Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Консервативные системы второго порядка

В этой главе на ряде конкретных примеров будут изучены колебательные процессы в системах, поведение которых описывается дифференциальными уравнениями первого порядка, в консервативных системах второго порядка, а также в системах любого порядка с полной диссипацией энергии.  [c.20]

S 2] КОНСЕРВАТИВНЫЕ СИСТЕМЫ ВТОРОГО ПОРЯДКА 29  [c.29]

Консервативные системы второго порядка  [c.29]


Гармонический осциллятор, рассмотренный выше, представляет собою пример автономной консервативной системы второго порядка. Как мы видели, такая система обладает интегралом движения (обычно интегралом сохранения энергии). Фиксируя значение произвольной постоянной в интеграле движения, мы получаем динамическую систему с одномерным фазовым пространством, которое может представлять замкнутую или незамкнутую кривую, состоящую из одной или нескольких фазовых траекторий. Придавая произвольной постоянной различные значения, получим множество одномерных фазовых пространств, которые в совокупности образуют фазовое пространство консервативной системы второго порядка. В конечном итоге двумерное фазовое пространство этой системы оказывается разбитым на фазовые траектории. Замкнутая фазовая траектория соответствует, как известно, периодическому движению в системе.  [c.29]

КОНСЕРВАТИВНЫЕ СИСТЕМЫ ВТОРОГО ПОРЯДКА " 31  [c.31]

Эту же задачу методом сеток рассмотрел Е. П. Колпак. Использовалась консервативная схема второго порядка аппроксимации. Полученная при этом система нелинейных алгебраических уравнений решалась методом простой итерации. Отвечаюш,ие сеткам 20 X 20 и 30 X 30 значения прогибов и напряжений почти совпали, вплоть до прогибов порядка длины стороны квадрата.  [c.177]

Здесь (jjv — собственные частоты консервативной системы gn — нормированные коэффициенты v-й формы колебаний в точках А и В 3v — безразмерный коэффициент линейного демпфирования на v-й форме колебаний. При р = im, опуская малые величины второго порядка, имеем частотную характеристику объекта  [c.274]

Приближенное выражение потенциальной энергии консервативной системы с одной степенью свободы (вблизи положения равновесия q = o.) с точностью до малых второго порядка имеет вид  [c.454]

Из всего многообразия динамических систем второго порядка полезно выделить системы, в которых может осуществляться периодическое изменение состояния системы. На фазовой плоскости периодическому движению соответствует замкнутая траектория. Если эта замкнутая траектория является одной из континуума вложенных одна в другую кривых, то мы имеем дело с консервативной системой. В такой системе период и амплитуда периодических колебаний зависят от начальных условий, а сама система является негрубой.  [c.46]


Равновесие консервативной системы неустойчиво, если потенциальная энергия системы в положении равновесия не имеет минимума и отсутствие минимума определяется членами второю порядка малости  [c.390]

Равновесие консервативной системы неустойчиво, если потенциальная энергия системы в положении равновесия не имеет минимума и отсутствие минимума определяется слагаемыми второго порядка малости в разложении потенциальной энергии в ряд по степеням обобщенных координат,  [c.412]

Число степеней свободы системы определяется числом независимых переменных, которое необходимо для полного описания движения системы. Ограничивая свое рассмотрение системами с одной степенью свободы, мы в общем случае должны для описания движений в консервативных системах рассматривать дифференциальные уравнения второго порядка )  [c.15]

Однако подобное уравнение будет описывать движение в консервативной системе не при любом виде функции Ф(х, х). Для упрощения рассмотрения начнем с изучения случая, когда уравнение, описывающее движение в исследуемой системе, не содержит X, т. е. возвращающая сила не зависит от скорости. Тогда общим видом подобного дифференциального уравнения второго порядка будет уравнение  [c.15]

Теорема 1. Если потенциальная энергия консервативной системы в положении равновесия не имеет минимума и это узнается уже по членам второго порядка в разложении функции П в ряд в окрестности положения равновесия без необходимости рассматривания членов высших порядков, то положение равновесия неустойчиво.  [c.493]

Уравнения движения Якоби для консервативной системы. Пусть данная материальная система без неинтегрируемых дифференциальных связей консервативна пусть связи её не зависят явно от времени, а активные силы имеют однозначную силовую функцию U, зависящую только от координат. При выполнении первого условия, как мы видели ( 189), систему можно отнести к таким независимым координатам, чтобы кинетическая энергия системы представилась однородной функцией второй степени от скоростей с коэффициентами, не зависящими явно от времени. Обобщённые силы, являющиеся частными производными от силовой функции, тоже в нашем случае не содержат явно времени. Следовательно, время явно не войдёт и в выражение лагранжевой функции, а также в уравнения движения (33.42) или (32.48) и в те функции, которые мы в предыдущем параграфе обозначили Р . Поэтому, когда систему уравнений (32.48) мы заменим системой уравнений первого порядка  [c.335]

Таким образом, малые колебания консервативной системы с двумя степенями свободы около положения устойчивого равновесия описываются двумя линейными однородными дифференциальными уравнениям второго порядка с постоянными коэффициентами. Решение этих уравнений будем искать в форме  [c.480]

Теория малых колебаний изучает движение консервативной системы в окрестности устойчивого положения равновесия, причем это движение должно определяться линейными уравнениями Лагранжа. Линейность уравнений обеспечивается отсутствием в разложениях но q, q кинетической Т и потенциальной П энергий членов более высокого, чем второй, порядка. Как и в 7, предполагаем, что устойчивому положению равновесия соответствует начало координат фазового пространства = О, = О, считаем также Я(0) = 0. Разложения Т и Я в окрестности = О, = О имеют вид  [c.34]

Перейдем теперь к изложению количественных методов рассмотрения автономных динамических систем (с одной степенью свободы), близких к консервативным системам. При этом мы ограничимся наиболее простым случаем, именно системами, близкими к линейной консервативной системе (к гармоническому осциллятору). Уравнения движения таких систем могут быть написаны в виде уравнения второго порядка )  [c.650]


Надлежащим выбором начала отсчета энергии устраняется первый член правой части. Однако второй член также исчезнет, если разложение провести относительно такого состояния, которое соответствует положению равновесия. В консервативных системах положения равновесия характеризуются экстремальными значениями потенциальной энергии и для них первые производные обращаются в нуль. Если положение равновесия устойчиво, то потенциальная энергия имеет в нем минимум, и следовательно, третий член разложения должен быть в этом случае положительной квадратичной формой координат системы. Далее мы будем рассматривать малые колебания около положения равновесия и поэтому сможем пренебрегать членами высших порядков. Это полностью соответствует обычной при методе малых колебаний линеаризации уравнений движения. Если использовать обозначения  [c.272]

Рассматривая в первом приближении возмущенное движение консервативной системы, мы предполагали, что невозмущенное состояние — состояние покоя — устойчиво. Это позволило нам искать частное решение системы дифференциальных уравнений возмущенного движения в виде тригонометрических функций времени. Если заранее мы не знаем, устойчиво или неустойчиво положение равновесия, то частное решение следует искать в виде Ке . В таком же виде нужно искать частное решение и в тех случаях, когда в уравнения входят производные первого и второго порядков.  [c.460]

Покажем, как исходя из принципа Гамильтона — Остроградского, получить уравнения Лагранжа второго рода. Пусть qi(t), <72(0. . (О обобщенные координаты, соответствующие прямому пути консервативной голономной механической системы. Рассмотрим окольный путь, определяемый функциями г+б г,. ... .., js- 6qs. Тогда, с точностью до членов первого порядка малости по сравнению с бдт и б т, будем иметь  [c.215]

Перейдем теперь к количественному рассмотрению нелинейных динамических систем, ограничиваясь по-прежнему автономными системами второго порядка (с одной степенью свободы). Как мы уже говорили, при современном состоянии теории это количественное рассмотрение (аналитическими методами) может быть удовлетворительно проведено, в сущности, лищь для трех классов систем, имеющих, однако, значительный практический интерес. Один из этих классов составляют системы, близкие к консервативным, и в частности, практически наиболее интересные системы, близкие к гармоническому осциллятору второй класс — это системы, совершающие разрывные колебания. Эти два класса будут рассмотрены соответственно в гл. IX и X. Наконец, третий класс составляют системы, количественное рассмотрение которых может быть проведено при помощи метода точечных преобразований ). Наиболее просто этот метод применяется для так называемых кусочно-линейных систем, т. е. для систем с фазовым пространством, состоящим из областей, в каждой из которых динамические уравнения движения линейны. Количественному рассмотрению таких кусочно-линейных систем и будет посвящена настоящая глава.  [c.504]

Законы сохранения (дивергентные формы уравнений) широко применяются в методе интегральных соотношений, при построении консервативных разностных схем и при постановке вариационных задач газовой динамики. Примерами являются публикации [1-4]. Теорема Нетер и ее обобшение [5] позволяют находить законы сохранения для систем дифференциальных уравнений второго порядка. Для применения этих теорем необходимо изучить групповые свойства исходных уравнений [6] и использовать вариационный принцип, из которого эти уравнения следуют. Для вырожденных функционалов, порождающих уравнения первого порядка, теряется взаимно однозначное соответствие между группами, допускаемыми уравнениями, и законами сохранения некоторым группам могут соответствовать дивергентные уравнения, состоящие из нулей [5]. Теорема Нётер использована, например, Ибрагимовым [7] для получения полной системы законов сохранения безвихревых течений газа, описываемых уравнением второго порядка для потенциала скоростей.  [c.17]

Для существования этой функции, называемой потенциальной функцией, необходимо и достаточно выполнение соотношений dPJda = dP ldag, (s, j= 1,, ,,, к). Из равенства (65) следует, что уравнения для определения порождающих параметров а = aj- совпадают с условиями стационарности фуикции D нетрудно показать также, что условия строгого минимума функции D, основанные на анализе членов второго порядка в разложении этой функции вблизи стационарной точки, совпадают с условиями устойчивости периодических решений (соответствующие минимумы назовем грубыми). Иными словами, в задаче о существовании и устойчивости периодических движений функцня D играет так ю же роль, как и потенциальная энергия в задаче о положениях равновесия консервативной системы, т. е. при существовании функции D результаты, приведенные выше, являются аналогами известных теорем Лагранжа—Дирихле и А. М Ляпунова [35, 37]  [c.61]

При расчете трехмерных течений определяюгцая система уравнений записывалась в консервативной форме в произвольной неортогональной системе координат. Это позволяло использовать расчетную область с криволинейными границами и сгугцать сетки в областях с болыпими градиентами параметров. Параметры потока рассчитывались в центрах ячеек, а потоки — на их гранях. Конвективные потоки вычислялись с использованием противопоточной схемы с третьим порядком аппроксимации, диффузионные потоки на гранях определялись при помогци центральных разностей второго порядка точности [22].  [c.588]


Рассмотрим произвольную консервативную систему с голономными п стационарными связями, имеющую одну степень свободы. Положение системы будем определять обобщенной координатой д, отсчит1>1ваемой от положения устойчивого равновесия. Предположим, что система отклонена на небольшую величину от положения равновесия и ей сообщена небольшая начальная скорость. Тогда вследствие устойчивости положения равновесия система будет совершать движение вблизи этого положения равновесия, т. е. обобщенная координата 7 и ее скорость ц будут все время малы по модулю. Это обстоятельство дает возможность применить приближенный метод исследования движения, основанный на том, что нелинейные в общем случае дифференциальные уравнения движения упрощаются и заменяются на приближенные. линейные уравнения. Для этого, очевидно, достаточно выражения для кинетической и потенциальной энергий разложить в ряды по степеням д к ц, сохранив в них члены не выше второго порядка малости.  [c.464]

Под обращением теоремы Лагранжа понимается доказательство неустойчивости положения равновесия консервативной системы, если для него силовая функция 7 не имеет максимума. Эта задача до исследований Четаева была решена Ляпуновым лишь для следующих двух частных случаев 1) в положении равновесия 17 имеет изолированный минимум, и это обнаруживается из рассмотрения совокупности членов наинизшего порядка в разложении этой функции по степеням приращения координат 2) отсутствие максимума силовой функции обнаруживается по членам второго порядка в разложении 17 в указанный ряд. П. Пенлеве показал на примере, что ставить задачу обращения теоремы Лагранжа имеет смысл лишь для изолированных положений равновесия.  [c.17]

В разд. 1.2 настояндей главы рассматриваются явные конечноразностные методы расчета нестационарных и стационарных пространственных сверхзвуковых течений невязкого нетеплопроводного газа. Для численного интегрирования гиперболической системы уравнений, записанной в консервативной форме, применяется явная конечно-разностная схема второго порядка точности. Область интегрирования располагается между телом и ударной волной. Внутренние поверхности разрыва не выделяются. Рассматриваются различные способы вычислений условий на границах. В разд. 3 приводятся некоторые результаты расчетов обтекания тел под углом атаки.  [c.197]

Теорема. Равновесное состояние консервативной сиспи мы, определяемое нулевыми значениями координат, в которое потенциальная энергия системы не достигает минимума, щ устойчиво, если отсутствие минимума определяется уже чм нами второго порядка в разложении потенциальной энергии п степеням координат q .  [c.400]

Теорема. Равновесие консервативной системы неустойщ во, если в равновесном положении потенциальная энергия или ет максимум, причем этот максимум обусловлен членами наг низшего (но не обязательного второго) порядка в разложенщ потенциальной энергии по степеням q .  [c.400]

Уравнения Чаплыгина представляют собой уравнения типа Лагранжа второго рода с корректирующими аддитивными членами, составленные в го-лономных координатах для консервативных неголономных систем с линейными и однородными связями первого порядка при некоторых упрощающих предположениях относительно выражений кинетической и потенциальной энергии системы (так называемые системы Чаплыгина).  [c.93]


Смотреть страницы где упоминается термин Консервативные системы второго порядка : [c.325]    [c.250]    [c.460]    [c.10]    [c.642]    [c.689]    [c.95]   
Смотреть главы в:

Введение в теорию нелинейных колебаний  -> Консервативные системы второго порядка



ПОИСК



Консервативная система

Консервативность системы

Консервативные

Системы второго порядка

Системы порядка



© 2025 Mash-xxl.info Реклама на сайте