Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловые процессы при сварке плавлением

К основным физическим процессам при сварке плавлением относятся электрические, тепловые, механические процессы в источниках нагрева плавление основного и электродного (присадочного) металла, их перемешивание, формирование и кристаллизация сварочной ванны ввод и распространение тепла в свариваемом соединении, приводящее к изменению структуры металла в шве и зоне термического влияния и образованию собственных сварочных деформаций и напряжений.  [c.19]


В формировании структуры и свойств сварного соединения при сварке плавлением определяющая роль принадлежит тепловым процессам, при сварке давлением — пластической деформации.  [c.20]

Большинство существующих способов сварки основано на нагреве материала до пластического состояния или плавления. Необходимую для этой цели теплоту получают от источников энергии, которые различаются между собой по характеру выделения теплоты, мощности, продолжительности действия, скорости движения и другим признакам. Свариваемые изделия различают по свойствам материала, форме и размерам. Если принять во внимание условия, при которых происходит сварка, — подогрев, искусственное охлаждение, теплоотдачу, то число независимых параметров, подлежащих учету в расчетах тепловых процессов при сварке, окажется довольно значительным.  [c.139]

Один из основных вопросов, рассматриваемых в теории тепловых процессов при сварке, — определение условий, при которых достигаются необходимый нагрев изделия и его сваривание. Однако этим не исчерпывается назначение теории. Нагрев и охлаждение вызывают разнообразные физические и химические процессы в материале изделия — плавление, кристаллизацию, структурные превращения, объемные изменения, появление напряжений и пластических деформаций. Эти процессы приводят к глубоким изменениям свойств и состояния материала и влияют на качество всей конструкции в целом. Чтобы определить характер протекания указанных процессов, необходимо знать распределение температур в теле и изменение его во времени в каждом отдельном случае. Это второй основной вопрос, рассматриваемый в теории тепловых процессов при сварке.  [c.139]

Изучение упомянутых дисциплин предполагает достаточно глубокое изучение студентами таких вопросов, как классификация способов сварки, теоретические основы источников теплоты, используемых при сварке, физико-металлургические и тепловые процессы при сварке, процессы кристаллизации металла сварного шва и технологическая прочность сварных соединений и т.п. Поэтому основное внимание в данном учебнике уделено технологии сварки плавлением, а по сварочному оборудованию приведены только сведения, дополняющие курс источников питания. В разделах по технологии сварки авторы не стремились привести все данные о сварочных материалах, режимах и т.п., учитывая, что эти данные имеются в справочной литературе, и уделили основное внимание освещению основ выбора технологии.  [c.7]


Под тепловыми процессами при сварке принято подразумевать повышение температуры свариваемых изделий (и присадочного материала) под влиянием источников сварочного нагрева, распространение теплоты по изделию и отвод ее в окружающую среду. Изменение температуры определяет, помимо явлений плавления и кристаллизации металла, прохождение целого ряда сопутствующих процессов в материале изделия — структурные превращения, объемные изменения, упруго-пластические деформации и т. д. Эти процессы оказывают значительное влияние на качество сварного соединения и всей конструкции в целом.  [c.54]

Под тепловыми процессами при сварке принято подразумевать повышение температуры свариваемых изделий (и присадочного материала) под влиянием источников сварочного нагрева, распространение теплоты по изделию и отвод ее в окружающую среду. Источники сварочного нагрева оказывают тепловое воздействие на основной и присадочный металлы, в результате изменяются структура и свойства металла шва и околошовной зоны. В процессе сварки металл плавится, образуя сварочную ванну, а затем затвердевает в виде сварного шва. В зоне сварки жидкий металл взаимодействует с окружающей средой (шлаком и газом). Температура и длительность нагрева при сварке определяют, помимо явлений плавления и кристаллизации металла, прохождение целого ряда сопутствующих процессов в свариваемом материале структурные превращения, объемные изменения, упругопластические деформации и т.д. Эти процессы оказывают значительное влияние на качество сварного соединения и всей конструкции в целом.  [c.34]

Основой для расчетов нагрева и плавления металла при сварке служат уравнения и формулы, полученные в гл. 6. Их используют для качественной оценки температурных полей, а также для количественных расчетов при определении термических циклов сварки, скоростей охлаждения, размеров зон термического влияния и т. д. Следует заметить, что в ряде случаев реальные процессы и явления протекают сложнее, чем это описывается формулами. Часто характер теплового воздействия при сварке, условия распространения теплоты и теплоотдачи от свариваемых деталей настолько сложны или неопределенны, что расчетное определение температур становится либо затрудненным, либо настолько неточным, что его использование оказывается неоправданным. Экспериментальное определение температур при сварке имеет свои преимущества перед расчетным, хотя и уступает ему в возможности получения и анализа общих закономерностей. Правильным следует считать подход, при котором оба метода дополняют друг друга, а решение об использовании того или иного метода принимается с учетом конкретной обстановки и поставленных задач.  [c.203]

При сварке плавлением металл свариваемых частей в месте сварки расплавляется, образуя общую жидкую ванну. После затвердевания жидкого металла образуется сварной шов, структура металла которого аналогична структуре литого металла. Сварка плавлением по виду источника тепловой энергии делится в основном на электродуговую и газовую. Наиболее широко применяется электрическая дуговая сварка, являющаяся основным технологическим процессом создания неразъемных соединений деталей машин и металлоконструкций.  [c.449]

Наплывами или натеками называют излишне наплавленный металл около кромок валика шва, стекший в процессе сварки на непрогретый основной металл и не сплавившийся с ним. Образование наплывов может вызвать неправильный тепловой режим при сварке и неравномерность отложения металла. При быстром плавлении электрода расплавленный металл местами переполняет ванночку и, растекаясь по ее краям, застывает на твердом металле, образуя местные наплывы, не сплавленные с лежащим под ним основным металлом (рис. 10.2).  [c.357]


К числу преимуществ некапиллярной пайки относятся возможность наложения швов при близком их расположении, отсутствие значительных тепловых деформаций и горячих, в том числе кристаллизационных трещин. При достаточно большом содержании легкоплавких эвтектик в металле швов склонность их к образованию кристаллизационных трещин при сварке плавлением резко снижается. При достаточно большом содержании эвтектики в присадочном металле процесс сварки плавлением может перейти в процесс некапиллярной пайки.  [c.184]

Однако при сварке, в отличие от способов механического крепления заготовок, возникает ряд специфических проблем, связанных с тепловым воздействием источников нагрева при сварке плавлением, с приложением механических усилий без сопутствующего нагрева при соединении заготовок под давлением. В результате в металле протекают физико-химические процессы, которые могут повести к нежелательному изменению его свойств, развитию физической (структурной) и химической неоднородности и появлению остаточных деформаций и напряжений. Особенно сложны эти проблемы при соединении разнородных металлов, отличающихся кристаллическим строением и теплофизическими характеристиками. Поэтому при проектировании сварных соединений следует учитывать совокупность конструктивных и технологических факторов, а также свойства соединяемых материалов. Принятые конструктивные формы в известной мере ограничивают технологические возможности в смысле выбора способа сварки, от которого зависит, в свою очередь, конечный результат технологического процесса изготовления конструкции. Под технологичностью сварной конструкции понимают такое конструктивное оформление, при котором вместе с удобствами изготовления обеспечивается возможность применения высокопроизводительных технологических процессов при максимальной механизации и автоматизации отдельных технологических операций. При создании наиболее рациональных конструкций необходимо в процессе их проектирования исходить нз условий обеспечения максимальных удобств при выполнении отдельных технологических операций и минимального веса при заданном качестве сварного соединения. Кроме того следует учитывать, что неизбежные искажения формы, вызываемые тепловым эффектом сварочного процесса, должны быть минимальны.  [c.376]

Одной из серьезных задач при сварке плавлением является защита сварочной ванны от вредного воздействия воздуха и предотвращение попадания в металл шва вредных веществ (влаги, ржавчины, минеральных масел и других загрязнений). Высокая температура источника нагрева и объекта теплового воздействия значительно ускоряет физико-химические процессы в зоне сварки. Кислород, азот и водород переходят в атомарное состоя-  [c.50]

ТЕПЛОВЫЕ ПРОЦЕССЫ ПРИ ЭЛЕКТРИЧЕСКОЙ СВАРКЕ ПЛАВЛЕНИЕМ  [c.18]

Процессы, происходящие при сварке плавлением, достаточно сложны и имеют существенное значение, так как определяют качество сварного соединения. При этом виде сварки применяются различные источники теплоты, обладающие специфическими свойствами. Эти источники оказывают тепловое и химическое воздействие на основной и присадочный металлы, от чего зависят состав и свойства металла шва, а также структура околошовной зоны. В результате нагрева, осуществляемого этими источниками теплоты, металл плавится, образуя сварочную ванну, а затем затвердевает в виде сварного шва. В зоне сварки происходит взаимодействие жидкого металла со шлаком и газом. Перечисленные процессы являются общими для всех способов сварки плавлением.  [c.32]

Процессы тепловые при сварке дуговой 55—57 лазерной 59—60 электроннолучевой 59 электрошлаковой 57—59 Процесс сварки, схема И—14 Процессы физико-металлургические при сварке плавлением 32—103 в защитных газах 77—81 дуговой 32—44 лазерной 52—54 под флюсом 76—77 покрытыми электродами 75—76, 308—314 электроннолучевой 49—52 электрошлаковой 44—49 Пушки электроннолучевые, системы 50—51  [c.762]

Следует отметить, что почти все тепловые задачи, относящиеся к процессам сварки плавлением и давлением, решены акад. Н. И. Рыкалиным и могут быть найдены в его работах ( Тепловые основы сварки , Тепловые процессы при контактной сварке и др.).  [c.45]

Некоторые из расчетных методов, имеющих специфическое применение (определение нагрева и скорости плавления электродной проволоки при дуговой сварке, нагрев металла специальными многопламенными горелками, тепловые процессы при контактной сварке и др.), в учебнике не рассматриваются.  [c.195]

Превращения при сварке протекают в обстановке непрерывного изменения температуры, деформаций и напряжений вследствие интенсивного местного неравномерного нагрева металла. Оценка изменения температуры при сварке плавлением в настоящее время не представляет затруднений. Для этой цели широко используются методы инженерных расчетов тепловых процессов, разработанные в СССР H.H. Рыкалиным и его школой [22—24]. Основные выводы теории тепловых процессов и ее расчетные методы заложены в основу анализа особенностей превращений в сплавах титана и при разработке системы критериев расчета режимов их сварки.  [c.18]


Не вся теплота используется полностью на расплавление металла, часть ее расходуется непроизводительно. Характер использования полной тепловой мощности процесса можно установить по тепловому балансу, показывающему, как и на что расходуется полная тепловая мощность при электродуговой сварке. Эффективная тепловая мощность процесса электрической сварки плавлением есть количество теплоты, введенное в изделие в единицу времени. Непроизводительная часть расходуется на теплоотдачу в окружающую среду и т. д. Эффективная тепловая мощность определяется по уравнению  [c.34]

ГС — способ сварки плавлением, при котором металл в сварочной зоне нагревается пламенем газа (ацетилена, метана), сжигаемого для этой цели в смеси с кислородом в сварочных горелках. Преимущество ГС —это ее универсальность. С помощью ГС можно сваривать металлы различной толщины с различными свойствами (стали, чугуны, цветные металлы). Недостатками ГС являются трудность автоматизации процесса и длительное тепловое воздействие на металл, что приводит к изменению структуры и формы сварного соединения.  [c.57]

К термическим относятся процессы, при которых тепловая энергия вводится в стык через расплавленный материал, осуществляемые без давления (сварка плавлением).  [c.362]

Для оценки влияния возмущений на технологические характеристики сварного соединения наряду с законом изменения возмущений необходимо учитывать инерционность процесса формирования сварного соединения, обусловленную особенностями передачи теплоты в изделии. Числовой характеристикой инерционности процесса нагрева и плавления металла изделия является тепловая постоянная времени т , определяемая как время, в течение которого температура в зоне сварки достигла бы установившегося значения Густ, бы она изменялась с постоянной скоростью. При ступенчатом изменении термического воздействия на изделие (например, сварочного тока дуги) температура Т в изделии изменяется по следующему закону (рис. 1.2)  [c.14]

Участие жидкой фазы и нагрев соединяемых твердых тел ниже температуры солидуса — необходимое и достаточное условие выполнения процесса пайки. Отсюда вытекает определение пайки как процесса создания неразъемного соединения металлов без их расплавления путем заполнения зазора жидким припоем. Существенные преимущества технологии пайки перед технологией сварки плавлением при создании неразъемных соединений — нагрев паяемых деталей ниже температуры солидуса и расход меньших удельных мощностей тепловой энергии. В результате детали меньше коробятся, создаются благоприятные условия для соединения тонкостенных деталей, деталей, сильно отличающихся по толщине, а также для получения конструкций весьма сложной формы, часто невыполнимых сваркой.  [c.5]

Кристаллизация металла шва. Кристаллизация жидкого металла при охлаждении начинается с не полностью оплавленных зерен основного металла, расположенных на границе расплавления, к решетке которых и пристраиваются атомы кристаллизующейся фазы. После затвердения металла шва (кристаллизации) на участках расплавления образуются зерна, состоящие частично из основного металла и металла шва, обеспечивающие в сварном соединении непрерывную металлическую связь основной металл —шов — основной металл . При движении сварочной дуги вдоль свариваемых кромок в передней части ванны происходит процесс плавления, а в тыльной — процесс кристаллизации. Таким образом происходит формирование сварного шва. Протяженность сварочной ванны зависит от типа источника тепла, ero тепловой мощности, режимов сварки и теплофизических свойств свариваемого материала.  [c.52]

При электронно-лучевой сварке энергия быстро движущихся электронов расходуется на плавление металла свариваемых элементов. При ударе электрона о поверхность и внедрении его в металл свариваемых деталей происходит резкое торможение, сопровождающееся превращением кинетической энергии в тепловую. Процесс выделения теплоты происходит не на поверхности металла, а на некоторой его глубине, где электроны испытывают наибольшее торможение. Вакуум порядка 133 10 н/м необходим для того, чтобы энергия электронов не расходовалась на ионизацию газов.  [c.226]

Изменения свойств металла в зоне шва в результате сосредоточенного местного теплового воздействия связаны с процессами плавления, кристаллизации, возможными структурными превращениями, а также с местными пластическими деформациями. Степень изменения свойств металла в районе шва зависит не только от теплового режима процесса сварки, который определяется выбором его параметров, но и от свойств основного металла. Соответствующим выбором режима сварки, а также применением специальных мер таких, как предварительный подогрев изделия перед сваркой, а также последующая его термическая обработка, можно ограничить степень изменения свойств металла в районе шва при сварке даже достаточно сложных легированных сталей. В отдельных случаях такие специальные меры необходимы, и они находят применение в промышленности при изготовлении некоторых изделий из легированных сталей. Однако эти меры значительно усложняют процесс изготовления и поэтому для широкого круга металлических конструкций они нецелесообразны.  [c.12]

При импульсной сварке не требуется очень точного регулирования температуры и давления время, требующееся для получения шва, короткое, и получаемый шов имеет аккуратный вид. Импульсный нагрев может применяться при использовании сварочных приспособлений с двумя сжимающими пластинами (типа клещей) в автоматических машинах для изготовления пластмассовых мешков, а также при сварке по неровному контуру. В составе оборудования для такой сварки имеется проводящая электрический ток лента, которая (при сварке большинства пластмасс) может быть быстро нагрета импульсом тока до температуры 121,1°. Тонкая изоляционная прослойка, которая отделяет ленту от сжимающей пластины, должна быть изготовлена из материала, обладающего хорошей теплопроводностью. В процессе работы проводящая ток лента нагревается до или во время контакта со свариваемой пленкой выше точки плавления синтетической смолы. Нагревающий ток может быть отключен, как только внутренние соприкасающиеся поверхности пленки расплавятся. Ввиду отдачи тепла в сжимающие пластины последующее охлаждение происходит быстро. После того, как пленка достаточно охладится, давление может быть снято. Весь цикл сжатия и открывания пластин при сварке соединений, имеющих общую толщину порядка 0,2 мм, может быть выполнен за полсекунды. Однако, если сварочный цикл повторяется непрерывно с высокой скоростью, необходимо отдельно учитывать эффект рассеяния тепла за счет теплового излучения, воздушного или водяного охлаждения.  [c.114]

Комплекс устройств, служащих для формирования и фокусировки электронного луча, называют сварочной электронной пушкой. В процессе сварки кинетическая энергия электронов превращается в тепловую, которая расходуется на плавление кромок свариваемых деталей. По мере удаления источника нагрева происходит затвердевание сварочной ванны и образование шва. Металл шва, так же как и при других видах сварки плавлением, имеет литую структуру. Концентрация энергии электроннолучевой сварки очень высока, что обеспечивает получение узкого и глубокого шва и узкой околошовной зоны. Провар при этом виде сварки, как правило, имеет форму острого клина. Оператор, осуществляющий сварку в зависимости от размеров камеры, находится за ее пределами или в самой камере.  [c.23]


Теоретические и экспериментальные исследования тепловой кинетики и распределения температур в сварных швах привели к выводу формул [245], позволяющих определить температуру в любой точке температурного поля. Однако зависимость последнего от большого числа факторов вносит в расчеты значительные погрешности, и поэтому распределение температур в зависимости от времени чаще всего определяется зкспериментально. Приходится учитывать общую энергию электрической дуги, способ сварки, толщину листа, расположение шва (горизонтальное, вертикальное или потолочное), количество, скорость и последовательность наложения валиков друг на друга, применение промежуточного охлаждения и т. д. Из теплофизических свойств металла основное влияние на температурное поле имеет теплопроводность. С повышением теплопроводности уменьшается ширина сенсибилизированной зоны й сокращается время сенсибилизации. Для образования зоны, склонной к межкристаллитной коррозии, имеет значение не только тепло, подведенное дугой к основному материалу через жидкую металлическую ванну наплавленного металла, но и процесс его затвердевания и охлаждения. Если весь процесс плавления металла при сварке разделить  [c.232]

Неправильный режим нагрева и охлаждения изделия в процессе сварки плавлением может стать причиной появления таких серьезных дефектов сварки, как трещины, непровары, подрезы и др. Тепловое состояние металла, шлака и других компонентов, взаимодействующих в процессе образования сварного соединения, в значительной мере обусловливает характер, направление н скорость протекания всех физико-химических и металлургических процессов. Величина и характер деформаций и напряжений, возникающих в конструкциях при сварке, зависят, главным образом, от цикла нагрева и охлаждения изделия, от характера температурных полей. Особенностями распределения тепла, скоростями отвода тепла и охлаждения места сварки определяется структура металла шва и различных участков основного металла, прилегающих к шву. Наконец, с тепловыми процессами непосредственно связаны такие важнейшие характеристики сварки, как скорость нагрева металла, скорость расплавления, производительность сварки и ее техникоэкономическая эффективность.  [c.95]

Таким образом, без учета теплового состояния металла нельзя достаточно глубоко объяснить большинство явлений, наблюдаемых при сварке. Чтобы изучить сварочные процессы и научиться управлять ими, нужно иметь хотя бы приближенное представление о законах нагревания тела и распространения в нем тепла. Наука о тепловых основах сварки рассматривает процессы распространения тепла при нагреве металла различными источниками, влияние их на процессы плавления металла, а также на термический цикл и возникающие в шве и основном металле структурные и объемные изменения. Заслуга в разработке этой новой важной отрасли знания принадлежит, главным образом, советским ученым, и в первую очередь, академику АН СССР Н. Н. Рыкалину,  [c.95]

При затвердевании расплавленного материала слабые адге знойные связи заменяются прочными химическими связями, соответствующими природе соединяемых материалов и типу их кристаллической решетки. При сварке плавлением вводимая энергия (обычно тепловая) должна обеспечивать расплавление основного и присадочного материалов, оплавление стыка, нагрев кромки и т. д. При этом происходит усиленная диффузия компонентов в расплавленном и твердом материалах, их взаимное растворение. Эти процессы, а также кристаллизация расплавленного металла сварочной ванны (или припоя) обеспечивают объемное строение зоны сварки, что обычно повышает прочность сварного соединения.  [c.13]

Механизм коррозионных разрушений сварных соединений определяется приложением энергии в месте соединенияз тепловой энергии при сварке термического класса (дуговой, газовой, электрошлаковой, электроннолучевой, лазерной, плазменно-лучевой) давления и тепловой энергии при сварке термомеханического класса (контактной, диффузионной, дугопрессовой, газопрессовой и др.) механической энергии и давления при сварке механического класса (холодной, взрывом, магнитно-импульсной, ультразвуковой, трением). При этом происходят необратимые физико-химические изменения металла в зоне соединения вследствие процессов плавления и кристаллизации полимерные превращения распад пересыщенных твердых растворов старение, рекристаллизация усложнение напряженного состояния в связи с возникновением собственных напряжений и деформаций.  [c.494]

На процесс кристаллизации можно также воздействовать через тепловой режим сварки. Ускорение процесса сварки и сокращение времени выдержки металла при высоких температурах измельчает структуру. Значительное улучшение структуры при сварке плавление.м часто может быть получено выполнением сварки в несколько слоев за несколько проходов, Каждый последующий слой улучшает и измельчает структуру цижилежащего слон.  [c.4]

Электронно-лучевая сварка. Нагрев металла при этом способе осуществляется потоком лучей быстродвижущих-ся электронов, ускоряемых электрическим полем. Падая на поверхность изделия, электроны отдают свою кинетическую энергию, превращающуюся в тепловую и нагревают металл до температуры 5000-6000 °С, что достаточно для плавления металлов при сварке и для их тепловой обработки (резки, сверления, испарения). Процесс обычно ведется в герметически закрытой камере с высоким вакуумом, необходимым для свободного движения электронов и обеспечения чистоты наплавленного металла.  [c.334]

Большинство неразъемных соединений получают сваркой плавлением с использованием мощного теплового источника — электрической дуги. При этом основной металл и электрод плавятся, образуя жидкую ванну. Температуры сварочной ванны и примыкающего металла достигают высоких значений. После кратковременного нагрева следует достаточно быстрое охлаждение, т.е. возникает своеобразный термический цикл, который определяет строение сварного шва и околошовной зоны. При сварке углеродистой стали структура околошовной зоны (зоны термического влияния) формируется в соответствии с диаграммой состояния Fe — ГезС (рис. 10.2). Шов имеет структуру литого металла, которая образуется в процессе первичной кристаллизации. Из-за направленного отвода теплоты кристаллы здесь приобретают столбчатую форму, вытянутую перпендикулярно линии сплавления.  [c.288]

Дуговая сварка плавлением при помощи электрической дуги или других источников тепловой энергии широко распространена благодаря простоте соединения частей металла путем местного расплавления соединяемых поверхностей. Расплавление основного и присадочного металла облегчает их физические контакты, обеспечивает подобно жидкостям смешивание металлов в жидкой сварочной ванне, одновременно удаляя оксиды и другие загрязнения. Происходят металлургическая обработка расплавленного металла и его затвердевание, образуются новые межатомные связи. В кристаллизуемом металле образуется сварной шов (рис. 1.2, в). Свойства сварного шва и соединения в целом регулируются технологией расплавления металла, процессом его обработки и кристаллизации. Взаимная растворимость в л<идком состоянии и образование сварного шва характерны для однородных металлов, например для стали, меди, алюминия и др. Более сложным оказывается соединение разнородных материалов и металлов. Это объясняется большой разницей их физико-химических свойств температуры плавления, теплопроводимости и др., а также несходством атомного строения. Некоторые металлы, например железо и свинец и др., не смешиваются при расплавлении и не образуют сварного соединения другие — железо и медь, железо и, никель, никель и медь хорошо смешиваются при сварке образуют твердые растворы. Для соединения металлов, не поддающихся смешиванию при расплавлении, применяют особые виды сварки и методы ее выполнения.  [c.8]


Смотреть страницы где упоминается термин Тепловые процессы при сварке плавлением : [c.293]    [c.89]    [c.165]    [c.144]    [c.87]    [c.54]    [c.298]   
Смотреть главы в:

Технология электрической сварки металлов и сплавов плавлением  -> Тепловые процессы при сварке плавлением



ПОИСК



Плавление

Плавление основного металла. Тепловая эффективность процесса сварки

Процесс сварки

Процесс тепловые

Сварка плавлением

Сварка тепловые процессы

Сыр плавленый

Тепловые процессы при электрической сварке плавлением



© 2025 Mash-xxl.info Реклама на сайте