Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварные соединения — Механические остаточные —

В результате исследования было установлено, что хотя скорость общей коррозии (по потере массы) с ростом скорости потока до 0,6 м/с возрастала на порядок, значение ее [0,06 г/(м Ч)] было небольшим и не могло служить причиной наблюдаемых ускоренных разрушений сварных соединений, поскольку термодеформационный цикл сварки, оказывая теплофизическое воздействие на металл, определял различие физико-механического состояния и связанные с ним локальные различия в коррозионном и электрохимическом поведении металла в различных зонах сварного соединения. Неоднородность физико-механического состояния зон сварного соединения (неравномерное распределение остаточных макро- и микронапряжений, химического состава, различия в структуре) увеличивала механохимическую неоднородность и служила причиной возникновения коррозионно-механических разрушений.  [c.237]


Характерной особенностью разнородных сварных соединений является наличие остаточных напряжений, вызванных разностью коэффициентов линейного расширения аустенитных и перлитных сталей. В зависимости от марок сталей эта разность может составлять более 30%. Наиболее эффективным методом снятия остаточных напряжений в конструкциях из сталей одного легирования является отпуск. Если разнородные сварные соединения работают при высоких температурах, то отпуск необходим для сохранения размеров этих соединений. Поэтому перед окончательной механической обработкой изделие следует нагреть до температуры, превышающей рабочую на 100—200° С.  [c.155]

Эффективный коэффициент концентрации напряжений для угловых швов при сварке углеродистых сталей составляет =2,5...4,5 в зависимости от конструкции сварного соединения и величины остаточных напряжений. Это существенно ограничивает область их применения при переменных нагрузках. При переменном нагружении для снижения величины можно применять швы с соотношением катетов 1 2 или вогнутые (рис. 4.4, г), получаемые после механической обработки.  [c.84]

Термическая обработка сварных конструкций. В результате сварки механические свойства металла около сварного шва изменяются. Кроме того, в сварных соединениях образуются сварочные остаточные напряжения и деформации, которые могут отрицательно сказаться на эксплуатационной способности изделия. Поэтому в технологической цепочке предусматривают термическую обработку готового изделия, позволяющую устранить отрицательное влияние сварки. Как правило, это отпуск. Он состоит в нагреве изделия примерно до 650 °С, выдержке при этой температуре и медленном охлаждении. После отпуска свойства металла восстанавливаются, напряжения и деформации снижаются. Однако это очень дорогостоящая операция, поскольку для ее проведения требуются специальное оборудование (печи) и существенные энергозатраты.  [c.368]

Структурно-механическая неоднородность металла сварного соединения, наличие нелинейных остаточных напряжений, сложная кинетика процесса деформирования с изменяющимся коэффициентом асимметрии цикла существенно затрудняют оценку влияния эффектов сварки на СРТ. Однако возможности учета отмеченных факторов при расчетах показателей ресурса и живучести вполне реализуемы на базе упрощенных инженерных подходов.  [c.89]


Сварные соединения после сварки имеют неоднородную структуру металла, что является следствием неравномерного нагрева различных зон сварного соединения. Поэтому механические (прочность, твердость, пластичность) и специальные (коррозионная стойкость, жаропрочность, хладостойкость) свойства различных зон сварного соединения становятся неодинаковыми. Такое положение усугубляется наличием остаточных сварочных напряжений, которые образуются при кристаллизации металла сварного шва. Эти напряжения могут вызвать нежелательные изменения формы и размеров сварных соединений и появление в них трещин, что приводит иногда к разрушению сварных соединений. Остаточные сварочные напряжения снижают также механические и специальные свойства сварных соединений. Поэтому для ответственных сварных соединений необходимы такие технологические операции, которые улучшают структуру и свойства сварных соединений.  [c.205]

Предварительное нагружение сварных конструкций сопровождается пластическими деформациями металла в зонах сварных соединений. После разгрузки остаточные напряжения понижаются и при повторных нагрузках теми же усилиями пластические деформации вновь не возникают. Это обстоятельство используют для сохранения точности размеров сварных деталей во время эксплуатации. Для этого сварные детали перед механической обработкой нагружают теми же или несколько большими силами, которые действуют в процессе эксплуатации. Такой прием используют, например, при изготовлении станин небольших прессов, балок и других конструкций.  [c.79]

Между тем в огромном большинстве случаев сварные конструкции работают в эксплуатационных условиях хорошо, трещины не образуются. Следовательно, не собственные остаточные напряжения являются непосредственной причиной возникновения трещин в условиях эксплуатации сварных изделий. Внутренние силы (остаточные напряжения) в сварной конструкции взаимно уравновешены. Как вытекает из приведенных соображений (см. пункт 4 этой главы), образование пластических деформаций является одним из основных условий высоких механических свойств сварных соединений, имеющих собственные остаточные напряжения.  [c.213]

Механические способы (проковка, прокатка, вибрация, взрывная обработка, ультразвуковая обработка, приложение нагрузки к сварным соединениям) основаны на создании пластической деформации металла сварных соединений, вследствие чего происходит снижение растягивающих остаточных напряжений.  [c.36]

Существующие методы расчета на прочность не учитывают фактора механической неоднородности. Между тем, в большинстве случаев разрушения сварных соединений аппаратов происходят в области твердых, охрупченных участков зоны термического влияния. Следует также помнить, что локальный сварочный нагрев приводит к возникновению остаточных напряжений, способствующих повышению уровня напряженности металла.  [c.368]

Чувствительность сварных соединений к дефекту сварки определяется не только соотношением между механическими характеристиками металлов, входящих в сварное соединение. Для целого ряда материалов понижение температуры эксплуатации, острота вершины дефекта, остаточные сварочные напряжения, местоположение дефекта в сварном шве традиционно рассматриваются как факторы, оказывающие существенное влияние на работоспособность сварных соединений и конструкций. При неблагоприятном сочетании данных факторов и неудачно выбранных конст-р)Т тивно-геометрических параметров сварные соединения оказываются в области повышенной чувствительности к дефекту и наоборот, правильный выбор сочетания материалов, оптимальных форм размеров сварных швов может предотвратить неожиданные разрушения сварных конструкций и сооружений.  [c.32]


Сварные соединения в результате влияния термодеформационного цикла сварки обладают значительной неоднородностью распределения физико-механических свойств по сравнению с основным металлом. При совместном влиянии коррозионно-активной среды и механических напряжений (остаточных и эксплуатационных) комплекс физико-механических неоднородностей проявляется в большей степени и сопровождается усилением электрохимиче-  [c.235]

Листы и трубы, подвергающиеся на заводах — изготовителях оборудования пластической деформации при технологических операциях (гибке, штамповке, обжатию и др.), а также некоторые сварные соединения для обеспечения необходимых механических свойств и снятия остаточного напряжения подвергают дополнительной термической обработке. Необходимость проведения дополнительной термической обработки и ее режимы определяются руководящими отраслевыми материалами.  [c.349]

В связи с тем, что термическая обработка сварных соединений разнородных сталей не приводит к снятию остаточных напряжений, а лишь вызывает их перераспределение, она может рекомендоваться только для улучшения механических свойств различных зон сварного соединения. Поэтому, например, для сварных соединений углеродистой стали с аустенитной, в которых не следует ожидать появления хрупких закаленных околошовных зон в результате сварки, термическую обработку следует исключить.  [c.49]

Сложная конструктивная форма, неоднородность механических характеристик металла в различных зонах и наличие остаточных напряжений существенно затрудняют расчетное определение малоцикловой прочности сварных соединений. Поэтому для изучения действительной работы сварных соединений при циклическом упругопластическом деформировании и оценки их долговечности целесообразно проведение испытаний крупномасштабных фрагментов тех зон оболочки, в которых зарождение разрушения наиболее вероятно. Форма образцов и способы их нагружения должны быть максимально приближены к реальным условиям и должны  [c.141]

Следует отметить необходимость разработки комплексных исследований по предупреждению деформаций сварных конструкций рациональный выбор конструктивных форм, обеспечение симметричного распределения в конструкциях внутренних сил, возникающих в зонах сварных соединений, целесообразный выбор технологического процесса сварки, регулирование реактивных усилий, выбор мест приложения активных нагрузок, применение предварительной обработки металлов при укладке швов и т. д. Одним из рациональных мероприятий по устранению или уменьшению остаточных деформаций сварных тонкостенных конструкций, применяемых в МВТУ, является прокатка сварных швов и прилегающих зон при дуговой сварке и обжатие сварных точек — при контактной. Прокаткой можно не только устранить остаточные деформации, вызванные сваркой, но и деформировать конструкции в обратную сторону. Ближайшей задачей является расширение сферы применения прокатки для конструкций разной формы. Перспективным является регулирование остаточных деформаций при сварке конструкций подбором материалов и технологических процессов, умение правильно рассчитывать ожидаемые величины деформаций для принятия мер по их устранению (термическая и механическая правка).  [c.140]

Методика определения остаточных напряжений в сварных однородных и разнородных соединениях. Для определения остаточных напряжений в плоских плитах сварных однородных и разнородных соединений использовался метод механической обработки столбиков, который позволяет достаточно надежно находить уровень остаточных напряжений в поверхностных слоях различных мест сварного соединения [20, 38, 63].  [c.24]

Остаточные деформации в сварных соединениях, превышающие допустимые, устраняются механической (в холодном и горячем состоянии изделия) или термической правкой. Способ правки выбирается в соответствии с технологическими процессами и требованиями настоящих ТУ.  [c.642]

Сварные соединения представляют собой сложную физико-химическую, механическую и электрохимическую макро- и микрогетерогенную систему со следующими характерными видами неоднородности структурно-химическая макро- и микронеоднородность зон (основной металл, литой металл шва, зона термического влияния) неоднородность напряженного состояния - собственные (остаточные сварочные напряжения и пластические деформации) и от внешней нагрузки геометрическая неоднородность, обусловленная наличием технологических концентраторов напряжений (граница шва и основного металла, дефекты формы шва - подрезы, непровары и др.) и конструктивных концентраторов напряжений, определяемых геометрическими параметрами шва.  [c.8]

Анализ свойств сварных соединений из углеродистых и низколегированных сталей, выполненных сваркой плавлением, показал неоднородность структуры и свойств по зонам сварного соединения. В ЗТВ возникают нежелательные крупнозернистые структуры, высокие остаточные макро- и микронапряжения. Последствием структурных изменений является снижение механических и эксплуатационных свойств сварных соединений. Остаточные напряжения могут стать причинами возникновения трещин, снижают сопротивляемость хрупким разрушениям, способствуют ускорению коррозионных процессов по сравнению с основным металлом.  [c.6]

Применение стыковых швов предпочтительнее, так как они обладают невысокой концентрацией напряжений по сравнению с угловыми и, особенно, точечными швами. Циклическую прочность сварных соединений можно повышать также технологическими методами — проводить старение или отжиг (для снятия остаточных напряжений), удалять механической обработкой утолщение стыкового шва или придать вогнутость угловому шву, создавать наклеп (например, обдувом дроби). Эти мероприятия в сочетании с инструментальным контролем качества шва в значительной мере снижают концентрацию напряжений, а для стыковых швов она практически снимается.  [c.94]


Таким образом, на стадиях проектирования, изготовления и монтажа сварных конструкций необходимо принимать меры по уменьшению влияния сварочных напряжений и деформаций. Нужно уменьшать объем наплавленного металла и тепловложение в сварной шов. Сварные швы следует располагать симметрично друг другу, не допускать, по возможности, пересечения швов. Ограничить деформации в сварных конструкциях можно технологическими приемами сваркой с закреплением в стендах или приспособлениях, рациональной последовательностью сварочных (сварка обратноступенчатым швом и др.) и сборочно-сварочных операций (уравновешивание деформаций нагружением элементов детали). Нужно создавать упругие или пластические деформации, обратные по знаку сварочным деформациям (обратный выгиб, предварительное растяжение элементов перед сваркой и др.). Эффективно усиленное охлаждение сварного соединения (медные подкладки, водяное охлаждение и др.), пластическое деформирование металла в зоне шва в процессе сварки (проковка, прокатка роликом, обжатие точек при контактной сварке и др.). Лучше выбирать способы сварки, обеспечивающие высокую концентрацию тепла, применять двустороннюю сварку, Х-образную разделку кромок, уменьшать погонную энергию, площадь поперечного сечения швов, стремиться располагать швы симметрично по отношению к центру тяжести изделия. Напряжения можно снимать термической обработкой после сварки. Остаточные деформации можно устранять механической правкой в холодном состоянии (изгибом, вальцовкой, растяжением, прокаткой роликами, проковкой и т.д.) и термической правкой путем местного нагрева конструкции.  [c.42]

Методы специализированных механических (машинных) испытаний предполагают оценку сопротивления образованию холодных трещин при нагружении сварных образцов постоянными нагрузками, моделирующими остаточные напряжения в сварных конструкциях. Образцы для испытаний могут быть различными. Например, в методе МВТУ образец представляет собой сварной тавр небольших размеров (рис. 3.4). К вертикальной стенке тавра прикладывают нагрузку N, создающую напряжения растяжения в шве и околошовной зоне. Образец нагружают при температурах, соответствующих началу аустенитного превращения, и вьщерживают под нагрузкой в течение 20 ч и более после сварки. Серию образцов испытывают при различных нагрузках. Результаты испытаний представляют в виде графика зависимости времени до разрушения от разрушающего напряжения. Показателем, характеризующим сопротивление сварных соединений образованию холодных трещин, служит минимальное напряжение, при котором происходит разрушение образца или в нем появляются трещины.  [c.49]

Тавровые и нахлесточные соединения допустимы только для металла толщиной до 3 мм. При большой толщине неравномерный разогрев приводит к существенным деформациям, остаточным напряжениям и возможности образования трещин. Свариваемые кромки зачищают от загрязнений на 30. .. 50 мм механическими способами или газовым пламенем. Перед сваркой детали сварного соединения закрепляются в сборочно-сварочном приспособлении или собираются с помощью коротких швов - прихваток (рис. 3.3).  [c.85]

Независимо от толщины изделий сварные соединения высокохромистых мартенситных сталей, как правило, подвергают термической обработке для снятия остаточных напряжений, распада закалочных структур и формирования механических свойств заданного уровня.  [c.334]

При дуговой сварке механические свойства металла сварного шва и прочность соединения в целом зависят от марки титана, марки присадочной проволоки, способов и режимов сварки и могут быть доведены до показателей основного металла. Титановые а-, псевдо-а- и р-сплавы хорошо свариваются, малочувствительны к изменению термических циклов сварки и могут свариваться в широком диапазоне режимов. Сварные соединения из низколегированных а-сплавов почти равнопрочны основному металлу. С повышением легирования различие в прочности и пластичности сварного соединения и основного металла возрастает. Для стабилизации структуры и снятия остаточных напряжений применяют для а-сплавов послесварочный отжиг.  [c.476]

Основными причинами повреждения барабанов котлов являются высокие номинальные и местные (а = 2-3,5) циклические напряжения от запусков и остановов котлов накопление циклических повреждений от термических напряжений, связанных с пульсациями тепловых потоков и регулированием мощности повышенные остаточные напряжения в зонах приварки труб наличие исходных дефектов как в основном металле, так и в сварных соединениях накопление повреждений от коррозии и деформационного старения. Хрупкое разрушение барабанов паровых котлов может происходить в процессе гидро-испытаний при напряжениях Ниже предела текучести после заварки обнаруженных трещин. Для анализа прочности барабанов котлов в эксплуатации были осуществлены обширные исследования напряжений, деформаций и температур в программных и аварийных режимах, которые выявили условия образования местных упругопластических деформаций, превышающих предельные упругие в 1,5-2 раза. При испытаниях лабораторных образцов, вырезанных из серединных слоев поврежденных барабанов котлов было обнаружено незначительное (до 10%) уменьшение характеристик механических свойств предела текучести, предела прочности и относительного сужения. Было установлено, что наличие окисных пленок существенно (до 40%) снижает сопротивление циклическому разрушению.  [c.74]

Механическая проковка (рис. 4.1.24) снижает остаточные сварочные напряжения и повышает ресурсные параметры сварных соединений. Предлагаются различные способы и технологии механической проковки для достижения указанных целей.  [c.404]

Как правило, остаточные напряжения в зоне сварного шва являются двух- или трехосными с резким градиентом и сложным характером распределения по отдельным направлениям. Механические свойства металла в зоне шва также неоднородны, поэтому и влияние остаточных напряжений на сопротивление усталости будет различным для разных участков зоны шва. Эти обстоятельства весьма затрудняют применение расчетных методов для количественного определения влияния остаточных напряжений на сопротивление усталости сварных соединений.  [c.34]

Оценка влияния абсолютных размеров на сварные соединения при циклических нагрузках усложняется вследствие гетерогенности сварного соединения (как по механическим свойствам, так и по структуре), наличия сварочных остаточных напряжений и концентрации напряжений, вызываемой геометрической формой шва и технологическими дефектами. Указанные факторы сильно затрудняют моделирование сварных деталей и элементов сооружений.  [c.38]


При определении характеристик трещиностойкости сварных соединений необходимо учитывать структурно-механическую неоднородность соединений, обусловленную локальностью процессов термомеханического поведения металла при сварке. Такая локальность Приводит к образованию полей остаточных напряжений и деформаций, изменению структуры и фазового состава, возникновению микро- и макродефектов [1-2].  [c.79]

Укрыть отливку и место дефекта асбестом или засыпать песком и обеспечить после сварки медленное ее охлаждение, не оставляя ее на сквозняке или в холодном помещении. Произвести проковку отливки, совмещая ее с отжигом при температуре 300—350 С и с выдержкой в печи в течение 2—5 ч для снятия остаточных напряжений и улучшения механических свойств сварного соединения  [c.130]

В условиях строительно-монтажного производства местная термическая обработка сварных соединений снижает уровень остаточных сварочных напряжений и улучшает структуру металла шва и околошовной зоны с повышением и стабилизацией механических и специальных (жаропрочность, коррозиониостойкость и др.) свойств стали.  [c.669]

Не следует делать вывод, что предел выносливости гладкого образца в a , раз выше предела выносливости образца, имеющего сварное соединение. Объясняется это тем, что, во-первых, в сварном соединении есть еще остаточные напряжения и неоднородность механических свойств, а также отклонения формы от принятой при расчете a , во-вторых, локальные напряжения получены из номинальных разрушающих напряжений с использованием условной базы 0,5 мм в-третьих, предел выносливости гладкого образца существенно зависит от состояния поверхности, а при наличии острого концентратора влияние этого фактора мало в-четвертых, в связи с отсутствием учета статистической природы усталостного разрушения, необходимость которого подтверждается результатами испьпвний сварных соединений с угловыми швами.  [c.352]

Халимов А.Г. Влияние структурно-механической неоднородности на работоспособность сварных соединений стали 15Х5М // Проблемы технической диагностики и определения остаточного ресурса оборудования Материалы Всероссийской научно-техн. конф. - Уфа, 1995. - С. 10-22.  [c.109]

При больших габаритах изделий следует проводить местную термическую обработку зоны сварного соединения. При сварке встык деталей, имеющих различную толщину, возникают остаточные напряжения, которые приводят к усилению коррозии. Для уменьшения напряжений желательно уравнивание толщины свариваемых деталей на участке шва. Необходимо избегать наложения швов в высоконапряженных зонах конструкции, так как остаточные сварные напряжения, суммируясь с рабочими напряжениями, вызьшают опасность коррозионного растрескивания. Рекомендуется не деформировать металл около сварных швов, заклепок, отверстий под болты. Механическая обработка швов фрезой, резцом или абразивным кругом обеспечивает плавное сопряжение шва и основного металла и этим способствует уменьшению концентрации напряжений в соединении и повышению его коррозионно-механической прочности. Особенно эффективна механическая обработка стыковых соединений, предел выносливости которых после обработки шва растет на 40—60 %, а иногда достигает уровня предела выносливости основного металла. Стыковые соединения по сравнению с другими видами сварных соединений характеризуются минимальной концентрацией напряжений и наибольшей усталостной прочностью. Повышения усталостной проч-  [c.197]

Определяющее влияние на интенсивность растрескивания оказывает получение качественного сварного соединения без дефектов шва. Коррозионное растрескивание можно предотвратить снятием остаточных напряжений, например, механическим дефорг мированием.  [c.440]

Рис. 94. Электрохимическая и механическая гетерогенность сварного соединения стали 1Х17Н2. Энергия сварки q/v 1,76 кДж/см (420 кал/см). Цифры вверху — остаточные напряжения II рода Рис. 94. Электрохимическая и механическая гетерогенность <a href="/info/2408">сварного соединения</a> стали 1Х17Н2. <a href="/info/7542">Энергия сварки</a> q/v 1,76 кДж/см (420 кал/см). Цифры вверху — <a href="/info/6996">остаточные напряжения</a> II рода
Роль остаточных напряжеш1Й в изменении сопротивления усталости сварных соединений на стадии зарождения и развития трещины / Труфяков В. И., Михеев П. П., Гуща О. И.— В кн. Механическая усталость металлов Материалы VI Междунар. коллоквиума. Киев Наук, думка, 1983, с. 184—189.  [c.428]

HO сосуда и возможность его эксплуатации на момент испытания и не дают представления об остаточной надежности сосуда, достаточности ее для обесиечения безопасной эксплуатации на период до следующего технического освидетельствования. Количественную оценку надежности (в том числе и остаточной) позволяют дать замеры скорости коррозии и величины износа, определение характеристик механических свойств металла, микроструктурный анализ, а также контроль сплошности сварных соединений.  [c.374]

При проектировании композитных дисков и роторов необходимо стремиться к симметрии сварного соединения и отсутствию эксцентрично расположенных швов. Это требование, суш,ественное для конструкции высокой точности, обусловлено возможностью появления дополнительных деформаций при механической обработке сваренного изделия за счет эффекта перераспределения остаточных напряжений. Применительно к варианту диска с приварными валами это требование сводится к обеспечению соосности деталей при сварке и отсутствию дополнительных угловых деформаций диска относительно валов, могущих при последуюш,ей механической обра-9 13  [c.131]

В сварных конструкциях могут быть не только общие, но и местные деформации в виде выпучив и волн. Длинные и узкие листы, сваренные встык, под действием угловых деформаций и собственной массы получают волнистость (рис. 27), размеры которой определяются углом Р и толщиной свариваемых листов, определяющей их массу. При приварке к листу ребер поясные листы получают местные деформации - грибовидность. Кроме местных угловых деформаций могут возникать выпучины и волнистость на поверхности листа. Остаточные деформации, возникающие в результате перераспределения внутренних остаточных напряжений после сварки, называют вторичными. Это перераспределение может произойти при первом нагружении сварной конструкции, при механической, термической и газопламенной обработке сварных изделий. Остаточные сварочные напряжения, перемещения и деформации могут существенно снизить прочность, исказить точность форм и размеров конструкции, ухудшить внешний вид изделия, снизить технологическую прочность сварных соединений, что приведет к возникновению горячих или холодных трещин. В определенных условиях может снизиться статическая прочность или произойти потеря устойчивости сварной конструкции, что, в свою  [c.41]

Низколегированные стали с высоким сопротивлением разрыву находят ограниченное применение в сварных металлоконструкциях, так как усталостная прочность соединений из этих сталей не выше усталостной прочности соединений из мягких сталей. Предполагали, что в этом повинен металлургический фактор. Низкая усталостная прочность соединений из низколегированных сталей не является следствием проявления остаточных сварочных напряжений или нескожко более высокой чувствительности к надрезу зоны термического влияния. Прочность определяется степенью концентрации напряжений, вызываемой формой усиления шва. Когда степень концентраций мала (в результате механического удаления усиления шва или при обеспечении плавного перехода шва к основному металлу путем наложения шва с помощью аргонной горелки), то можно получить пределы выносливости сварных соединений, соизмеримые с пределом выносливости малоуглеродистой и низколегированной сталей [29, 112, 235] (см. табл. 8).  [c.79]


Смотреть страницы где упоминается термин Сварные соединения — Механические остаточные — : [c.285]    [c.40]    [c.237]    [c.50]    [c.273]    [c.74]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.241 ]



ПОИСК



В остаточное

Прочность усталостная сварных соединений Влияние стыковых 114—117 — Механическая обработка шва 116 — Напряжения в стыковом соединении 115 Остаточные напряжения от сварки

Сварные соединения — Механические

Соединения механические



© 2025 Mash-xxl.info Реклама на сайте