкой с отпуском по обычному для данной стали режиму. Например, после термической обработки сварного соединения из стади ЗОХГСА по режиму закалка в масле от 880° С, отпуск при 850° С, механические свойства шва и околошовной зоны получаются такие же, как свойства основного металла. Микроструктура шва и основного металла одинакова — троостосорбит. Если детали перед сваркой были термически обработаны (закалены и отпущены), то после сварки целесообразно производить их отпуск при температуре отпуска предварительной термической обработки.  [c.220]

Если сварку ведут с местным подогревом детали присадочным металлом, подобным по составу основному металлу или отличающимся от пего, то структура металла шва и зоны термического влияния обычно пе соответствует структуре основного мета.лла. Хотя местный нодогрев благодаря снятию напряжений и предотвращает образование трещин при сварке, одиако is сварных соединениях образуются ледебурит и мартенсит, количество которых зависит от температуры подогрева, иптепсивности теплоотвода и скорости охлаждения. Последующая немедленная (целесообразно местная) термическая обработка при G20—640°С может устранить остаточные напряжения и мартенсит, однако пе позволяет избавиться от ледебурита. Если в процессе местной термической обработки пе обеспечивается достаточно медленное охлаждение, то могут образоваться новые напряжения.  [c.67]

Сварка яа этих режимах обеспечивает полный провар корня шва с хорошим его формированием, отсутствие трещин, несплаалений, шлаковых включений и газовых пор в сеченин шва, мелкозернистую структуру металла шва и зоны термического влияния, а также высокие механические свойства сварного соединения. Кроме того, автоматическая сварка автоопрессовкой позволяет отказаться от применения дефицитных качественных электродов, заменить высококвалифицированных сварщиков операторами и повысить производительность сборочно-сварочных работ. Поэтому этот метод перспективен для сварки стыков труб поверхностей нагрева с толщиной стенки до 4 м.м, главным образом для сварки стыков труб водяных экономайзеров, в которых в процессе эксплуатации образуется наибольшее коли-, чество свищей.  [c.396]

На фиг. 61 представлена макроструктура сварного соединения, выявленная после травления погружением в 30%-ный раствор водорода. Травление производилось в течение 30—35 мин в нагретом до 60—70°С травителе. При этих условиях хорошо выявляется только структура стали 34ХМА. Многократное травление горячим 10%-ным водным раствором пересульфата аммония позволяет хорошо выявить структуру металла шва и зону термического влияния. Однако и в этом случае полностью не обнаруживаются структурные изменения, происходящие в околошовной зоне сварного соединения в процессе сварки (фиг. 61, б).  [c.159]


Свариваемость чугунов. Основные трудности при сварке чугуна — охрупчивание сварного шва и зоны термического влияния в связи с отбеливанием при охлаждении после сварки склонность к образованию горячих трещин в связи с присутствием в металле шва примесей, способствующих появлению легкоплавких эвтектик склонность к образованию холодных трещин в связи с формированием хрупких структур и наличием высоких сварочных напряжений пористость, обусловленная интенсивным газовыделе-нием при сварке повышенная жидкотекучесть чугуна, что затрудняет удержание сварочной ванны от вытекания.  [c.312]

При изготовлении сварного оборудования возможны дефекты различного происхождения несоответствие конструктивных элементов шва требованиям ГОСТов и других нормативных документов наплывы, прожоги, незаваренные кратеры, подрезы, наружные трещины шва и околошовной зоны, непровары, несплавления, перегрев металла шва, дефекты структуры шва и зоны термического влияния, внутренние трещины, газовые поры, шлаковые включенга.  [c.176]

Исследование микроструктуры. Исследование микроструктуры дает возможность более глубоко изучить структуру основного металла и характерных зон сварного соединения, чем исследование макроструктуры. По микроструктуре обследуемого объекта можно установить 1) характер изменения структуры металлов и сплавов после деформации, различных видов термической обработки и других технологических операций, а также коррозионных или эрозионных воздействий на материал рабочей среды в аппарате 2) установить форму и размер структурных составляющих, микроскопических трещин и т.п. повреждений металла 3) структуру наплавленного металла, структуру, образовавшуюся в зоне термического влияния 4) примерное содержание углерода в основном и наплавленном металле и в различных участках шва 5) приблизительный режим сварки и скорость ох.1тажде-ния металла шва и зоны термического влияния 6) количество слоев сварного шва и дефекты шва и структуры.  [c.308]

По воздействию на свойства материала конструкции операции термической обработки могут быть разбиты па два вида. К первому из них относятся операции, отпуска при температурах 550— 750 С узлов из сталей перлитного, бейнитного и мартенситного классов-и стабилизации при температурах 750—900° С узлов из аустенитных сталей. Основным их назначением применительно к сварным конструкциям является снятие сварочных напряжений, устранение подкалки шва и зоны термического влияния, а также эффекта деформационного старения для сталей первой группы и снятия сварочных напряжений и етабилпза7ши структуры для второй. Явлений перекристаллизации, а также залечивания возникших при сварке зародышевых дефектов в условиях отпуска или стабилизации не происходит.  [c.82]

Стыковые сварные соединения листов размой толщины. Металл шва и зоны термического влияния имеют более крупнозерни-струю структуру, чем осиовпоп металл. 2 1. (2) табл. 2.4.  [c.103]

Механические свойства металла шва и сварного соединения зависят от его структуры, которая определяется химическим составом, режимом сварки и предыдущей и последующей термической обработкой. Как правило, при сварке низкоуглеродистых сталей металл шва и зона термического влияния (ЗТВ) имеет феррритно-перлитнзто или сорбитообразную структуру.  [c.13]

Технология сварки низколегированных сталей должна проектироваться с учетом того обстоятельства, что при уменьшении погонной энергии и увеличении интенсивности охлаждения в металле шва и зоны термического влияния возрастает вероятность расцада аустенита с образованием закалочных структур. При это будет отмечаться снижение сопротивляемости сварных соединений образованию холодных треш,ин и хрупкому разрушению. При повышенных погонных энергиях наблюдается рост зерна аустенита и образуется грубозернистая феррито-перлитная структура видманштеттового типа с пониженной ударной вязкостью.  [c.172]

Основной металл и зона термического влияния сварных соединений имеют феррито-перлитную структуру. Более сложная структура металла сварного шва представляет собой, в основном, крупные первичные кристаллы размером 80-90 мкм со структурой псевдоэв-тектоида во внутренних объемах (рис, 5.40, а). Нередко эти крупные кристаллы окружены мелкими (с = 5 -ь 10 мкм) зернами феррита. Кроме того, наблюдаются участки мелкозернистой структуры, характерные для зон сварного шва, испытавших термический цикл сварки при последующих проходах (рис. 5.40, б). В отдельных участках шва обнаружены крупные зерна с видманштеттовой структурой, отороченные цепочкой зерен феррита (объемная зона 24%) (рис. 5.40, в). Отпуск практически не изменяет структуру сварных соединений. В участках отпущенного сварного шва (рис. 5.40, г) с вытянутыми в плоскости шлифа кристаллитами твердость соответствует Нц 244-254, а в участках шлифа с мелкозернистой структурой - Нр 234-254.  [c.257]

Коррозия стали в кислых растворах представляет собой, как известно, электрохимический процесс, протекающий с водородной деполяризацией, причем регулирующим фактором в данном случае является перенапряжение водорода. Различие в структуре отдельных участков сварного шва и наклепанного металла проявляется в кислой среде в значительно большей степени, чем в нейтральной, где регулирующим фактором коррозии является скорость диффузии кислорода к поверхности металла. Опыты ряда исследователей показали, что в растворе кислоты сварные соединения должны рассматриваться как многоэлектродная система, в которой шов и зона термического влияния сварки имеют более отрицательный потенциал и служат поэтому анодом, т. е. местом разрушения металла, тогда как основной металл играет роль катода. То же можно сказать и о протекающей в растворе кислоты коррозии металла с наклепанными и недефор-мированными участками.  [c.417]

Сила тока при сварке подбирается в каждом отдельном случае, экспериментально в зависимости от толщины металла я диаметра электродов так, чтобы разогрев стали был минималь ным, а скорость охлаждения шва и зоны термического воздействия — максимальной. Процесс сварки следует вести возможно быстрее, не задерживая электрода, так как при длительнол нагреве сталь ухудшает свои противокоррозийные свойства-Увеличение скорости сварки сопровождается измельчением первичной структуры швов, благоприятно сказывающейся на их коррозионной стойкости. Скорость охлаждения оказывает влияние Нс1 характер первичной кристаллизации и на полноту выделения избыточной фазы по границам зерен аустенита. Чем медленнее остывает сварной шов, тем большее количество избыточной фазы выпадает по границам зерен. При этом сварку необходимо выполнять короткой дугой, так как при длинной дуге образуются поры в сварных швах и сильно выгорают ле,-гируюшие элементы, что может снизить качество швов и также уменьшить сопротивление коррозии.  [c.101]

Макроисследования выявляют такие дефекты сварки, как непровары, трещины, поры, шлаковые включения, крупнозернисто ь основного и наплавленного металла, неоднородность структуры металла и другие. На протравленной поверхности отчетливо видны границы и размеры основных зон сварного шва наплавленного металла термического влияния основного неизмененного металла участка сплавления основного металла с наплавленным отдельные слои наплавленного металла. Для получения документальных данных макроструктуры фотографируются. Местные скопления серы в металле (даже при содержании ее до 0,04%), которые часто приводят к трещинам, можно определить по специальным отпечаткам. Для этого лист бромосеребряной фотобумаги выдерживается 8 мин. в 5-процентном растворе серной кислоты и затем накладывается на макрошлиф. По истечении трех минут его снимают и по коричневым точкам и штрихам на фотобумаге судят о количестве серы. Отпечаток затем закрепляют в 10-процентном растворе гипосульфита. Сталь склонна к трещинообразованию, если на отпечатке сера расположена в виде вытянутых строчек или больших местных скоплений.  [c.249]


При удалении источника нагрева металл сварочной ванны кристаллизуется, образуя сварной шов, который и соединяет свариваемые элементы в одно целое. Металл сварного шва обычно значительно отличается от o itoBHoro свариваемого металла по химическому составу и структуре, так как металл шва всегда имеет структуру литого металла. Рядом со швом в основном металле под действием термического цикла сварки образуется различной протяженности зона термического влияния, металл которой нагревался в интервале температура плавления — температура критических точек, в результате чего в металле происходят структурные изменения.  [c.4]


Смотреть страницы где упоминается термин Структура сварного шва и зоны термического влияния : [c.241]    [c.253]    [c.56]    [c.319]    [c.144]    [c.116]    [c.225]    [c.300]    [c.155]    [c.83]    [c.7]   
Смотреть главы в:

Электродуговая сварка металлов  -> Структура сварного шва и зоны термического влияния



ПОИСК



Влияние нагрева сварочного пламени на структуру сварного шва и зону термического влияния

Влияние термического цикла сварки на структуру и свойства металла в сварных соединениях Характерные зоны металла в сварных соединениях

Д-структура зонная

Зона термического влияния



© 2025 Mash-xxl.info Реклама на сайте