Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Композиционные покрытия никеля

Микротвердость композиционных покрытий существенно выше, чем микротвердость чисто металлических покрытий, — в 1.5 — 2 раза для композиционных покрытий на основе никеля и в 2— 2.5 раза для композиционных покрытий на основе меди. Увеличение концентрации суспензии мало влияет на микротвердость композиционных покрытий в то же время варьирование микротвердости можно осуществлять путем применения различных наполнителей.  [c.28]


В результате термообработки никелевых композиционных покрытий при 400° С в инертной среде микротвердость их возрастает дополнительно в 1.5—2 раза. Композиционные покрытия на основе никеля устойчивы к окислению на воздухе при 400° С в течение 100 ч. При более высоких температурах жаростойкость покрытий не сохраняется. Стойкость при термическом ударе составляет не менее 50 циклов по режиму 400 25° С на воздухе.  [c.28]

Проведено изучение процесса образования композиционных покрытий па основе никеля из кислых растворов химического никелирования, содержащих частицы оксидов алюминия или РЗЭ. Показано, что изменение скорости осаждения покрытий в присутствии дисперсной фазы связано с воздействием частиц на химическую составляющую процесса никелирования.  [c.239]

Никель — графитовое волокно. Композиционный материал никель — углеродное волокно получали горячим прессованием прядей графитового волокна, уложенных в одном направлении, на которые предварительно наносилось электролитическим методом никелевое покрытие толщиной 1—3 мкм [203, 204]. Для предотвращения взаимодействия волокна с никелевой матрицей на углеродное волокно наносят карбидные покрытия (патент США № 3796587, 1972 г.). В качестве примера применения карбидного покрытия на графитовом волокне может служить покрытие из карбида титана, наносимое на волокно методом его погружения в расплав, состоящий из металла-носителя, не взаимодействующего с волокном, например индия и растворенного в нем титана. Расплав содержал 99,5% индия и 0,5% титана. Для покрытия волокно погружали в такой расплав, нагретый до температуры 850° С, на 4 мин. После отмывки этого волокна в течение 15 мин в 50%-ном растворе соляной кислоты на поверхности графитового волокна оставался слой покрытия карбида титана толщиной 0,5 мкм. Режимы диффузионной сварки углеродного волокна с никелевым покрытием, приведенные в указанных выше работах, примерно одинаковы. Во всех случаях прессование осуществлялось в вакууме 2-10 —1 10 мм рт. ст. при температуре 840—1100° С, давлении 100—175 кгс/см в течение 45—60 мин. Оптимальный режим получения композиционного материала с углеродным волокном без нанесенного предварительного защитного покрытия температура 1050° С, давление 140 кгс/см и время выдержки 60 мин. Полученный по такому режиму материал, содержащий 46—55 об. % волокна Торнел-50, имел предел прочности 55—73 кгс/мм .  [c.143]


В книге [1, с. 144] приведены результаты исследования композиционных покрытий, упрочненных волокнами, и технологические аспекты их использования. Матрицей в этих покрытиях были алюминий, никель, медь упрочняющей фазой — волокна бора, карборунда, вольфрама и усы из карборунда.  [c.230]

В качестве антифрикционных материалов — неметаллические материалы (графит, дисульфид молибдена), металлы и сплавы, не содержащие свинца (серебро и его сплавы, сплавы никеля и т. д.), композиционные покрытия с включениями неметаллических антифрикционных частиц на основе меди, никеля, железа, серебра и других матриц.  [c.241]

При металлизации химическим способом неметаллы чаще всего покрывают серебром, медью, никелем, сплавами N1—Со, золотом, оловом, родием, иногда палладием, платиной, свинцом, реже алюминием, хромом. При химико-гальванической металлизации на электропроводный подслой наносят многослойные покрытия, состоящие из слоев матовой и блестящей меди, никеля, хрома, олова, цинка, иногда золота, серебра или композиционные покрытия.  [c.512]

Из сказанного выше следует, что электролиты-суспензии не устойчивы во времени и не постоянны по свойствам кроме того, низкий pH приводит к невысокому содержанию твердых включений. Оценить преимущества различных видов композиционных покрытий, описанных в работе [126], не представляется возможным вследствие отсутствия ряда сравнительных характеристик, в частности, относительно свойств покрытий никелем. С нашей точки зрения, необоснованно заключение автора об эффективной роли кубической и гексагональной кристаллических структур дисперсных веществ в определении состава и свойств КЭП.  [c.174]

При получении композиционного материала с никелевой матрицей, упрочненной волокнами углерода, применяют предварительное электролитическое нанесение покрытия никеля па волокна. Для электролитического нанесения никеля рекомендуется электролит состава (г/л) 150 сульфита никеля, 15 хлорида аммония, 15 борной кислоты. Равномерное покрытие никеля обеспечивается при плотности тока 1 Л/дм . Диффузионная сварка покрытых никелем листов из волокон углерода проводится при 1273—1573 К и давлении 19,6—29,4 МПа. С повышением объемной доли упрочняющей фазы температуру диффузионной сварки следует увеличивать (по данным Японии).  [c.214]

Композиционные покрытия сил-никель  [c.172]

Настоящая работа посвящена изучению процессов осаждения композиционных химических покрытий на основе никеля, в которых вторая фаза представлена оксидами алюминия и редкоземельных элементов (РЗЭ).  [c.82]

Осаждение покрытия происходит в том случае, если материал является катализатором для восстановительной реакции. Ввиду того, что углерод не является катализатором реакции восстановления ионов меди, никеля, поверхность углеродных волокон необходимо предварительно обработать, придав ей каталитические свойства. С этой целью углеродные волокна подвергают обработке в окислительной среде и проходят стадию сенсибилизации и активации прежде, чем покрываются из химического раствора металлом. Поверхностная обработка в окислительной среде положительно сказывается и на свойствах углеродного волокна при работе в композиционном материале повышается сила сцепления с основой, увеличивается прочность композиции на сдвиг [5].  [c.148]

Разработан метод получения пропиткой композиционного материала на основе алюминия, упрочненного волокном из карбида кремния [113]. Особенностью изготовления этого материала является весьма высокая температура расплава, достигающая 1050° С, необходимая для обеспечения хорошей смачиваемости волокна расплавленным металлом. В результате контактного взаимодействия волокна с [расплавленным металлом при этой температуре его прочность снижается более чем на 30% (с 350 до 220 кгс/мм ). Для снижения температуры пропитки и улучшения смачиваемости было предложено наносить на волокна карбида кремния покрытия из никеля, меди или вольфрама. Применение покрытия позволяет снизить температуру пропитки до 700° С и сократить до нескольких минут время пропитки. Изготовленный по такой технологии материал с матрицей из алюминия (предел прочности 3 кгс/мм , относительное удлинение 40%), упрочненный 15 об. % волокна с покрытием, имел предел прочности 24 кгс/мм и относительное удлинение 0,6%.  [c.97]


Метод вакуумной пропитки применяли для получения композиционного материала алюминий — углеродное волокно. На жгуты из углеродного волокна наносили покрытие из кремния, карбида кремния или никеля, улучшающее смачиваемость и уменьшающее взаимодействие волокна с расплавом. Жгуты с покрытыми волокнами в вакууме (2—5) 10 мм рт, ст, загружали в расплавленный алюминий. Полученный композиционный материал, содержащий 30 об.% углеродного волокна, имел предел прочности 75 кгс/см (патент Японии № 7300106, 1973 г.).  [c.100]

В работе [174] метод вакуумно-компрессионной пропитки применялся для получения композиционных материалов на основе алюминия, упрочненного нитевидными кристаллами сапфира. Нитевидные кристаллы с покрытием из титана толщиной 0,05 мкм, предотвращающим растворение волокон в алюминиевой матрице, и с нанесенным поверх первого покрытия слоем никеля толщиной 0,3 мкм для улучшения смачиваемости, прядением вручную собирали в жгуты диаметром 1,5—2,5 мм. Жгуты укладывали в форму, которую затем вакуумировали и нагревали до температуры пропитки 720° С. Пропитку осуществляли под давлением водорода 2 кгс/см . Полученные образцы испытывали при растяжении. Испытания показали большой разброс прочности. Максимальная прочность при температуре 500° С, равная —38 кгс/мм , была получена на композиции, содержащей 30 об. % нитевидных кристаллов сапфира.  [c.115]

Композиционные покрытия никель—двуокись циркония, никель—двуокись церия, медь—окись алюминия получены методом химического восстановления из суспензий, в которых дисперсионной средой являются щелочные растворы химического никелирования или меднения, а дисперсной фазой — один из вышеуказанных окислов. Изучены условия образования и ряд физико-механических свойств покрытий. Показано, что введение окисных добавок в растворы химической металлизации изменяет скорость осаждения покрытий и приводит к сдвигу стационарного потенциала. Лит, — 3 назв., ил. — 2.  [c.258]

Первая работа, посвященная получению КЭП, была опубликована еще в 1929 г. [8]. В ней описывалось образование самосмазы-ваем ого медного покрытия из кислого электролита, содержащего коллоидные частицы графита. Известно было также заращиаание медью, никелем, железом частиц алмаза и карбида кремния, расположенных на поверхности катода. Однако только через три десятилетия возникла техническая необходимость в развитии и использования композиционных покрытий.  [c.8]

Другие виды композиционных покрытий. Покрытия, полученные при соосаждении частиц карбонильного никеля с никелем (d = 40 мкм), используют для изготовления катодов электронных трубок. Соосаждение происходит электрофоретически при высоких плотностях тока (40 кА/м2), напряжении 25 В и небольшом расстоянии (8—15 мкм) между электродами. Покрытие получается рыхлым, а затем поры заполняют частицами Ba(Sr, Са)СОз.  [c.145]

В морских атмосферах скорость коррозии кобальта очень мала. На обоих испытательных стендах в Кюр-Бич (25 и 250 м от океана) коррозия происходила со скоростью от 2,5 до 5,1 мкм/год [46]. Электроосажден-ное кобальтовое покрытие может разрушаться быстрее, чем никелевое. Наличие продуктов коррозии кобальта придает поверхности красноватый оттенок. Сравнение свойств композиционных покрытий на стали, полученных электроосаждением хрома на нижний слой из кобальта, кобальтоникелевого сплава или никеля, показало, что во всех случаях достигается примерно одинаковая защита стали в морских атмосферах [47]. В целом кобальт можно отнести к металлам, стойким в морской атмосфере. Небольшая местная коррозия, как и в случае никеля, может происходить в результате образования коррозионных пар под солевыми и другими отложениями на поверхности.  [c.91]

Рис. 3.30. Структура рабочей поверхности монолитного композиционного автокатода из углеродных волокон, покрытых никелем и спрессованных и — шлифованная поверхность авто-катода. Угол на блюцения 0° б — та же поверхность после травления. Угол наблюдения 0° в — та же поверхность после травления. Угол наблюдения 45°. Увеличение 300 раз Рис. 3.30. Структура <a href="/info/1107">рабочей поверхности</a> монолитного композиционного автокатода из углеродных волокон, <a href="/info/593367">покрытых никелем</a> и спрессованных и — <a href="/info/469940">шлифованная поверхность</a> авто-катода. Угол на блюцения 0° б — та же поверхность после травления. Угол наблюдения 0° в — та же поверхность после травления. Угол наблюдения 45°. Увеличение 300 раз
Для повышения твердости и износостойкости, а также для восстановления деталей машин широко применяют электролитическое хромирование и осталивание (железнеыие), а также всевозможные износостойкие композиционные покрытия. Композиционные покрытия, включающие частицы оксидов и карбидов, обладают повышенной твердостью и износостойкостью по сравнению с покрытиями чистыми металлами. Твердость и износостойкость композиционных электрохимических покрытий на основе никеля с включениями корунда в 1,5—2,5 раза выше твердости и износостойкости никелевых покрытий. Композиционные железокорун-доБые покрытия (6—II % корунда) обладают износостойкостью, в 4—5 раза большей, чем покрытия железом, и имеют высокую твердость. Коэффициент трения композиционных покрытий, содержащих корунд, высок — 0,2—0,4. Широкое применение получили и антифрикционные металлические (на основе РЬ, бронзы — Си—Sn, никеля и др.) покрытия, полученные электроосаждением. Эти покрытия имеют низкий коэффициент трения 0,05—0,15 и обладают хорошей прнрабатываемостью и антикоррозионной стойкостью.  [c.347]

При одновременном введении в покрытие частиц с высокой твердостью н частиц твердой смазкн износостойкость и антифрикционные свойства повышаются. Наилучшнми триботехническими свойствами обладают композиционные покрытия на основе никеля. В табл. 31 приведены значения износо-  [c.161]


Лучшие свойства, достигнутые на композиционной системе Ni — AlgOg, не были очень высокими максимальная прочность при комнатной температуре составляла около 1170 МН/м (119 кгс/ммЗ), прочность при 1000° С 621 МН/м (63 кгс/мм ) прочность измерена на очень маленьких образцах, изготовленных ручной укладкой индивидуальных нитевидных кристаллов [7]. Насколько известно авторам, суш,ественного упрочнения при температурах выше 1000° С в композиционном материале никель или никелевый сплав — нитевидные кристаллы а — AlgOs на образцах диаметром выше 2,5 мм до сих пор не получено. Основными препятствиями в изготовлении композиций с использованием нитевидных кристаллов остаются разрушение кристаллов, падение прочности из-за взаимодействия с матрицей, трудности в создании ориентации нитевидных кристаллов и достижении достаточного объемного наполнения, нестабильность покрытий на кристаллах, слабая связь между волокнами и матрицей и в результате неудовлетворительная передача нагрузки от матрицы к упрочнителю.  [c.171]

Последующие исследования композиции на основе никелевой матрицы были направлены на изучение механических свойств и характера разрушения композиционного материала [13], контролируемого методами оптической и электронной сканирующей микроскопии. Компактные образцы материала в этой работе также получали горячим прессованием углеродных волокон с предварительно нанесенным электролитическим никелевым покрытием (использовали углеродный жгут фирмы Курто с числом элементарных филаментов около 10 ООО). Чрезвычайно низкие значения механических характеристик полученного композиционного материала авторы объясняют малой прочностью связи матрицы и волокна, охрупчиванием матрицы и разупрочнением углеродных волокон в процессе формирования композиции. Как и в предшествующей работе, отмечается, что композиционный материал никель — углеродное волокно обладает чрезвычайно низкой стойкостью в окислительных средах при 600° С волокна полностью выгорали за 5 ч. Скорость окисления волокон в композиции значительно выше, чем волокон, взятых отдельно. Это явление объясняется, по всей вероятности, тем, что кислород диффундирует через никелевую матрицу в атомарном состоянии, т. е. в наиболее активной форме.  [c.399]

В работе [8] сообщается о разработке метода электролитического осаждения на углеродный жгут различных металлических покрытий — никеля, алюминия, свинца и меди. При электроосаждении никеля из сульфатных электролитов хорошие результаты получаются лишь для углеродных жгутов с числом элементарных волокон не более 2500, увеличение числа элементарных воло1 он в жгуте до 5000 приводит к формированию неоднородного по толщине никелевого покрытия и даже к отсутствию покрытия в центральной части н гута вследствие плохой рассеивающей способности электролита. Образцы композиционного материала содержали до 50 об. % углеродных волокон. Компактные образцы получали прессованием через жидкую фазу пакета волокон с матричным покрытием и топким слоем сплава системы медь — серебро, обеспечивающим формирование жидкой фазы в процессе прессования. Свойства композиционного материала в работе [81 не сообщаются.  [c.400]

В работе [143] поверхностное легирование использовали для повышения статической и циклической прочности промышленного поликристаллического молибдена марки МЧ (плоские образцы толпщной 1 мм). На образцы молибдена (состояние поставки) на установке ВЭУ-120 (мош,ность 5 Квт) методом электронно-лучевого напыления наносили слой рения или никеля. После напыления рения проводили диффузионный отжиг в вакууме при температуре 1400 °С в течение 10 ч. В этом случае был получен композиционный материал с приповерхностным слоем переменного состава Re-Mo глубиной 8-10 мкм. Никель напылялся на рекристаллизованные образцы, а после напыления образцы отжигались в вакууме (900 С, 10 ч). Глубина диффузионного слоя в этом случае составляла 4 мкм. На рис. 5.21 представлены кривые статического растяжения и усталости образцов из молибдена в исходном состоянии и после поверхностного легирования. Некоторое улучшение пластичности при статических испытаниях на растяжение и повышение уровня предела выносливости в случае покрытия никелем, по-видимому, связано с большей пластичностью никеля по сравнению с молибденом, что приводит к пластифицирующему эффекту. Диффундируя в объем металла и располагаясь преимущественно вдоль границ зерен, никель участвует в образовании межзеренных прослоек, являющихся раствором молибдена в никеле. Эти прослойки оказывают упрочняющее влияние на границы зерен молибдена.  [c.191]

Изучение жаростойкости композиционных покрытий на основе никеля с оксидами редкоземельных элементов показало [131], что оксидная пленка на покрытиях в интервале температур 800—1100°С плотно прилегает к основе, а при температурах выше 1100°С отслаивается. Покрытие с ЬзгОз и N6203 при 1100—1200 °С разрушалось. Скорость окисления композиционных покрытий при температуре выше 900 °С больше, чем скорость окисления для N1, а по данным работы [131], скорость окисления КЭП никель — оксид титана выше скорости окисления N1 при 800—1100 °С. Снижение скорости окисления КЭП по сравнению со скоростью окисления контрольного покрытия наблюдалось при содержании частиц оксидов циркония, алюминия, тория и гафния. Повышение жаростойкости КЭП с матрицей из N1 при включении в него нитрида бора, талька отмечено в работах [130, 132, 133]. Окисление покрытий при 800— 1100°С проходит по закону, близкому к параболическому.  [c.89]

Валеева А. М., Сайфуллин Р. С., Яминова Г. Г. Исследование процесса нанесения композиционных покрытий с матрицей из сплава никель — фосфор и кобальт — фосфор, выделенных электрохимическим и химическим восстановлением. Рукопись деп. в отд. НИИТЭХИМ (Черкассы),.  [c.293]

Силникель — композиционное покрытие, получающееся. соосаждением никеля и мелкодисперсных частиц, которые могут быть как электропроводными, так и неэлектропроводными. Соосаждение происходит вследствие захвата частиц растущими слоями металла. При последующем хромировании композиционного никелевого покрытия образуется микропористое хромовое покрытие. При этом происходит увеличение поверхности обнаженного N1 и понижается анодная плотность коррозионного то-  [c.112]

Освоено (особенно в Великобритании, США и Японии) ЛКД композиционных сплавов. В качестве металлической основы используют главным образом алюминиевые сплавы, а в качестве неметаллических наполнителей — графит, карбид кремния, оксид алюминия и т. п. В табл. 14 приведены механические свойства композиционного сплава ЬМЗО на основе алюминиевого сплава с наполнителем — графитом в виде порошка, покрытого никелем [11]. Этот сплав использован для изготовления поошней автомобильных двигате 1ей.  [c.358]

Другая группа исследователей, работавшая с включением в никелевое покрытие частиц карбида кремния диаметром порядка 3 мкм, считает наилучшими условиями соосаждения высокую концентрацию инертных частиц в электролите (до 150 г/л) и оптимальное содержание их в покрытии 2,5—5 % pH никелевого электролита 5. При этом твердость покрытия (за счет твердости карбида кремния) доходит до 600 НУ, что и было назначением этого типа композиционного покрытия (а ие антикор[)озионные свойства нанесенно1 о сверху хрома). Наилучшим способом перемешивания они считают одновременное применение воздушного перемешивания и качания штанг. Несмотря на несколько различное назначение этих типов композиционных никелевых покрытий, условия соосаждения никеля и инертных частиц, в основном, одинаковы, поэтому интересно сопоставить все эти, несколько различные, рекомендации.  [c.174]


В п. 41 говорилось о нанесении композиционного покрытия сил-никель, служащего подслоем для микропористого хрома. Слой никеля с инертными частицами наносят тонктш (от 0,5 до 3 мкм, обычно по нетолстому слою блестящего никеля), а поверх слоя никеля с инертными частицами наносят обычное блестящее хромовое покрытие толщиной 0,2—0,5 мкм. Хром осаждается с большим количеством мелких пор (до 10 —10 на  [c.204]

Методом пропитки получали композиционный материал алюминий— углеродное волокно [126, 127, 155, 169] (патент ФРГ № 2115925, 1972 г.)- При этом для улучшения смачиваемости углеродные волокна предварительно покрывали никелем [20, 98], танталом [155], двухслойным покрытием из меди и никеля. Положительный эффект при пропитке углеродного волокна алюминием оказывает введение в расплавленный алюминий 0,5— 1,0% титана, предотвращающего образование на границе раздела матрица —волокно фазы AI4 3 и повышающего на 50% предел прочности изделия.  [c.97]

Прокатка. Процесс изготовления полуфабриката в виде леиты из композиционного материала на основе алюминия, упрочненного борным волокном, описан ниже (Патент Франции № 2133317, 1971 г.). Предварительную заготовку, состоящую из чередующихся слоев алюминиевой фольги и однонаправленного, уложенного с определенным шагом борного волокна, подвергали прокатке при температуре 600—650° С. Прокатку вели с небольшими степенями деформации за несколько проходов. Для улучшения прочности связи на границе раздела матрица — волокно на поверхность волокон рекомендуется наносить тонкое покрытие из вольфрама, никеля или меди. Полученный в виде ленты композиционный материал, содержащий около 50 об. % борного волокна, имел модуль упругости 25 ООО кгс/мм .  [c.145]

Перед нанесением покрытия волокна подвергали очистке, сенсибилизации и активирующей обработке. Для очистки поверхности волокон от поливинилового спирта их подвергали кипячению в воде. Сенсибилизацию проводили в течение 1—2 мин в растворе, содержащем хлористое олово—2 г/л и соляную кислоту — 50 г/л затем волокно промывали в воде и помещали на 1—2 мин п активирующий раствор (хлористый палладий — 0,1 г/л и соляная кислота — 10 г/л). Покрытия из электролитов № 1 и 2 содержали в своем составе от И до 15,6% по массе фосфора. Наличие фосфора в никеле снижает его температуру плавления до 970° С, углеродные волокна в контакте с ним охрупчива-ются, что значительно снижает прочность композиционного материала.  [c.186]

Положительные результаты стендовых испытаний позволили в 1974—1975 гг. приступить к летным испытаниям турбовентиляторного двигателя, лопатки третьей ступени которого были полностью выполнены из боралюминия. Летные испытания проводились на самолете F-111B. Программа испытаний включала полеты самолета с двумя двигателями, оснащенными лопатками из композиционного материала. Лопатки были изготовлены из алюминиевого сплава 6061, армированного волокнами борсик. Замковая часть лопаток в виде ласточкина хвоста изготовлена из титана. Передняя кромка лопатки имела никель-кобальтовое покрытие, осажденное электрохимическим способом на готовую лопатку, предназначенное для защиты от повреждения посторонними предметами. Лопатки из композиционного материала на 40% легче вентиляторных лопаток, изготовленных из титана. Расчеты показывают, что применение этих лопаток позволит снизить массу двигателей на 15—20% [177].  [c.235]

Электропроводящие частицы (W, Си, графит) соосаж-даются с никелем легче при низких pH. Композиционное электрохимическое покрытие медь —графит также получается при pH 1,5—2,5 и не образуется при pH >4.  [c.52]

Одним из путей защиты никеля является осаждение микротрещяноватого хрома (40—80 трещин а 1 мм ), в этом случае при коррозии происходит равномерное минимальное по глубине никелевого слоя разрушение. Другой путь — осаждение многослойных никелевых покрытий. Технология получения этих покрытий чрезвычайно сложна. Особый интерес представляет защита никеля и стали при осаждении тонкого промежуточного комбинированного слоя никеля в системе многослойных покрытий. При наличии композиционного слоя в отличие от обычных многослойных покрытий коррозионный процесс локализуется на поверхности изделия (рис. 43). Это  [c.128]


Смотреть страницы где упоминается термин Композиционные покрытия никеля : [c.82]    [c.238]    [c.214]    [c.14]    [c.187]    [c.320]    [c.65]    [c.289]    [c.111]    [c.77]   
Композиционные покрытия и материалы (1977) -- [ c.119 ]



ПОИСК



Композиционные покрытия

Никель

Покрытия никелем



© 2025 Mash-xxl.info Реклама на сайте