Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Описание движения в лагранжевых координатах

Описание движения в лагранжевых координатах  [c.26]

Возможен другой подход к описанию движения, когда система координат связана с частицами среды (лагранжевы координаты). Этот подход используется в теории упругости и некоторых задачах нелинейной акустики, там, где лагранжевы координаты удобны для задания граничных условий 15].  [c.10]

Лагранжева формулировка уравнений движения полезна для описания континуальных консервативных систем в той же мере, что и для систем сосредоточенных масс, в особенности для уравнений движения в криволинейных координатах. Для системы частиц с п степенями свободы уравнения Лагранжа представляют собой систему п обыкновенных дифференциальных уравнений, в которых время является независимой переменной. Функция Лагранжа в общем случае зависит от п обобщенных координат и от их производных по времени (обобщенных скоростей). Для континуальной консервативной системы, частным случаем которой является упругое тело, уравнения Лагранжа представляют собой систему дифференциальных уравнений в частных производных по времени и по трем пространственным координатам в большинстве случаев все три уравнения независимы. Функция Лагранжа в них зависит от обобщенных координат, обобщенных скоростей и от производных от обобщенных координат по пространственным переменным. Конкретная форма уравнений зависит от системы координат, к которой отнесены пространственные производные. Простейшая форма имеет место в том случае, когда применяется декартова система координат  [c.87]


Применим метод обобщенных координат для получения дифференциальных уравнений движения из общего уравнения механики. Метод обобщенных координат приводит к исключительно важному результату. Он дает общий вид дифференциальных уравнений движения в обобщенных координатах, называемых уравнениями Лагранжа (второго рода). Эти уравнения позволяют для каждой задачи на несвободную систему пользоваться наиболее удобными и естественными величинами при описании движения системы, исключая из рассмотрения связи и силы реакции. Лагранжевы уравнения оказываются полезными и для свободных тел и точек, так как имеют инвариантную (скалярную) форму во всех системах координат, а это позволяет легко составить уравнения в наиболее удобной системе координат, не пользуясь громоздкими формулами перехода (например, от декартовых к сферическим).  [c.180]

Закон сохранения массы позволяет получить полезное для последующих преобразований соотношение. Вспомним сначала понятие субстанциональной производной. Это понятие соответствует методу описания движения сплошной среды по Лагранжу. Пусть индивидуальная дифференциально малая масса вещества в момент времени t находится вокруг точки x (t) пространства. В следующие моменты времени контрольная масса занимает другие области пространства, причем X/ (t) могут всюду рассматриваться как координаты контрольной массы. Если состояние вещества характеризуется величиной В (плотность, внутренняя энергия, температура и т.д.), то для лагранжевой контрольной массы  [c.21]

Различие между эйлеровой и лагранжевой системами отсчета можно проиллюстрировать на примере описания движения материальной частицы жидкости, текущей в некотором русле относительно неподвижных берегов (рис. 5.2). Пусть оси Оху связаны с берегами неподвижно, а начальное положение движущейся частицы А совпадает с геометрической точкой Ао (. о. о)- При ламинарном течении со скоростью V положение точки А относительно осей Оху определяется координатами j/= i/o, л =A o-fJ у dt, тогда как лагранжевы  [c.97]

Движение твердого тела. При исследовании движения твердого тела с помощью уравнений Лагранжа кинетическую энергию тела мы выражаем через лагранжевы координаты, выбранные для описания его положения и ориентации в пространстве. Те же формулы используются и при исследовании движения механических систем, содержащих твердые тела. Поэтому рассмотрим подробнее теорию движения твердого тела.  [c.104]


Запись параметров движения сплошной среды в материальном множестве координат L,- называется лагранжевым (материальным) описанием движения. Например, с использованием (1.2.8), вектор перемещения (1.2.4) представляется в виде  [c.23]

Возможны два способа описания движения частиц сплошной среды. Первый способ, широко распространенный в гидро- и аэродинамике, связан со следующим выбором метода описания движения среды все величины, характеризующие движение сплошной среды, задаются в координатах неподвижного пространства. Такой выбор независимых переменных был применен впервые Эйлером, и поэтому координаты называют эйлеровыми. Возможен и другой метод выбора независимых переменных в качестве независимых переменных выбирают начальные координаты какой-либо частицы жидкости в некоторый фиксированный момент времени в последующее время эта частица перемещается в пространстве, координаты неподвижного пространства являются функциями начальных координат частицы. Этот метод описания движения сплошной среды несколько напоминает метод, используемый в динамике материальной точки, и его связывают с именем Лагранжа, а соответствующие координаты называют лагранжевыми. Лагранжевы координаты широко используются в теории упругости, а также во многих воп])осах нелинейной акустики в газах, жидкостях и твердых телах.  [c.15]

Термины движение и течение используются при описании мгновенного или непрерывного изменения конфигурации сплошной среды. Иногда словом течение называют движение, приводяш,ее к остаточной деформации, как, например, в теории пластичности. Однако при изучении жидкостей это слово означает непрерывное движение. Как было указано в (3.14) и (3.15), движение некоторого объема сплошной среды можно выразить либо в материальных координатах (лагранжево представление)  [c.157]

Для полей скорости 1) У = + ,2) У = г,3) У = —найти лагранжево описание движения и базисные векторы в лагранжевой системе координат.  [c.54]

Таким образом, в изобарическом движении все газодинамические величины сохраняются в частицах и потому полностью определяются их распределениями в некоторый момент времени, например при t = 0. Для описания таких движений удобно ввести лагранжевы координаты = ( , т], () как значения координат частиц газа в момент i = 0. Тогда рещение первых двух уравнений (11) дается равенствами  [c.87]

Изложим общую теорию малых колебаний двух связанных осцилляторов — линейной консервативной системы с двумя степенями свободы [3], для описания которой следует ввести две обобщенные координаты X и у. Уравнения движения такой системы удобно записать в лагранжевой форме [4]  [c.40]

Лагранжевы координаты - это параметры, которые характеризуют каждую точку среды и не меняются в процессе. Таким образом, точка зрения Лагранжа опирается на описание истории движения каждой точки сплошной среды в отдельности. Такое описание на практике оказывается слишком подробным и сложным, оно всегда подразумевается при формулировке физических законов.  [c.26]

Условия совместности Выражения (1.27), (1.28) (эйлерово описание), а также (1.36) и (1.37) в лагранжевых координатах дают компоненты тензоров конечных деформаций через производные вектора смещений. В то же время в большинстве задач теории упругости приходится находить вектор смещений по известным компонентам тензора деформаций. Это связано с тем, что дифференци альные уравнения движения упругого тела формулируют для компонент вектора смещений, а граничные условия часто задают для компонент тензора деформаций (см. 14, 15). При этом возникает вопрос, возможно ли из системы шести дифференциальных уравнений в частных производных (если считать заданными) определить три непрерывных компоненты вектора смещения. Ясно, что если решение этой системы существует, то компонентами тензора деформаций не могут служить произвольно заданные функции. Чтобы обеспечить интегрируемость системы шести дифференциальных уравнений, необходимо ввести определенные ограничения на выбор функций . Эти ограничения для линейного тензора деформаций впервые были получены в 1860 г. Б. Сен-Венаном  [c.78]


Поле скорости жидкости. Скорость является важнейшим понятием, которое наряду с законом движения характеризует течение жидкости. В лагранжевых координатах при наличии закона движения (1.12) скорость 1> Х,0 жидкой частицы по определению V = Ьх/Ы. Она вычисляется для фиксированной частицы и численно равна расстоянию, прдходимому за единицу времени, поэтому здесь берется частная производная от х по Однако задание скорости в лагранжевых координатах при описании движения жидкости встречается крайне редко. Кроме того, такое задание не позволяет просто определить пространственные градиенты скорости в точках жидкости. Поэтому при анализе течения основной независимой переменной выступает векторная функция и(х, 1) — скорость жидкости в точке х в момент времени /. В эйлеровых координатах она определяется как объем жидкости, проходящей за единицу времени через единичную площадку, которая перпендикулярна направлению потока. Отыскание векторного поля скоростей к(х, 1) наряду со скалярными полями давления р(х,0 и плотности р(х, /) является основной задачей гидромеханики.  [c.16]

Способ описания перемещений функциями (1.3), когда за независимые переменные принимаются координаты Хг, материальной точки М (х ) в начальном состоянии V, назьгеается лагранжевым. Другой способ описания движения сплошной среды о помощью функций (1.4), в ко-  [c.7]

Плотность лагранжиана, используемого в задачах динамики (линейной или нелинейной) теории упругости, определяется выражением L = W — Т — Р, где W — плотность энергии деформации, Т — плотность кинетической энергии и Р — потенциал внешних сил. при лагранжевом подходе к описанию движения (материальные координаты Х[ являются независимыми переменными) в общем случае можно считать, что L — функция переменных У , / = (5У,/(ЗХ/(или, что эквивалентно, переменных /), Ui, Ui, а также независимых переменных Х, (для неоднородных систем) и t (для неголономных систем). Такнм образом, t  [c.150]

Зафиксируем текущую координату х, тогда (2.3) определит те точки (с координатами в начальном состоянии ), которые в различные моменты времени приходят в фиксированную точку х. Координаты х и t называются переменными Эйлера. Таким образом, при эйлеровом описании следят за тем, какие точки сплошной среды приходят в данную точку пространства, а в лагранжевом — за движением каждой точки.  [c.22]

Предложенная Олдройдом (1950 г.) производная по времени от тензорных характеристик среды устанавливает связь между материальными производными от компонент тензора, взятых в абсолютной и собственной системах координат. При этом в качестве собственной системы выбирается лагранжева (сопутствующая) система, а система наблюдателя служит в качестве абсолютной системы. Таким образом, различие между двумя материальными производными целиком определяется движением среды, а их вычисление связано либо с лагранжевым, либо с эйлеровым описанием движения.  [c.313]

В основе построения модели упругого тела лежат интегральные законы сохранения (изменения) массы, количества движения и энергии. Всюду в этой книге будет использован способ описания положения и движения чад тиц с помощью лагранже-вых координат, т.е. координат, сохраняющих свои звачения в частицах среды. В качестве лагранжевых координат используются декартовы прямоугольные координаты ж,-, г=1,2,3 точек в некотором состоянии, принятом за начальное.  [c.117]

Здесь 0,7 = —Qji, Q,7, ft = О, 1/,-./ = 0. Величины Q / и Vi, очевидно, могут зависеть от времени. Выражение (2.3.23) представляет поле скоростей абсолютно твердого тела. Оно состоит из одновременного вращения с пространственно однородной угловой сторостью и поступательного движения с пространственной однородной скоростью следовательно, определяется шестью зависящими от времени параметрами. Уравнение (2.3.23) можно проинтегрировать по времени следующим образом. Пусть абсолютно твердое тело, движущееся в системе отсчета 91 (не путать с системой координат). С телом можно связать орто-нормированную систему координат St. Координаты х точки М. тела в системе 3t остаются постоянными с течением времени вследствие абсолютной твердости тела, поэтому они могут быть взяты в качестве лагранжевых. Выражения для координат точки в системе 91 даются формулами перехода к другой орто-нормированной системе координат. Следовательно, лагранжево описание движения абсолютно твердого тела имеет вид  [c.92]

Во всех этих рассмотрениях использовался базис Э, жестка связанный с частицами тела, что отвечает лагранжеву описаник> процесса деформирования. При эйлеровом описании, которое обычно применяется при рассмотрении движения жидкостей, используется лишь одна исходная неподвижная система Э с координатами Xi, Х2, Хз. Такое описание оказывается эффективным, если для выявления общих свойств движения (деформирования) тела достаточно следить не за поведением данной частицы, а за явлениями, происходящими в данной точке пространства. Если в осях Xi, Х2, Хз выделить элементарную неподвижную ячейку пространства в виде, например, координатного параллелепипеда dxi,  [c.188]


Смотреть страницы где упоминается термин Описание движения в лагранжевых координатах : [c.41]    [c.31]    [c.36]    [c.30]    [c.30]    [c.30]   
Смотреть главы в:

Механика сплошных сред  -> Описание движения в лагранжевых координатах



ПОИСК



Координаты Лагранжа

Координаты лагранжевы

Лагранжа движения

Лагранжево движения

Лагранжево описание

Лагранжево описание движения

Описание

Описание Лагранжа

Описания движения



© 2025 Mash-xxl.info Реклама на сайте