Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Две формы исследования .— 4—9. Эйлерова форма уравнений движения

Введение в механику понятия квазикоординат и обобщение уравнений Лагранжа на квазикоординаты интересно тем, что оно позволило объединить в одной и той же форме обычные уравнения Лагранжа, уравнения движения неголономных систем и такие уравнения, как, например, динамические уравнения Эйлера движения твердого тела с закрепленной точкой ). Чтобы сделать очевидным важность этого обобщения не только с формальной стороны, заметим, что при исследовании движения конкретных механических систем существенную роль играет удачный выбор неизвестных параметров (обобщенных координат и квазикоординат), определяющих движение. Как известно, с использованием квазикоординат была поставлена и исследована задача Эйлера о движении по инерции твердого тела с закрепленной точкой. В квази-координатах же исследованы С. А. Чаплыгиным задача о плоском неголономном движении и трудная задача о качении неоднородного шара по плоскости. Квазикоординаты как некоторые кинематические характеристики движения, определяющие скорости движения точек системы, употреблялись в механике очень давно. Однако лишь на рубеже двадцатого века обобщенные координаты и эти кинематические параметры были объединены в одном общем понятии квазикоординат, а в подытоживающей работе Гамеля были получены уравнения движения в квазикоординатах, по форме написания близкие к уравнениям Лагранжа и применимые как к голономным, так и к неголономным системам ). Хотя по своему  [c.123]


Глава 4 предоставила нам необходимый кинематический аппарат для исследования движения твердого тела. Углы Эйлера дают нам систему трех координат, которые, хотя и не вполне симметричны, однако удобны для использования их в качестве обобщенных координат, описывающих ориентацию твердого тела. Кроме того, метод ортогональных преобразований и связанная с ним матричная алгебра дают мощный и изящный аппарат для исследования характеристик движения твердого тела. Мы однажды уже применили этот аппарат при выводе уравнения (4.100), связывающего скорости изменения вектора в неподвижной системе координат и в системе, связанной с телом. Теперь мы применим этот аппарат для получения динамических уравнений движения твердого тела в их наиболее удобной форме. Получив эти уравнения, мы сможем рассмотреть несколько простых, но важных случаев движения твердого тела.  [c.163]

Плодотворной оказалась идея использования в качестве переменных компонент вектора кинетического момента по неподвижным осям и углов Эйлера в системе, связанной с вектором кинетического момента. Уравнения движения твердого тела в этих переменных впервые были предложены, по-видимому, еще Б. В. Булгаковым (1955), но получили развитие и конкретное применение только с возникновением задач о движении искусственных спутников (В. В. Белецкий, 1958, 1961, 1963, 1965 Ф. Л. Черноусько, 1963, и др.). Эти уравнения удобны для исследования асимптотическими методами и в различных формах и модификациях употребляются для анализа ротационного движения. Используются и другие формы уравнений например, в задачах, связанных с численным нахождением движения, иногда употребляются параметры Родрига — Гамильтона.  [c.288]

Уравнения движения жидкости в форме Лагранжа (вообще говоря, более сложные, чем в форме Эйлера) при решении частных задач в некоторых случаях оказываются более удобными. Их преимущества обнаруживаются, в частности, при изучении движения жидкости, частицы которой обладают некоторыми особыми свойствами, например, когда частицы движутся без ускорения (случай, часто исследуемый в динамической метеорологии) или когда не изменяется энтропия каждой частицы, или плотность частиц (случай, который встречается в исследованиях Ляпунова о фигурах равновесия вращающейся жидкости) и т. д.  [c.58]

Три других мемуара Эйлера — Общие начала состояния равновесия жидкостей , Общие начала двин ения жидкостей и Продолжение исследований по теории движения жидкостей , вышедшие в записках Берлинской академии наук (1755—1757), составили основополагающий трактат по гидродинамике во втором из них, в частности, выведены дифференциальные уравнения в частных производных движения несжимаемой жидкости, а в третьем рассмотрены некоторые вопросы движения жидкостей и газов в узких трубках произвольной формы. Со всем этим была связана разработка Эйлером приемов решения уравнений в частных производных. Одно из таких уравнений встречается теперь в задачах о движении газа с околозвуковыми и сверхзвуковыми ско-  [c.188]


Теория гироскопических приборов и гироста-билиааторов естественно не ограничивается изложением только физической стороны рассмотрения движения гироскопов. В основе изложения теории гироскопов и гироскопических стабилизаторов лежит аналитическое исследование дифференциальных уравнений движения гироскопов. Дифференциальные уравнения движения гироскопов составляются либо с помощью обобщенных уравнений Эйлера, либо на основе Лагранжевых дифференциальных уравнений движения. Кратчайший путь для составления обобщенных уравнений Эйлера достигается применением теоремы моментов количества движения в той ее форме, которую иногда называют теоремой Резаля.  [c.32]

Лагранж в 60-е годы отправлялся от этих работ в своих исследованиях колебаний системы конечного числа материальных точек. Ему было нетрудно придать утверждению Д. Бернулли форму математической теоремы, так как в 40-е годы XVIII в. Эйлер показал, как проинтегрировать линейное дифференциальное уравнение произвольного порядка с достоянными коэффициентами, а Даламбер — как интегрируются системы таких уравнений. Это позволяло просто сослаться на то, что общий интеграл дифференциальных уравнений описывающих малые колебания, является суммой слагаемых, каждое из которых соответствует малым изохронным колебаниям простого маятника. При этом, однако, надо было допустить, что корни алгебраического уравнения (уравнения частот, или векового уравнения ), которое попутно приходится решать, вещественны, положительны и не равны между собой. Однако Лагранж этим не ограничился и провел все исследование в общем виде, используя открытую им форму уравнений движения — уравнения Лагранжа второго, рода. В первом издании Аналитической механики Лагранжа (1788 г.) эти результаты даны в улучшенной редакции, в окончательном виде они вошли во. второе издание Аналитической механики (т. I., 1813 г.).  [c.265]

Дальнейшее исследование свойств подобных дифференциальных форм высших порядков и уравнений движения, выражающихся через них, бесспорно может привести к новым интересным фактам. Лагранж, Эйлер и все другие классики были бы весьма удивлены новым видом уравнений динамики. Но уже и сейчас можно утверждать, что новая форма уравнений динамики является основой дальнейшего развития механики неголономных систем самого общего вида. Если на базе обычных уравнений Лагранжа удается выводить все существующие типы уравнений движения неголономных механических систем только с неголономными связями первого. порядка и 1при этом линейными относительно обобщенных скоростей, то уравнения новой формы могут быть непосредственно применены и для вывода из них уравнений движения с неголономными связями любого вида, т. е. любого дифференциального порядка и любой структуры в смысле линейности или нелинейности уравнений связей относительно производных от обобщенных координат. Уравнения движения для систем с неголономными связями второго порядка были выведены в середине шестидесятых годов тем же И. Ценовым. Уравнения движения с множителями Лагранжа при нелинейных неголономных связях перво-  [c.11]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]


Алгебраические первые интегралы. Случай Гесса. В случаях Эйлера, Лагранжа и Ковалевской последний из первых интегралов, приводящий к интегрированию посредством квадратур уравнений движения тяжелого твердого тела с одной закрепленной точкой (п. 24), является, как и интегралы живых сил и моментов, алгебраическим относительно неизвестных функций. Поэтому естественно, что предпринимались общие исследования вопроса о том, допускают ли и в каких случаях динамические уравнения тяжелого твердого тела, закрепленного в одной точке, помимо двух классических интегралов, какой-нибудь новый алгебраический интеграл, относительно переменных р, 1 f, Yu Тэ> Ifs Однако глубокое исследование Гюссона ), выполненное в более изящной форме Бургаттив), привело к заключению, что, помимо рассмотренных ранее случаев Эйлера, Лагранжа и Ковалевской, не существует других алгебраических интегралов, кроме интегралов живых сил и моментов.  [c.168]

При помощи этих m уравнений можно исключить из уравнения (1) т из Зп вариаций 6х бу,, 6z и если после этого оставшиеся вариации положить независимыми друг от друга, то символическое уравнение (1) распадется на дифференциальные уравнения движения. Но это исключение было бы очень затруднительно и имело бы, кроме того, некоторые неприятные стороны во-первых, пришлось бы некоторые координаты предпочесть другим, и поэтому получились бы несимметричные формулы, а, во-вторых, для различного числа условных уравнений получалась бы различная форма результатов исключения, вследствие чего общность исследования была бы сильно затруднена. Все эти трудности преодолел Лагранж введением множителей (метод, который уже Эйлер часто употреблял в задачах de maximis et minimis ). Так как в уравнения (1) и (4) вариации 6х 6у dz, входят линейно, то исключение т из них можно произвести следующим образом. Умножаем уравнения (4) соответственно на множители 7, и,. . . и складываем их с (1) полученное уравнение назовем (а).  [c.304]

Труды Ж. Даламбера по гидродинамике начали появляться почти одновременно с гидродинамическими исследованиями Эйлера. Сочинение Даламбера 1744 г. Трактат о равдовесии движения жидкостей по словам автора, пронизан стремлением соединитБ геометрию (математику, а точнее, аналитические методы) с физикой (результатами опытов). Даламбер занимался экспериментальными исследованиями сопротивления движению тел в жидкости в связи с запросами кораблестроения. Его подход ко всем задачам механики системы и, в частности, к вопросам гидромеханики базируется на основной идее, выраженной в его знаменитом принципе, согласно которому законы динамики могут быть представлены в форме уравнений статики. В упомянутом трактате этот метод применяется к разнообразным тонким вопросам движения жидкости в трубах или сосудах. Даламбер исследовал законы сопротивления при движении тел в жидкостях и указал интегрируемый в квадратурах случай. Процесс образования вихрей и разреженности за движущимся телом он объяснял вязкостью жидкости и ее трением о новерх-186 ность обтекаемого тела.  [c.186]

Стохастическое поведение консервативных гамильтоновых систем известно из работы [136), где показано, что неинтегрируемость некоторой гамильтоновой системы с двумя степенями свободы приводит к возникновению хаоса. Обзор проблемы хаоса в гамильтоновых системах дан в [200]. в которой проведено интенсивное сопоставление старых и новых взглядов на вопросы интегрируемости. Учитывая некоторую аналогию между задачами небесной механики и движением точечных вихрей, можно предположить, что и в последнем случае будет иметь место хаотическое поведение. Поэтому усилия многих современных исследователей направлены на выяснение вопросов как, где и почему хаотическое поведение входит в динамику точечных вихрей В исследованиях [ 55, 93 ) рассмотрены типичные задачи этого класса. Важной особенностью хаотического движения в задачах вихревой динамики на плоскости является то, что хаос здесь возникает из полных уравнений движения Эйлера, сведенных к гамильтоновой форме, а не в результате модовых (галеркинских) аппроксимаций. Использование таких аппроксимаций является ахиллесовой пятой многих работ по изучению перехода к турбулентности. В частности, если в задаче Лоренца использовать большее число базисных функций, т.е. учесть следующие гармоники полей скорости и температуры, то полученная нелинейная система обыкновенных дифференциальных уравнений уже не обладает <саттракторными свойствами.  [c.158]

В результате исследований, посвященных принципу максимума и аналогичным ему критериям классического вариационного исчисления, были разработаны общие приемы построения необходимых признаков оптимальности, по-видимому, вполне достаточные для большинства типичных экстремальных задач о программном управлении. Как правило, в настоящее время решение этого вопроса не вызывает принципиальных затруднений, во всяком случае, если речь идет о минимизации (максимизации) функционалов вида (8.2) и подобных им. При встрече с новым кругом задач этого типа обычно удается учесть дополнительные обстоятельства и составить соответствующие необходимые условия экстремума по широко известным теперь общим рецептам. Однако составление дифференциальных уравнений, выражающих необходимые условия оптимальности, является лишь первым, хотя и чрезвычайно важным этапом в решении конкретных проблем. Следующий этап состоит в интегрировании этих уравнений с учетом краевых условий, которым должно удовлетворять искомое оптимальное движение. Эта краевая задача, связанная с необходимостью привести управляемый объект в заданное состояние, остается до сих пор трудной проблемой. Дело заключается в следующем. Необходимые признаки оптимальности, выражаемые дифференциальными уравнениями Эйлера — Лагранжа для координат Х1 1) и множителей Лагранжа Я-г ( ) (или для имеющих тот л е смысл координат г) г 1) вектора -ф ( ) в случае принципа максимума), определяют внутренние свойства оптимальных движений, описывая их локальное поведение в окрестности каждой точки на данной траектории. В силу этих свойств каждое оптимальное движение развертывается во времени совершенно определенным образом, отталкиваясь от начальных условий х ( о) и ( о)-Начальные данные ( о) обычно задаются по условиям задачи. Величины ( о) ("Фг ( о)) определяют по условиям принципа максимума направление в пространстве х , в котором уходит оптимальное движение х (t) из точки X to). Трудность состоит в выборе величин (Ьо), которые обеспечивают прицеливание оптимального движения как раз в заданное конечное состояние X 1х) (или на заданное многообразие М конечных состояний и т. п.). Эффективное преодоление этой трудности, как правило, тормозится невозможностью получения явной зависимости между величинами х ( 1) и А, ( о) вследствие неинтегрирз емости в замкнутой форме дифференциальных уравнений задачи. Каждая новая серия соответствующих краевых задач, особенно, если речь идет о нелинейных объектах, требует обычно для своего разрешения подбора специальных вычислительных алгоритмов. Лишь для отдельных классов задач выведены некоторые закономерности, облегчающие их конкретное решение.  [c.192]



Смотреть страницы где упоминается термин Две формы исследования .— 4—9. Эйлерова форма уравнений движения : [c.51]    [c.624]    [c.297]    [c.317]    [c.144]   
Смотреть главы в:

Гидродинамика  -> Две формы исследования .— 4—9. Эйлерова форма уравнений движения



ПОИСК



Исследование уравнений движения

Уравнение Эйлера

Уравнение в форме Эйлера

Уравнения движения в форме Эйлера

Уравнения форме

Форма уравнением в форме

Эйлер

Эйлера уравнение движения

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте