Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химические методы нанесения покрытий

Химические методы нанесения покрытий обеспечивают равномерную толщину покрытия и внутри, и снаружи изделий самых сложных форм. Вероятно, наилучшим способом обработки как сложных по форме, так и чрезмерно больших изделий в целях получения качественного покрытия является изменение их конструкции с целью обеспечения возможности нанесения выбранного покрытия необходимым методом. Для достижения оптимальных эксплуатационных характеристик покрываемых изделий необходимо в начальной стадии их конструирования полностью учесть требования, предъявляемые к покрытиям.  [c.127]


ХИМИЧЕСКИЕ МЕТОДЫ НАНЕСЕНИЯ ПОКРЫТИЙ  [c.107]

Химические методы нанесения покрытий лишены этого недостатка, однако по производительности уступают электрохимическим. Сведения о применяемой в производстве технологии и перспективных методах осаждения электрохимических и химических покрытий приведены в справочниках II, 4, 7].  [c.32]

В настоящее время широкое распространение получают так называемые химические методы нанесения покрытий, имеющие ряд преимуществ перед гальваническими. Одним из нерешенных вопросов в области химического никелирования остается выбор соответствующего материала для изготовления ванн или способа защиты последних от осаждения на них металла. Осаждение слоя металла на стенках ванны приводит к непроизводительному расходу никеля, истощению кроющего раствора и загрязнению электролита продуктами реакции. Применяемые технологические обмазки (на основе резинового клея и окиси хрома и на основе эпоксидных смол) технологически неудобны и вызывают порчу и саморазложение электролита. Эмалированные емкости тоже быстро выходят из строя.  [c.131]

Книга проф. А. Крузенштерна Гальванотехника драгоценных металлов под редакцией известного немецкого специалиста в области гальванотехники проф. Р. Вайнера содержит большой материал по вопросам нанесения покрытий драгоценными металлами методами электролиза и химическим восстановлением. В книге описаны процессы серебрения, золочения, родирования, платинирования, палладирования, а также кратко рассмотрены электролиты для электроосаждения рутения, иридия и осмия. Излагаются сведения об электролитах с разнообразной рецептурой, особенности катодного и анодного процессов, подробно описываются свойства гальванических осадков и их техническое применение. Кроме электролитического способа, кратко рассматривается также химический метод нанесения покрытий без наложения тока извне.  [c.7]

Большой интерес представляет получение порошков карбидов, нитридов, силицидов, боридов и окислов тугоплавких металлов. Частицы из этих порошков применяются с различными покрытиями. В некоторых случаях подложкой для нанесения покрытий служит графит. В литературе имеется описание различных методов нанесения покрытий на графитовые порошки осаждением с помощью плазменного пучка, распылением в вакууме, химическим осаждением и др. [3, 4], однако этот вопрос остается еще мало изученным.  [c.82]

Часть книги посвящена обзору работ по нанесению молибденовых покрытий, также важному вопросу с точки зрения технологии ТЭП — нанесению вольфрамовых покрытий на молибден. Рассматриваются требования к покрытиям ТЭП, дается оценка эффективности различных методов нанесения покрытий. Особое внимание уделено методам химического осаждения молибдена, а также осаждения вольфрама на молибден из газовой фазы хлоридов и фторидов, которые являются, основными и получили широкое применение в технологии ТЭП.  [c.5]


Предшественниками вакуумных ионно-плазменных методов нанесения покрытий и модифицирования поверхностных слоев являются методы химического осаждения из газовой фазы [4, 42, 54, 105] и термовакуумные методы [61].  [c.152]

Затвердевшие частицы покрывающего металла налипают на поверхность основного металла, и между двумя металлами не происходит химического взаимодействия. По этой причине поверхность основного металла должна быть чистой и обладать достаточной шероховатостью для обеспечения равномерного механического сцепления покрытия и основного слоя. Этому способствует тщательно контролируемая дробеструйная очистка обрабатываемого материала перед напылением. Расплавленные частицы, ударяясь и распространяясь на поверхности, частично свариваются и таким образом образуют прочное покрытие. Благодаря этому методу нанесения покрытие не обладает кристаллической микроструктурой. В нем содержится незначительный процент оксидов, но существенное количество пор. Как содержание оксидов, так и пористость могут изменяться в довольно широком пределе в зависимости от процесса напыления и технологии проведения работ. Характерный вид сечения напыленного цинкового покрытия показан на рис. 6.  [c.44]

Среди первых наибольшее распространение получили методы нанесения покрытий постоянного действия и специальной электрохимической и химической обработки поверхностей металлов, из второй группы — методы полной или частичной герметизации с использованием поглотителей влаги (статическая осушка воздуха, очистка окружающей атмосферы от загрязнений, поддержание оптимальных температурных режимов).  [c.26]

По сравнению с другими методами нанесения покрытий металлами (горячим, термодиффузионным, распыления и др.) электроосаждение имеет ряд преимуществ и позволяет регулировать толщину слоя, экономно расходовать цветные металлы, получать покрытия с необходимыми физико-химическими и механическими свойствами. Этот метод незаменим при покрытии металлами с высокой температурой плавления, такими, как хром, никель, медь, серебро, платина, железо.  [c.111]

Часто приходится наносить гальванические покрытия на неметаллические и зделия для сообщения их поверхности физикохимических свойств, присущих различным металлам и сплавам. При этом имеется своя специфика, заключающаяся в химических методах нанесения тонких токопроводящих пленок и последующем электрическом осаждении более толстых слоев.  [c.7]

Химическое никелирование дает возможность наносить металл на детали самого сложного профиля во все места, доступные для электролита. В этом заключается преимущество его перед гальваническим методом нанесения покрытий. Покрытия получают толщиной до 25 мк. После полуторачасовой термообработки при 600° С износостойкость покрытий становится близкой к хромистым.  [c.190]

Помимо электрохимических методов-в практике широко реализована химическая технология нанесения покрытий из водных растворов без пропускания электрического тока.  [c.56]

Уплотнение покрытий и регулирование их пористости. Как известно, широкими возможностями и определенными преимуществами отличаются методы нанесения покрытий напылением. Благодаря созданию плазменных источников нагрева, удалось радикально расширить рецептуру напыленных покрытий. Но при всех достоинствах методы напыления -не обеспечивают высокую плотность и непроницаемость защитных сЛоев. Поэтому особенное значение в настоящее время придается поискам эффективных способов уплотнения напыленных и других пористых покрытий [416]. Существуют химические, механические и термические способы уплотнения.  [c.273]

Существующие методы нанесения покрытий делятся на следующие основные группы твердофазное плакирование, погружение в расплавленные соли, химическое осаждение, электрохимическое осаждение, газотермическое напыление, вакуумно-конденсационное напыление, диффузионное насыщение. В данной главе рассмотрим методы нанесения покрытий, в которых используются такие источники теплоты как газопламенные, дуговые, плазменные, электронно-лучевые, широко применяемые для сварочных процессов, т.е.  [c.224]


В последние годы вызвал значительный интерес метод нанесения покрытий на сопловые устройства путем возгонки соединений вольфрама. Указанный метод является практически единственным, с помощью которого можно получить криволинейные тонкостенные детали из вольфрама. Следует различать нанесение тугоплавких покрытий методом возгонки от метода вакуумного осаждения. В последнем случае чистый металл (например, вольфрам) вводится в установку, нагревается до температуры, достаточной для его испарения, а затем конденсируется на холодной детали. В случае же нанесения покрытия методом возгонки, металл, которым хотят покрыть поверхность изделия, вводится в систему в виде летучего соединения. Температура изделия при этом достаточно высокая. Изделие окружается парами соединения металла, часто в смеси с другими газами, и у поверхности изделия происходят химические реакции, в результате которых и происходит осаждение требуемого металла или соединения. Для получения этим методом покрытий из вольфрама обычно используется пиролиз по формуле (Со)б -> Ш г бСо, причем газом-носителем служит водород. Образец или деталь поддерживается при относительно низкой температуре от 350 до 650"С.  [c.201]

Методы нанесения покрытий (пленок) химическим путем заключаются в создании на поверхности металлов защитного слоя, возникающего в результате химического или электрохимического взаимодействия металла с соответствующими веществами. По способу образования пленки можно разделить на электрохимические, получаемые в результате анодной обработки поверхности металлов, и на химические, возникающие большей частью в результате воздействия газообразных или жидких сред.  [c.274]

Большое внимание, уделяемое топливу с плакированными частицами, обусловило широкое развитие разнообразных технологических методов нанесения пленок на топливные частицы. К ним относятся методы нанесения покрытий из газовой фазы разложением или восстановлением паров некоторых галогенидов, вакуумное напыление, электролитический и электростатический способы, химическое осаждение из раствора, полимеризация из раствора и некоторые другие.  [c.99]

Высокотемпературные (свыше 1000°С) методы нанесения покрытий (химическое осаждение) сопровождаются диффузионным взаимодействием наносимого конденсата и твердосплавной матрицы.В результате, наряду с изменением поверхностных свойств инструмента, улучшаются глубинные прочностные свойства по всему объему материала. Толщина переходной диффузионной зоны составляет от долей до 6 микрометров. Низкотемпературное физическое осаждение покрытий дает слабое взаимодействие покрытия и матрицы, меньшую прочность их сцепления в сравнении с методами химического осаждения.  [c.164]

Плакирование — один из самых старых методов нанесения покрытий на молибден. Это наиболее надежный метод получения химически и структурно однородных покрытий на изделиях в форме листов, прутков и других объектах простой формы. При плакировании возникают следующие проблемы а) формы изделия (она должна быть простой) б) металловедческие (диффузия, прочность  [c.205]

Авторы настоящей статьи занимающиеся плазменными методами нанесения покрытий, сделали попытку рассмотреть, исходя из современных физико-химических представлений, некоторые элементарные процессы получения покрытий высокотемпературным распылением.  [c.9]

В качестве полуфабриката для диффузионной сварки можно использовать ленты из борного волокна, покрытые нитридом бора и пропитанные расплавленным алюминием. Для получения прочности композита, соответствующей правилу аддитивности, необходима надежная механическая связь на границе раздела. Выполнение этого условия обеспечивает в эксплуатации материала передачу нагрузки от матрицы к волокну. Вместе с тем компоненты композиционного материала, как правило, взаимодействуют между собой. Диффузионные процессы уменьшают прочность упрочняющей фазы и в большинстве случаев приводят к образованию интерметаллидной прослойки в контакте волокна с матрицей. При достижении ширины интерметаллидной зоны 0,5—2,0 мкм композит перестает существовать. Под нагрузкой матрица не передает напряжение на волокно, идет разрушение интерметаллидов, образование и развитие трещин в волокне. Образование твердых растворов еще не приводит к коренному ухудшению свойств, С целью повышения жаропрочности и срока службы композиционных материалов на волокна наносят барьерные диффузионные покрытия. Покрытия могут исключать или значительно замедлять процессы взаимодействия материалов волокна и матрицы. Метод нанесения покрытия должен обеспечивать хорошую связь с волок-но 1, равномерную толщину покрытия и исключать пористость последнего. Другим способом подавления образования нежелательных фаз на поверхности раздела является использование в качестве матрицы сплавов, имеющих пониженную реакционную способность с упрочняющим материалом. С термодинамических позиций необходимо добиваться минимальной разности химических потенциалов компонентов композита.  [c.214]

В группу самой низкой стоимости входят свинец, цинк, медь, железо. Никель, кадмий составляют промежуточную группу, к дорогостоящим относятся серебро, палладий, золото. Экономическая целесообразность применения алюминия взамен цинка определяется не только повышенной коррозионной стойкостью в большинстве коррозионно-активных сред нефтяной и газовой промышленности, но и снижением экономических затрат на применяемый материал. Так, соотношение цен цинка и алюминия составляет 16,3. Учитывая соотношение плотностей, получаем, что при одной и той же толщине алюминий значительно дешевле цинка. Технико-экономические затраты, связанные с использованием покрытия, в значительной степени зависят от способа нанесения его на изделия. При выборе способа исходят из технологических возможностей нанесения покрытия на конкретное изделие для получения наилучших эксплуатационных свойств при минимальных экономических затратах. По методу нанесения различают физические, электрохимические и химические методы.  [c.49]


Изложена технология нанесения металлических покрытий химическим способом Основное внимание уделено широко при меняемому в промышленности химическому никелированию и меднению Рассмотрены методы анализа растворов используемых при нанесении покрытий  [c.2]

Несмотря на различие методов нанесения покрытий и на возможность получения поверхностных слоев с существенно различающимися свойствами, можно выделить общие требования для повышения их стойкости в газоабразивной среде. Наиболее важное требование связано с необходимостью повышения уровня когезионной прочности материала покрытия. Эта характеристика, в свою очередь, зависит от химического состава порошка, соотношения структурных составляющих в покрытии, пористости, уровня остаточных напряжений и от других свойств. Исследованиями установлено, что скорость изнашивания струйно-плазменных покрытий на всех углах атаки находится в обратной зависимости от их прочностных свойств, в частности от величины разрушающего напряжения при изгибе (рис. 6.20). Результаты испытаний самофлюсующегося покрытия из порошка ПН70Х17С4Р4 подтвердили эту зависимость.  [c.120]

Штейн Л. М. Исследование структурной и химической неоднородности детонационных покрытий.— В кн. Тез. докл. и сообщ. Всесоюэ. научно-техн. совещ. Новые методы нанесения покрытий напыление.м , 12—14 окт. 1976 г. Ворошиловград Б. и., 1976, с. 36—38.  [c.205]

В технике защиты от коррозии широко применяются неорганические покрытия, состоящие из оксидов, фосфатов, фторидов и других неорганических соединений. Неорганические покрытия получают химическими и электрохимическими методами оксидированием, хроматнрованием, фосфатированием, анодированием. К неорганическим покрытиям относятся эмали, которые применяются в бытовой технике и для защиты металлов от газовой коррозии при высоких температурах. Сравнительно недавно начал применяться электрофоретический метод нанесения покрытий.  [c.50]

Химико-термические методы упрочнения поверхности для повышения износостойкости за счет увеличения поверхностной твердости (цементация, азотирование, цианирование, борирование и др. процессы) весьма эффективны для повышения сопротивления абразивному изнашиванию. Для улучшения противозадирных свойств создаются (посредством сульфиди-рования, сульфо-цианирования, селенирования, азотирования) тонкие поверхностные слои, обогащенные химическими соединениями, предотвращающими схватывание и задир при трении.. Большой эффект получается при использовании метода карбонитрации. Широко применяются электрохимические методы нанесения покрытий А1, РЬ, Sn, Ag, Au и др. При восстановлении деталей (в ремонте) используется электролитическое хромирование, никелирование, железнение и др. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и др. решается при использовании методов металлизации напылением, включающих газоплазменную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий - наносятся металлы и сплавы, оксиды, карбиды, бориды, стекло, фосфор, органические материалы. Плазменное напыление используют для нанесения тугоплавких покрытий окиси алюминия, вольфрама, молибдена, ниобия, интерметаллидов, силицидов, карбидов, боридов и др. Детонационное напыление имеет преимущество в связи с незначительным нагревом покрываемой детали и распыляемых частиц. В последнее время активно развиваются методы нанесения износостойких покрытий в вакууме катодное распыление, термическое напыление, ионное осаждение. В зависимости от реакционной способности газовой среды методы напыления  [c.199]

В настоящее время для повышения износостойкости и коррозионной стойкости получили применение пленочные покрытия (толщиной 2—10 мкм) из нитридов (TiN, Ti (N ), ZrN), карбидов (Ti ), оксидов (AI2O3 и др.), обладающих высокой твердостью. Существует много методов создания адгезионных пленочных покрытий. Нанесение покрытий осуществляется осаждением продуктов химических реакций между компонентами газовой среды (например, хлорида титана и метана) на поверхности детали (инструмента) при 1000—1200 °С (метод VD). Другие методы предполагают реактивное или конденсационное осаждение в вакууме при более низкой температуре 450—500 °С, Формирование покрытия в вакууме осуществляется в три стадии I) получение материала покрытия в парообразном состоянии 2) перенос материала покрытия от испарителя к детали 3) осаждение (конденсация) молекул (ионов) материала покрытия на поверхности детали. Чаще применяют следующие методы нанесения покрытия конденсацию из плазменной фазы в условиях ионной бомбардировки (КИБ) реактивное электронно-лучевое плазменное осаждение (РЭП) активированное реактивное напыление (ARE). Не-  [c.347]

Ионные методы нанесения покрытий осуществляются с участием как физических (состав наносимого материала не изменяется), так и химических процессов (образуются новые соединения). При таких методах, именуемых реактивными, происходят плазмохимиче-  [c.155]

Выбор материала покрытия и соответствующего способа его нанесения определяют различными факторами, прежде всего эксплуатационными условиями, габаритахми и конфигурацией аппарата. Конструкционные особенности аппарата оказывают порой решающее влияние на выбор способа нанесения защитного покрытия. Знание хотя бы общих сведений о существующих методах нанесения покрытий из разнообразных материалов важно как для конструктора, так и для лиц, занимающихся. монтажом и эксплуатацией химических аппаратов, поскольку в подавляющем большинстве случаев вопросы противокоррозионной защиты металлического оборудования приходится решать на монтажной площадке или в процессе ремонтно-восстановительных работ. Это объясняется тем, что заводы химического машиностроения, как правило, не выпускают химические аппараты с защитными полимерными покрытиями.  [c.235]

Для высокотемпературных методов нанесения покрытий наиболее характерными процессами, приводящими к сильным изменениям свойств твердосплавной матрицы, являются диффузионное взаимодействие конденсата и твердого сплава, а также тепловое воздействие на его структуру по объему. В результате при осаждении покрытия на твердый сплав изменяются не только его поверхностные свойства (микротвердость, стойкость против окисления, сопротивляемость микроразрушению и т. д.), но и свойства, которые проявляются в объеме всего материала (вязкость разрушения, прочность, микроползучесть и т. д.). Процесс физического осаждения покрытий протекает при значительно меньших температурах, поэтому он оказывает влияние лишь на поверхностные структуры и микрогеометрию инструментального материала. Слабое диффузионное взаимодействие покрытий, полученных методом ФОП, и инструментальной матрицы является главной причиной меньшей прочности их сцепления по сравнению с прочностью сцепления материала и покрытия, полученного методами химического осаждения покрытий (ХОП). Это обстоятельство предопределяет специфическую область использования инструментов с покрытиями, получаемыми этими методами.  [c.53]


В 1967 г. было выпущено первое издание настоящей книги, в которой рассматривались физико-химические и технологические принципы образования жаростойких покрытий из расплавленных неорганических систем [1]. Прошедшие годы характеризовались значительным ростом научной информации. Вместе с тем Стало ясно, что ограничение книги расплавленными системами сужает интерес к ней. Природа и состояние веществ, способных образовывать эффективные покрытия, многообразны. Однако не существует универсальных методов нанесения покрытий как и универсальных рецептов защитных покрытий. В каждом конкретном случае треб1уется индивидуальный поиск оптимального варианта.  [c.3]

Среди различных технологий нанесения покрытий из порошковых ма-териатов, позволяющих решать указанные задачи повышения ресурса работы и восстановления деталей машин и механизмов, широкими комплексными возможностями обладают газотермические (газопламенные, плазменные, детонационные и др.) методы, позволяющие формировать покрытия из различных материалов и обеспечивать широкий спектр фи-зико-химических и потребительских свойств [1,2,3,4,5,6,7,8,9,10,11,12, 13, 14, 15]. Большой вклад в изучение высокотемпературных струйных течений и разработку физических основ газотермических методов нанесения покрытий внесен научными школами ИУЕЕТ им. А А. Байкова РАД ИМАШРАН, МАТИ, НИАТ, ИТ СО РАН, ИГ СО РАН. Высокая эффективность и универсальность методов напыления определяется следующими принципиальными особенностями [2,5,13].  [c.24]

Существует много методов покрытия алюминием других металлов. Они включают метод распыленпя (металлизацию), алюминирование при распылении (термообработанные напыленные покрытия), погружение в горячий расплав, диффузионное алюминирование (алитирование), осаждение в вакууме, гальваническое покрытие, осаждение с помощью процесса электрофореза, химическое осаждение (нанесение покрытия из газовой или паровой фаз), плакирование или механическое соединение с помощью литья.  [c.401]

Книга содержит данные по различным методам нанесения покрытий с использованием электрической дуги, ацетилено-кислородного пламени и плазмы и оборудованию, используемому для этих целей. Сообщаются сведения о промышленном применении покрытий и экспериментальных исследованиях свойств покрытий из металлических и керамических материалов в зависимости от условий формирования, состава газовой атмосферы, состава напыляемых материалов и других факторов. Рассмотрены вопросы физико-химического взаимодействия покрытия с подтожкой, обеспечивающею получение надежного сцеп-пения Уделено внимание контролю качества покрытий.  [c.2]

Задача второй области приложения триботехнологии - управление триботехническими характеристиками поверхностей трения - решается главным образом путем разработки специальных методов модифицирующей упрочняющей обработки. При этом модификация свойств поверхностных слоев трущихся деталей достигается модифицированием структуры или химического состава и структуры материала деталей. В этой области триботехнология тесно смыкается с трибоматериалове-дением как по решаемым задачам повышения триботехнических характеристик трибосопряжений, так и по используемым методам исследования. Современная триботехнология располагает большим числом технологических процессов, используемых в течение многих десятилетий или разработанных в последние 1()-15 лет. Основные из них следующие термическая обработка, диффузионно-термическая (химико-термиче-ская) обработка, поверхностно-пластическая деформация, ионно-плазменная модификация и нанесение покрытий, электронно лучевая обработка, ультразвуковая упрочняющая обработка, лазерное упрочнение, различные комбинированные методы модификации,  [c.10]


Смотреть страницы где упоминается термин Химические методы нанесения покрытий : [c.4]    [c.142]    [c.153]    [c.90]    [c.121]    [c.254]    [c.4]    [c.27]    [c.82]    [c.41]    [c.130]    [c.182]   
Смотреть главы в:

Молибден в ядерной энергетике  -> Химические методы нанесения покрытий



ПОИСК



Методы нанесения

Методы покрытий

Нанесение покрытий, методы химическое восстановление без наложения тока

Покрытие нанесение

Химические покрытия

Химическое нанесение покрытий



© 2025 Mash-xxl.info Реклама на сайте