Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применения в оптических системах связи

ПРИМЕНЕНИЯ В ОПТИЧЕСКИХ СИСТЕМАХ СВЯЗИ  [c.73]

Рассмотренные выше бистабильные оптические устройства имеют много потенциально важных применений, в том числе в оптических системах связи и в системах обработки сигналов. Они могут использоваться в качестве дифференциальных усилителей, переключателей, ограничителей, вентилей и т. п.  [c.327]

Волоконные световоды можно использовать для усиления сигнала, если он распространяется вместе d интенсивной волной накачки и если его длина волны лежит внутри полосы комбинационного усиления. (Поскольку в основе действия таких усилителей лежит эффект ВКР, или эффект Рамана, их называют волоконными комбинационными (или рамановскими) усилителями.) Такие системы рассматривались вскоре после демонстрации ВКР в световодах [50], однако большое внимание им стало уделяться в 80-е годы благодаря их возможному применению в оптической связи [51-70]. Экспериментальная установка подобна изображенной на рис. 8.4, но без зеркал. Возможны конфигурации, в которых накачка и сигнал распространяются либо в одном, либо во встречных направлениях.  [c.228]


Явление оптической бистабильности, по-видимому, может найти разнообразные применения в оптических устройствах важного прикладного значения. Поэтому мы остановимся на этом явлении и довольно подробно изложим его теорию. Рассмотрим экспериментальную схему, представленную на рис. 9.1. Когерентное световое излучение лазера (поле Е1) падает на зеркало, от зеркала частично отражается, а частично проходит в среду. Здесь оно распространяется в виде волны и достигает второго зеркала. Затем тоже частично отражается ( 2)1 з частично выходит из системы. Нас интересует, как связано поле Е прошедшей волны с полем Е1 на входе. В дальнейшем будем считать, что резонатор Фабри—Перо, изображенный на рис. 9.1, настроен в резонанс (или почти в резонанс) с полем Е, падающей волны. Если среда отсутствует, то мощность прошедшего света /7- пропорциональна входной мощности / , причем коэффициент пропорциональности зависит от расстройки резонатора и его резкости (ширины его резонансов). Качественно новые явления могут возникать, если резонатор заполнен веществом, для которого поле падающего света оказывается резонансным или почти резонансным. В отличие от обычного случая лазера, активное вещество которого некогерентно накачивается извне, в нашем случае в отсутствие когерентного поля Ес вещество находилось бы в основном состоянии. Такое вещество должно поглощать по-  [c.231]

За последние годы магнитооптические модуляторы на основе кристаллов граната стали представлять особый интерес с точки зрения создания оптоэлектронных устройств. В области оптической обработки сигналов просматриваются многочисленные приложения, связанные с сопряжением электрических и оптических сигналов, созданием пространственных фильтров, перестраиваемых в фурье-плоскости, с реализацией логических функций. Другие применения обнаруживаются в оптических системах, используемых в литографии и системах оптической связи.  [c.14]

Чтобы получить представление о численных значениях величин в только что приведенном анализе шумов усилителя, поставим себя на место разработчика оптической системы связи, столкнувшегося с необходимостью сравнительной оценки шумовых характеристик фотодетектора на р-1-п-фотодиоде и ЛФД. Проблема использования ЛФД заключается в необходимости применения высоковольтного источника смещения и обеспечения его температурной компенсации. Преимуществом ЛФД является более высокая чувствительность и, как следствие, более низкий уровень мощности принимаемого сигнала. Это в свою очередь может означать уменьшение мощности передатчика (что позволит использовать светодиод, а не лазер) или увеличение расстояния между ретрансляторами и уменьшение затрат на приобретение й эксплуатацию оборудования. Вопрос в том, насколько можно уменьшить мощность принимаемого сигнала при сохранении приемлемого отношения сигнал-шум. В качестве примера возьмем оптическую систему связи с информационной пропускной способностью 140 Мбит/с, в которой применена импульсная модуляция и источник излучения,  [c.365]


Характерная особенность упомянутых открытых оптических систем связи заключается в том, что а них используются самые обычные элементы. Успешное развитие таких систем зависит от тщательности разработки конструкции, которая должна удовлетворять конкретным требованиям заказчика. Закончим этот раздел коротким упоминанием о гораздо более совершенных по технологии систе.мах. Имеется в виду экспериментальная система для связи в полевых условиях, разработанная в 1972 г. в США для военных целей. В этой системе используется эффективный лазер на СОг, излучающий на длине волны 10,6 мкм. Были созданы варианты системы, использующие модуляцию как интенсивности, так и частотную, причем в обоих случаях детектирование осуществлялось методом гетеродинирования (с использованием гетеродина и охлаждаемых полупроводниковых фотодетекторов). Эксперименты подтвердили, что может быть получена очень высокая чувствительность оптического приемника, приближающаяся к квантовому пределу. Эти первые системы стали основой для систем спутниковой связи. Отметим, что оптические системы, разработанные для определения дальности, идентификации целей и дистанционного зондирования, используют те же самые методы генерирования, излучения и детектирования оптических сигналов, которые нашли применение в оптической связи.  [c.424]

Было бы невозможно, да и не нужно, рассматривать все возможные комбинации элементов ВОЛС и их применения. В.место этого в следующем параграфе будет сделана попытка показать области, в которых волоконно-оптические системы связи имеют преимущества по сравнению с другими, а также определить факторы, стимулирующие их внедрение. В последующих параграфах будет продемонстрирована работа некоторых сложных систем на характерных примера.х специализированных систем передачи данных. Полученные выводы можно было бы до некоторой степени предвидеть заранее, исходя из распределения мощности в некоторых системах связи, рассмотренных в предыдущих главах. Одиако ниже, там, где это возможно, будут приводиться результаты, полученные на уже созданных и работающих оптических системах связи. В то же время будет сделана попытка определить сферу деятельности в данной области и ее границы в настоящее время и в будущем, с тем чтобы проследить рост использования оптических волокон, наметившийся в последнее время (80-е годы), и оценить перспективу их развития.  [c.430]

В оптической системе с обратной связью необходимо многократное выполнение оператора А. Он определяется тем преобразованием волнового фронта, которое осуществляет объект над зондирующим излучением. Таким образом, реализация оператора А связана с функциональным использованием объекта как элемента оптического измерительного устройства, выполняющего определенные преобразования волнового фронта. Это требует такого построения экспериментальной установки, чтобы необходимые преобразования зондирующего излучения осуществлялись в процессе измерения. Не останавливаясь на особенностях выполнения тех или иных преобразований в оптическом процессоре, отметим только, Что техника оптических систем с обратной связью интенсивно развивается Это позволяет надеяться на их широкое применение в Оптических измерительных приборах и устройствах.  [c.113]

Применение в приемном устройстве оптического квантового усилителя в качестве предусилителя позволяет значительно повысить помехозащищенность и чувствительность оптической системы связи. Повышение помехозащищенности объясняется тем, что индуцированное излучение ОКУ возникает только в том случае, когда входной сигнал распространяется строго параллельно оптической оси приемного устройства и, следовательно, никакой другой источник света не окажет на ОКУ никакого влияния.  [c.209]

Для удаления корректирующих масс из тела ротора, изготовленного из любого материала, применяется балансировка с использованием лазера [8, т. 6]. Этот способ стал возможным в связи с появлением и разработкой мощных оптических квантовых генераторов. Для повышения производительности применен лазер непрерывного действия и разработана оптическая система, обеспечивающая синхронное следование луча лазера за тяжелой точкой ротора в плоскости коррекции. Практически это осуществлено, например, в автоматическом лазерном балансировочном станке ЛБС-3, принципиальная схема которого приведена на рис. 6.20. Балансируемый ротор Р опирается на неподвижные чувствительные опоры Л и S и приводится во вращение двигателем Д. От него же подается механический сигнал и в блок УБ, приводящий в синхронное с ротором вращение полый щпиндель с оптической призмой П. Сигналы опорных датчиков (t и р перерабатываются в решающем блоке РБ в фазирующий импульс, также посылаемый в управляющий блок УБ, который обеспечивает требуемое фазовое положение призмы П относительно ротора Р. Луч из оптического квантового генератора ОКГ проходит через полый шпиндель и, отражаясь от вращающей-  [c.224]


Такой световод напоминает (см. 1.2) волновод, широко используемый в технике СВЧ. Этот способ транспортировки светового потока применяется в волоконной оптике для передачи информации модулированным световым сигналом. Однако при этом возникли существенные трудности и лишь в последние годы были решены проблемы, основанные на использовании весьма чистых и однородных волокон. Дело в том, что наличие в стеклянном волокне мельчайших пузырьков воздуха, трещин, пылинок и т.д. приводит к рассеянию световых волн и резкому возрастанию потерь энергии, нацело исключающих возможность применения системы таких волокон для целей оптической дальней связи. В результате интенсивной исследовательской работы в 70-е годы была разработана технология получения оптических волокон очень высокого качества. Потери энергии в таких световодах оказываются того же порядка, что и затухание электрического импульса, распространяющегося в металлическом проводнике. Можно ожидать, что несомненная выгода передачи информации на оптических частотах будет реализована не только в условиях космоса, где не играют роли помехи, неизбежно возникающие при распространении свободной световой волны в приземной атмосфере.  [c.93]

За последнее время появились работы, в которых исследуются возможности значительно превзойти общепринятый пр дел разрешения оптической системы без увеличения диаметра объектива или уменьшения длины волны излучения. Это связано с применением для решения данной задачи методов теории информации. Охарактеризуем суть этих весьма перспективных исследований в приложении к рассматриваемой задаче — возможности увеличения разрешающей силы телескопа, хотя, конечно, они имеют более общее значение.  [c.337]

Волоконные С. находят широкое применение в системах оптической связи, в датчиках разл. физ. нолей, в вычислит, технике, для канализации мощного лазерного излучения для медицинских и технол. целей и т.д.  [c.461]

ПРИМЕНЕНИЯ В СИСТЕМАХ ОПТИЧЕСКОЙ СВЯЗИ  [c.276]

Основным назначением любого канала (системы) связи является получение и воспроизведение информации, и фундаментальным параметром, который наиболее полно характеризует такую систему служит информационная емкость. Независимо от природы системы будь то электрическая, оптическая или электрооптическая система она предназначена для обработки информационного сигнала, кото рый может быть либо полностью детерминированным, либо стати стическим. В детерминированном случае сигнал обычно задается в виде ряда или интеграла Фурье, т. е. он является периодической или затухающей волной, величина которой точно определена для всех значений переменной (время или пространство). С другой стороны, статистические сигналы для любых значений независимой переменной (время или пространство) не принимают определенных значений, а нам известны лишь их вероятности. Анализ и синтез информационного содержания этих статистических сигналов, обычно называемых случайными , проводят статистическими или вероятностными методами. В сущности случайные сигналы в бесконечных пределах не имеют фурье-образов, и приходится обращаться к статистическому анализу. Статистические методы можно применять и к детерминированным сигналам, однако наиболее широкое применение они нашли в анализе случайных процессов. В оптике такие методы используются как основной аппарат в построении классической теории частичной когерентности, при анализе шумов зернистости фотографических материалов и исследовании когерентных оптических шумов, называемых спеклами .  [c.83]

В связи с тем что в настоящей книге рассматриваются применения фоторефрактивных кристаллов в качестве реверсивных светочувствительных сред в голографических системах и устройствах оптической обработки информации, представляется целесообразным привести некоторые необходимые сведения об этих системах и устройствах.  [c.21]

Монография заканчивается приложением, в котором изложены идеи и прогнозы применения дефектоскопических устройств в автоматизированных системах управления технологическими процессами. Особого внимания здесь заслуживают описания метода построения автоматизированных систем обработки результатов дефектоскопии, устройств оптической связи и видеомонитора, обеспечивающего одновременное наблюдение (можно в цветном изображении) структуры исследуемого сварного соединения и динамики сварочного процесса в соответствующих точках исследуемого шва. Помимо решения задач дефектоскопии, использование видеомонитора открывает новые возможности - для осуществления управления и оптимизации сварочных процессов.  [c.8]

Итак, смена объектива в одних случаях не влияет на изменение перспективного рисунка кадра, а в других приводит к изменению перспективы. Однако следует обратить внимание на то, что всюду мы ведем речь о расстояниях до объекта съемки, до отдельных его элементов, до переднего и дальнего предметов, входящих в кадр. Эти расстояния — решающий фактор для перспективного рисунка кадра. Мы показали также, что они связаны с характеристиками оптической системы, объектива, которым ведется съемка. Таким образом, можно заключить, что фокусное расстояние объектива влияет на перспективу фотоизображения, но опосредованно, через расстояния между точкой съемки и изображаемым объектом. Эти расстояния выбираются фотографом в зависимости от того, каким объективом он снимает, и вопрос о кадрировании пространства при съемке решается именно этими двумя связанными между собой приемами — выбором точки съемки и применением объективов с различными фокусными расстояниями.  [c.68]

Изображение предмета, т. е. возмущений в исследуемом потоке газа,. должно быть сфокусировано на фотопленку регистрирующего устройства, которым в нашем случае является камера СФР. Для построения на пленке изображения предмета, находящегося в поле зрения прибора ИАБ-451, необходимо поместить перед входным объективом камеры СФР специальную оптическую систему из двух объективов — длиннофокусного и короткофокусного. Обоснование необходимости применения этой системы и расчет ее содержатся в работе [2]. Наша оптическая схема построена в соответствии с положениями этой работы с той, однако, разницей, что мы стремились получить на пленке изображение не всего поля зрения прибора ИАБ-451, а лишь части этого поля зрения, в которой сосредоточены интересующие нас явления. В связи с этим нами использовались три различные комбинации объективов дополнительной оптической системы, перечисленные в табл. 1.  [c.128]


Издания данной серии охватывают разные проблемы быстро развившейся области оптической техники. Разработки, приведшие к бурному развитию этого направления, включают вопросы, посвященные лазерам и их многочисленным техническим и промышленным применениям, новым оптическим материалам, градиентной оптике, электро- и акустооптике, волоконной оптике и связи, оптическим вычислениям и распознаванию образов, считыванию, записи и хранению оптической информации, биомедицинской измерительной технике, промышленным роботам, интегральной оптике, системам инфракрасного и ультрафиолетового диапазонов и т. д. Поскольку оптическая промышленность в настоящее время является одной из основных развивающихся отраслей, то этот список, несомненно, станет еще более обширным.  [c.7]

Вид сигналов в линейном тракте ВОСС выбирают с учетом особенностей оптических элементов. Шумовой характер излучения источников света, как правило, ограничивает применяемые виды модуляции излучателей и в практически используемых системах находит место модуляция по интенсивности [3, 6]. Однако развитие технологии компонентов ВОСС обусловило перспективность применения в оптических системах и когерентных систем связи [32, 42]. Когерентные ВОСС, основанные на модуляции параметров несущей оптической волны, а не интенсивности света, позволяют максимально использовать преимущества оптической связи. В таких системах используются модуляция — демодуляция оптической несущей, оптический гетеродинный прием с оптическим предусилением, оптическое усиление. Передающей средой в когерентных ВОСС является одномодовое ВС, предпочтительно с одной поляризацией излучения особые требования накладываются и на источник излучения — одномодовые полупроводниковые лазеры, ширина спектра излучения которых должна быть мала и стабильна.  [c.194]

К .)мг аексную оценку всей системы можно дать, взяв в качестве примера систему передачи данных, предназначенную для использования на современных военных самолетах. Простая замена существующих электрических систем передачи данных оптическим волокном даст очень малую экономию, если вообще даст, а стоимость оконечного оборудования значительно возрастет. Однако за время всего двадцатилетнего срока службы самолета будет иметь место значительная экономия расхода топлива за счет снижения массы волоконно-оптической системы передачи данных (ВОСП). Недостатком такой системы будет увеличение стоимости обслуживания, вызванное необходимостью использовать высококвалифицированный персонал для проведения простейшего ремонта волокна. Если самолет находится в стадии проектирования и можно изменить его конструкцию, то экономия топлива увеличится еще больше за счет того, что меньшие масса и размеры волоконной оптической системы передачи данных позволяют уменьшить размеры и массу са.молета. Кроме того, можно проложить волоконную линию связи в местах с высокими электромагнитными помехами или на участках, где находятся взрывчатые вещества, которые пришлось бы обойти при прокладке традиционных электрических линий передачи. Исс 1едова-ния такого рода обычно проводятся специалистами и заказчиком. Введут нли не введут в общее применение волоконно-оптические системы связи, будет зависеть от того, какую онн продемонстрируют надежность. Кроме того, важно также оборудование, с которым онн могут быть согласованы, для обеспечения использования шин параллельного доступа, рассмотренных в 17.5.  [c.431]

АБЕРРАЦИЯ — искажение изображений, получаемых в оптических системах при использовании широких пучков света, а также при применении немонохроматического света АБСОРБЦИЯ— объемное поглощение вещества жидкостью или твердым телом АВТОИОНИЗАЦИЯ — процесс ионизации атомов в сильных электрических полях АВТОКОЛЕБАНИЯ— незатухающие колебания в неконсервативной системе, поддерживаемые внешним источником энергии, вид и свойства которых определяются самой системой АДГЕЗИЯ — слипание разнородных твердых или жидких тел, соприкасающихся своими поверхностями, обусловленное межмолекулярным взаимодействием АДСОРБЦИЯ — поглощение веществ из растворов или газов на поверхности твердого тела или жидкости АКСИОМА механических связей — действие связей можно заменить соответствующими силами (реакциями связей), а всякое несвободное твердое тело можно освободить от связей, заменив действие связей их реакциями, и рассматривать его как свободное, находящееся под действием приложенных к нему активных сил и реакций связей АКСИОМЫ [механики (закон инерции) — материальная точка, на которую не действуют никакие силы, имеет постоянную по модулю и направлению скорость статики (система двух взаимно противоположных сил, равных по напряжению и приложенных в одной точке, находятся в равновесии система двух равных по напряжению взаимно противоположных сил, приложенных в двух каких-либо точках абсолютно твердого тела и направленных по прямой, соединяющей их точки приложения, находятся в равновесии всякую систему сил можно, не изменяя оказываемого ею действия, заменить другой системой, ей эквивалентной две системы сил, различающиеся между собой на систему, эквивалентную нулю, эквивалентны между собой)]  [c.224]

Идея голографических фильтров была впервые поставлена на обсуждение А. Ван дер Люгтом в 1963 г. [61] (более доступна его статья [И]) в связи с их возможным использованием при детектировании (обнаружении) сигнала. С того времени сфера применения фильтров была расширена и включает коррекцию ( выравнивание ) аберраций в оптических системах, компенсацию движения изображения и т.д. Прежде чем рассматривать применение, нам необходимо ознакомиться с основными принципами работы фильтра этого типа.  [c.116]

Другое применение узкой линии ВРМБ-усиления связано с его использованием в качестве перестраиваемого узкополосного оптического фильтра для селекции каналов в многоканальных системах связи [45]. Если разность частот соседних каналов больше, а скорость передачи меньше, чем ширина полосы усиления Avg, то, перестраивая лазер накачки, можно избирательно усиливать данный канал. Эта схема была экспериментально продемонстрирована с накачкой от перестраивае.мого лазера на центрах окраски [45]. По световоду длиной 10 км осуществлялась передача по двум канала.м со скоростью 45 Мбит/с. Каждый канал можно было усилить на 20 25 дБ при мощности накачки 14 мВт. Важно, что каждый канал можно было детектировать без ошибок (вероятность ошибки < 10 ), когда разность частот каналов превышала 140 МГц. В световоде, использовавшемся в данно.м эксперименте, Avg составляла 100 МГц, т. е. разность несущих частот соседних каналов, при которой еще не возникают перекрестные по.мехи,. может составлять лишь 1,5Луд.  [c.279]

Ниже мы приводим результаты расчетов некоторых характеристик волноводных резонаторов ГЛОН, полученных с помощью решения уравнения (3.75) и их анализа, которые позволяют оптимизировать выбор этого типа резонатора в ГЛОН [33, 34]. Решить уравнение (3.75) можно только приближенно, используя численные методы с применением ЭВМ, либо методом теории воз-муш,ений в случае малого отличия геометрии резонатора от плоскопараллельной, когда характеристики его типов колебаний близки к характеристикам мод бесконечного полого волновода. Рассмотрим волноводный резонатор, у которого di — d.2 О, т. е, зеркала резонатора рассматриваются без отверстий связи. Такая постановка задачи позволяет рассмотреть влияние кривизны зеркал волноводного резонатора на характеристики его типов колебаний. Кроме того, этот случай представляет интерес для волноводных систем с элементами связи в виде полупрозрачных зеркал или в виде окон в боковой поверхности волновода, которые можно использовать в оптических системах ГЛОН (см. рис. 3.12). Исходное уравнение (3.75) значительно, упрощается, так как при di == О, Ф (г) = 1. Кроме этого значительно упрощается параметр Dig. Если обратиться к формуле (3.77), то нетрудно видеть, что интеграл в этом выражении можно представить Г1 г 1  [c.167]


ГО света и теплофизических характеристик используемого материала. Положение существенно изменяется при переходе к другому классу задач управления пучками когерентного оптического излучения—его применению в технике связи, в первую очередь — в воле. Разработка ВОЛС уже перешла на уровень осуществлен-ности экспериментальных систем многосоткилометровой протяженности с весьма широкой полосой частот. В обычных системах связи ширина полосы лежит в пределах 10% от несущ,ей, что составляет 10 Гц н заведомо превышает полосу частот, которая может потребоваться в ближайшем, а возможно, и в сравнительно отдаленном будущ,ем. Тем не менее уже сейчас в системах микроволнового диапазона реализуются полосы частот в несколько гигагерц, а при освоении ВОЛС вероятно использование полос шириной в десятки гигагерц.  [c.217]

Исследованию распространения оптического излучения в турбулентной атмосфере уделяется значительное внимание в связи с широким применением лазеров в оптических системах, предназначенных для работы в земной атмосфере. Если атмосферные газы и аэрозоли вызывают преимущественно энергетическое ослабление оптического излучения, то турбулентные пульсации показателя преломления приводят к случайному перераспределению энергии в оптических пучках, определяя таким образом технические возможности лазерных систем. Действительно, точность геодезических лазерных приборов, пространственное и временное разрешение лазерных локаторов, возможности и точность определения параметров среды дистанционными лазерными методами можно оценить только с учетом флуктуаций поля оптических пучков. Вызываемые турбулентностью случайные изменения показателя преломления могут суш,ественно ограничивать технические характеристики оптических систем, так что в ряде случаев сама целесообразность их применения должна определяться на основе оперативного прогнозирования флуктуаций поля лазерного излучения с учетом сложившейся в атмосфере оптико-метеороло-гической ситуации [46] (ссылки даны по списку цитируемой литературы ко второй главе).  [c.5]

Все волоконно-оптические системы связи первого поколения использовали в качестве фотодетекторов ЛФД, и большинство из них требовали лазерных источников излучения. Несмотря на то, что замена лазера светодиодом, а ЛФД /з-г-л-фотодиодом приведет к созданию более дешевой, простой и надежной системы, предельно допустимые потери по мощности при этом составят 10. .. 20 дБ и для СД и дополнительно 10. .. 20 дБ при использовании /з-г-л-фотодиода. Дальность связи становится критически зависящей от потерь в волокне, а при большей пропускной способности она ограничивается материальной дисперсией. В Риме была введена в строй ВОЛС без ретранслятора длиной 7,8 км с информационной пропускной способностью 34 Мбит/с, использующая светодиоды в качестве источника излучения. В них было учтено меньшее затухание и рассеяние на более длинных волнах при применении светодиодов на GaAIAs, излучающих на длине волны 0,9 мкм при ширине спектральной линии 36,5 нм. Чувствительность оптического приемника этой ВОЛС, состоящей из фотодетектора на кремниевом ЛФД и трансимпедансного усилителя, составила — 50 дБм (без учета дисперсионных потерь). Распределение мощности, приведенное в табл. 17.5. показывает, что для ВОЛС длиной 7,8 км общие допустимые потери в волокне с учетом потерь на соединения не должны превышать 3 дБ/км.  [c.444]

В настоящее время на основе внешнего и внутреннего фотоэффекта строится бесчисленное множество приемников излучения, преобразующих световой сигнал в электрический и объединенных общим названием — фотоэлементы. Они находят весьма широкое применение в технике и в научных исследованиях. Самые разные объективные оптические измерения немыслимы в наше время без применения того или иного типа фотоэлементов. Современная фотометрия, спектрометрия и спектрофотометрия в широчайшей области спектра, спектральный анализ вещества, объективное измерение весьма слабых световых потоков, наблюдаемых, например, при изучении спектров комбинационного рассеяния света, в астрофизике, биологии и т. д. трудно представить себе без применения фотоэлементов регистрация инфракрасных спектров часто осуществляется специальными фотоэлементами для длинноволновой области спектра. Необычайно широко используются фотоэлементы в технике контроль и управление производственными процессами, разнообразные системы связи от передачи изображения и телевидения до оптической связи на лазерах и космической техники представляют собой далеко не полный перечень областей применения фотоэлементов для решения разнообразнейших технических вопросов в,современной промышленности и связи.  [c.649]

В радиотехнике также находят применение нелинейные распределенные системы. Это, например, линии, заполненные ферритом, а также параметрические усилители бегущей волны на основе линий с сегнегоэлекгриком. В последние годы в связи с развитием лазерной техники нелинейные явления начали использоваться и в оптическом диапазоне.  [c.375]

В настоящее время (1990-е гг.) существует много разл. лазеров, работающих во всех диапазонах спектра — от рентгеновского до далёкого инфракрасного. Однако применение лазерных усилителей в оптич, приборах до сих пор весьма ограничено. Связано это с тем, что усилители в лазерах и оптич. системах используются по-разному. В лазерах обычно стремятся получить предельно высокую направленность излучения, применяя для этого оптические резонаторы и ограничивая число генерируемых мод. В оптич. системах обычно требуется передать болыпой объём информации, заложенный в распределении амплитуд и фаз (иногда и поляризации) по полю зрения, на к-ром укладывается порядка 10 разрешаемых элементов. Такая много-канальность и есть одно из осн. преимуществ оптич. систем с У. я. Это накладывает дополнит, требования на У. я. для оптич. приборов, к-рый должен обладать большой угл. апертурой, чтобы пропустить большой объём информации, обеспечивать значит, усиление за один проход усиливающей среды и, естественно, не должен вносить искажений в усиливаемые световые поля. Достижение высокого усиления (а желательно иметь коэф. усиления 0,1 — 1,0 сми составляет осн. трудность на пути создания лазерных У. я. для оптич. систем. Высокий коэф. усиления (при прочих равных условиях) легче получить для узкого спектрального интервала и в коротких импульсах.  [c.243]

Нелинейные свойства оптических световодов самым ярким образом проявляются в области аномальной (отрицательной) дисперсии. Здесь могут существовать так называемые солитоны-образования, обусловленные совместным действием дисперсионных и нелинейных эффектов. Сам термин солитон относится к специальному типу волновых пакетов, которые могут распространяться на значительные расстояния без искажения своей формы и сохраняются при столкновениях друг с другом. Солитоны изучаются также во многих других разделах физики [1-5]. Солитонный режим распространения в волоконных световодах интересен не только как фундаментальное явление, возможно практическое применение солитонов в волоконно-оптических линиях связи. В данной главе изучается распространение импульсов в области отрицательной дисперсии групповых скоростей, особое внимание уделяется солитонному режиму распространения. В разд. 5.1 рассматривается явление модуляционной неустойчивости. Показано, что при наличии нелинейной фазовой самомодуляции (ФСМ) стационарная гармоническая волна неустойчива относительно малых возмущений амплитуды и фазы. В разд. 5.2 обсуждается метод обратной задачи рассеяния (ОЗР), который может быть использован для нахождения солитонных рещений уравнения распространения. Здесь же рассматриваются свойства так называемого фундаментального солитона и солитонов высщих порядков. Следующие две главы посвящены применению солитонов в некоторых системах. В разд. 5.3 рассматривается солитонный лазер разд. 5.4 посвящен использованию солитонов в волоконно-оптических линиях связи. Нелинейные эффекты высщих порядков, такие, как дисперсия нелинейности и задержка по времени нелинейного отклика, рассматриваются в разд. 5.5.  [c.104]

Нами рассмотрена теорема выборки в координатном и частотном пространствах и использовано понятие произведения пространства на ширину полосы для определения связи общего числа точек выборки с шириной спектра функции. Приведены примеры из оптики, иллюстрируюш,ие использование теоремы выборки в ряде применений. Представлено статистическое описание случайных сигналов, предполагаюш,ее выполнение условий стационарности и эргодичности, подчеркнуто значение усреднений по ансамблю и Координатам. Мы определили корреляционные функции, их фурье-образы, а также функции спектральной плотности. Нами проведено обш,ее сравнение операций корреляции и свертки как для симметричных, так и для несимметричных функций. Мы проиллюстрировали на примерах применение различных статистических методов к линейным оптическим системам при случайных входных сигналах и дали интерпретацию соответствуюш,их результатов. В этих примерах рассмотрены модель идеальной линейной фотопленки, винеровская фильтрация, обратная и согласованная фильтрации. В заключение мы показали, что использование метода, основанного на усреднении по ансамблю, улучшает отношение сигнал/шум в спекл-фотографии.  [c.95]


Следует отметить, что определенные возможности, с точки зрения расширения условий применения УАБ, открываются в связи с разработкой перспективных изделий, прежде всего, оснащаемых трансляционно-командными информационными системами. Организация двухсторонних радио или волоконно-оптических линий связи авиационного комплекса с УАБ обеспечивают в данном случае активное участие человека-оператора в процессе наведения вплоть до момента окончания функционирования изделия. Это позволяет обеспечить высокую конечную точность наведения, реализовать при необходимости селек-  [c.266]

Открытые оптические резонаторы играют важную роль в современной квантовой электронике. Хотя и ранее оптические интерферометры находили широкое применение в спектроскопии, бурное развитие теории и техники оптических резонаторов в последние годы обусловлено тем, что они оказались почти идеальным устройством для создания положительной обратной связи в лазерах. Совокупность оптического резонатора и помещаемой в его полость активной среды может рассматриваться как автоколебательная система, затухание в которой компенсируется усилением в активной среде. При этом параметры резонатора существенным образом влияют на генерируемое излучение, в значительной степени определяя его пространственно-частотные, поляризационные и энергетические характеристики. В то же время самостоятельное значение сохраняют пассивные резонаторы (не содержащие в своей полости активной среды). Такие устройства используются в технике для пространственно-частотной селекции лазерного излучения и в качестве оптичес ких дискриминаторов. Особое распространение получили пассивные перестраиваемые резонаторные системы — так называемые сканирующие интерферометры, используемые для анализа частотных характеристик лазерного излучения.  [c.3]

Интерферометр и регистрирующая аппаратура могут бьггь удалены от экспериментальной сборки на десятки метров. Применение волоконных световодов в качестве линий связи обеспечивает проведение измерений вне пределов прямой видимости объекта. Используются различные типы волоконно-оптических линий связи—с одним общим волокном для передачи излучения от лазера к мишени и обратно к интерферометру, с одним волокном для передачи излучения к объекту и вторым для передачи отраженного излучения, а также пучки из семи волокон, в которых центральное волокно служит для передачи излучения от лазера, а шесть остальных—для передачи отраженного излучения к системе регистрации. Так как между экспериментальной сборкой и регистрирующей аппаратурой нет электрической связи, лазерные методы обладают высокой электрической помехоустойчивостью.  [c.72]

Наиболее полно весь объем необходимых операций, которые юлжны воспроизводиться оптической системой тренажера, можно проследить на примере авиационных тренажеров. В авиационных тренажерах необходима моделирующая установка для имитации зтносительного перемещения быстродвижущихся объектов. Естест-зенно, что наиболее полно условия тренировки и испытаний воспроизводятся при реальной эксплуатации той или иной аппаратуры, Эднако в целом ряде случаев это связано с чрезвычайно большой затратой времени и средств. Применение для этих целей специального оборудования позволяет решить задачу значительно быстрее, проше и дешевле.  [c.139]

На протяжении последнего десятилетия развитие оптических вычислений было ограничено преимущественно системами, основывающимися на аналоговой обработке [1]. Достижения цифровой оптической обработки оказались сравнительно слабыми, отчасти из-за того, что оптика слишком хорошо подходила для параллельных аналоговых операций, и отчасти из-за принципиальных трудностей, связанных с рассеянием мощности в оптических переключающих элементах. Часть ограничений, связанных с рассеянием тепла для оптических переключающих устройств, была исследована в [2]. В более поздней работе [3] автор детально исследовал этот вопрос и количественно описал те или иные достоинства широкого круга электронных и оптических переключающих элементов. Автор 3] пришел к выводу, что, за исключением очень больших скоростей переключения, оптическая логика не дает особенных преимуществ по сравнению с электронными логическими схемами. Его результаты демонстрируются на рис. 9.1, где представлены параметры, ха-рактеризуюгцие энергию, мощность и полосу частот разнообразных электронных и оптических переключающих элементов. Когда рассматривается вопрос об относительных размерах устройства, в большинстве случаев сравнение характеристик приводит к выводу, что, за исключением наиболее специфичных областей применения, возможности оптических логических устройств невелики. Одной из таких областей являются системы оптической связи. Если носителем информации является сам световой пучок, тогда применение оптических модуляций и переключения является естественным и удобным. В отличие от переключающих устройств устройства оптической связи уже сейчас используются в существующих компьютерных системах для реализации сложных схем соединений на уровнях плата — плата и чип —чип. Согласно принятому подходу, в данной главе рассматриваются попытки выполнить чисто комбинаторные логические операции на внутричиповом уровне с помощью электроники или реализовать переключающие элементы оптоэлектронными методами, а межэлементные соединения — опти-  [c.237]


Смотреть страницы где упоминается термин Применения в оптических системах связи : [c.429]    [c.80]    [c.420]    [c.29]    [c.263]    [c.278]    [c.416]    [c.362]    [c.232]   
Смотреть главы в:

Нелинейная волоконная оптика  -> Применения в оптических системах связи



ПОИСК



Ось оптическая системы

Связи Применение

Система со связями

Системы Применение



© 2025 Mash-xxl.info Реклама на сайте