Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Столкновения механизмы

Передачу детали с одного элемента системы на другой осуществляют на стыковых позициях. Желательно, чтобы смежные устройства, обслуживающие стыковую позицию, были механически развязаны между собой, а управление ими осуществлялось только по признаку наличия (или отсутствия) детали. В случае, когда деталь может приниматься со стыковой позиции либо подаваться на стыковую позицию двумя конвейерами, необходимо предусмотреть дополнительный признак, позволяющий при одновременной готовности конвейеров к работе создавать преимущество для одного из них во избежание столкновения механизмов.  [c.168]


Ср " — постоянная времени процесса теплообмена при соударении частиц ( ) с частицами (г). Определение Ор " требует глубокого анализа механизма теплообмена при столкновении.  [c.224]

Рис-60. Виды различных фрактальных поверхностей, возникающих при описании перколяционных кластеров 1 - внешний периметр, или кожура (размерность Ой) 2 - неэкранированный пери.метр (показан штриховой линией) с размерностью Ои - области, где велика вероятность столкновения блуждающей частицы с границей кластера 3 - внутренний периметр. Поскольку размерность полного периметра кластера А> Дь, внутренний периметр имеет ту же размерность, что и полный периметр, 4 - узлы роста, они образуют "живую" границу кластера, фрактальная размерность их множества Конкретный вид фрактала, образованного этими узлами, зависит от механизма роста  [c.85]

Явление ослабевания люминесценции вследствие введения посторонних веществ носит название тушения люминесценции. Механизм этого процесса ясен для случая резонансной флуоресценции газов. Атом находится в возбужденном состоянии в среднем 10 — 10 с. За это время может произойти столкновение возбужденного атома с каким-либо атомом или молекулой примеси. При этом может оказаться, что энергия возбужденного атома передается частице, которая с ним столкнулась, и расходуется на какие-либо процессы, происходящие в данной частице, или переходит в тепло (столкновения второго рода). Таким образом, часть возбужденных атомов лишается возможности участвовать в излучении, и следовательно, происходит ослабление (тушение) первоначально наблюдаемой люминесценции. Взамен нее может произойти химическая реакция с молекулой, которая сама не поглощает света, но заимствует его от возбужденного атома (сенсибилизированная фотохимическая реакция, см. 190). Поглощенная энергия, переданная при столкновении второй частице, может пойти на возбуждение последней и вызвать ее люминесценцию (сенсибилизированная люминесценция).  [c.755]

Не следует считать, что тепловая энергия просто поступает с одного конца стержня и, проследовав вдоль него, доходит до другого. Механизм распространения тепловой энергии сходен с диффузионным, и поток фононов в образце как бы испытывает многократные столкновения. В противном случае  [c.42]

Основным механизмом возбуждения и ионизации атомов в полом катоде являются неупругие столкновения с электронами. Заметную роль в ионизации, а в ряде случаев и в возбуждении атомов исследуемого вещества, могут также играть соударения с возбужденными атомами инертных газов, находящихся в долгоживущих (метастабильных) состояниях. Гелий обладает наиболее высоким потенциалом возбуждения (19,8 эВ) и потенциалом ионизации (24,6 эВ). Вследствие этого средняя энергия электронов, характеризуемая электронной температурой, в разряде с гелием выше, чем с другими инертными газами. Поэтому в разряде с гелием удается получать спектры трудновозбудимых элементов и их ионов. Наоборот, в случае легковозбудимых элементов лучшие результаты дает использование более тяжелых газов, например аргона, поскольку они вызывают более интенсивное катодное распыление.  [c.74]


Существуют два основных механизма рассеяния 1) столкновение электронов с локальными неподвижными центрами — примесями, дефектами и пр. 2) рассеяние тепловыми колебаниями решетки — фононами.  [c.437]

Если время взаимодействия налетающей частицы с ядром не превышает характерного ядерного времени, то механизм реакции существенно меняется. Важнейшую роль здесь играют прямые процессы, в которых налетающая частица эффективно сталкивается с одним-двумя нуклонами ядра, не затрагивая остальных. Например, реакция (р, п) может произойти в результате столкновения протона с одним нейтроном ядра.  [c.133]

Самым важным является первый фактор. Если соответствующий узлу процесс не может идти за счет сильных взаимодействий, а обусловлен только электромагнитными или слабыми взаимодействиями, то этот узел возникает с малой вероятностью, т. е. редко. Поэтому наиболее вероятным механизмом любого процесса будет такой, который связан с минимальным числом каких-то элементарных узлов. Классическим примером такой ситуации является взаимодействие электронов и фотонов. Элементарный узел здесь соответствует виртуальному испусканию или поглощению фотона заряженной частицей, как это изображено на рис. 7.9. Вероятность этого процесса невелика, потому что он обусловлен не сильным, а электромагнитным взаимодействием. Малость этой вероятности проявляется в том, что электрону редко удается испустить второй виртуальный фотон до поглощения первого. Например, амплитуда вероятности процесса, изображаемого диаграммой рис. 7.10, примерно в 100 раз меньше амплитуд вероятности процессов, изображенных на рис. 7.9, так что отношение самих вероятностей имеет порядок 10 . Отсюда следует, что повторное испускание виртуального фотона свободным электроном, как правило, происходит примерно так, как это изображено на рис. 7.11. Поэтому, в частности, два электрона при столкновении успеют обменяться только одним фотоном (рис. 7.12). Амплитуда же процесса, соответствующего обмену двумя фотонами (рис. 7.13), будет меньше на два порядка, ибо эта диаграмма имеет два дополнительных узла. Следовательно, с хорошей точностью можно считать, что взаимодействие двух электронов, и вообще электромагнитное взаимодействие двух заряженных частиц, происходит путем переброски одного виртуального фотона. Символически это можно записать путем диаграммного равенства (рис. 7.14).  [c.321]

Рассмотрим теперь опытные свойства адрон-адронных столкновений. Адрон-адронные столкновения являются основным источником информации о механизме сильных взаимодействий, т. е. о динамических свойствах адронов. Другие экспериментальные возможности изучения динамических свойств адронов будут приведены в п. 11. По причинам, изложенным в гл. IX, 2, 3, на ускорителях экспериментально исследованы только столкновения рр до энергии 60 ГэВ в СЦИ и столкновения л р, К р, рр до энергии около 20 ГэВ в СЦИ. Начато исследование столкновений S p. Столкновения пр исследованы лишь до менее высоких энергий. Исследуются также высокоэнергичные столкновения адронов с ядрами и ядер с ядрами. Например, в Дубне изучаются столкновения ядер аргона друг с другом при Е 1,5 ГэВ/нуклон в СЦИ. В космических лучах регистрировались события, являющиеся последствиями адрон-адронных столкновений существенно более высоких энергий. Однако извлечение из этих данных четкой информации о механизме взаимодействия сильно затруднено тем, что в космических лучах имеют дело с природным наблюдением, а не с контролируемым экспериментом.  [c.374]

Посмотрим теперь, как согласуется такой механизм с опытными данными. Прежде всего заметим, что полные сечения зависят только от первых двух этапов столкновения. В грубом приближении можно считать, что на втором этапе происходит столкновение свободных валентных кварков. Уже отсюда получается простое и, как видно из рис. 7.37, хорошо согласующееся с опытом соотношение  [c.383]

Отсюда прямо следует, что наибольшим радиусом действия будут обладать силы, соответствующие механизму с наименьшими отклонениями масс виртуальных частиц от реальных. С другой стороны, из-за волновых свойств частица с импульсом р при столкновениях может чувствовать расстояния, не меньшие к == hip. Поэтому можно ожидать, что при низких энергиях столкновений основную роль будут играть механизмы с минимальным отклонением виртуальных масс от реальных, а с повышением энергии начнут вступать в игру механизмы, соответствующие более высоким значениям ДМ. Проиллюстрируем все это на примере взаимодействия нуклон — нуклон, которое мы подробно анализировали в гл. V с иных точек зрения. Часто можно встретить утверждение о том, что это взаимодействие осуществляется путем обмена пионом (см. рис. 7.16), подобно тому как взаимодействие электрон — электрон осуществляется путем обмена фотоном (см. рис. 7.12). Однако расчет нук-  [c.384]


Основными физическими величинами, характеризующими прохождение тяжелых частиц, являются потери энергии —dE/dx на единицу пути и полный пробег R частицы в веществе. Частица может терять энергию различными способами (столкновения с электронами, кулоновские столкновения с ядрами, ядерные столкновения с ядрами и т. д.). Соответственно полные потери получаются суммированием потерь, обусловленных различными механизмами. Как мы уже упоминали, для тяжелых заряженных частиц основ-ньши являются потери за счет ионизации и возбуждения атомных электронов вещества. Эти потери объединяются под общим названием ионизационных. В этом параграфе мы будем рассматривать только ионизационные потери. Рассмотрение других видов потерь мы отложим до 5.  [c.433]

Подобно заряженным частицам (и в отличие от нейтронов), пучок Y-квантов поглощается веществом в основном за счет электромагнитных взаимодействий. Однако механизм этого поглощения существенно иной. На это есть две причины. Во-первых, у-кванты не имеют электрического заряда и тем самым не подвержены влиянию дальнодействующих кулоновских сил. Как мы установили в гл. Vn, 6, взаимодействие улучей с электронами происходит в областях с радиусом порядка 10" см, что на три порядка меньше межатомных расстояний. Поэтому у-кванты при прохождении через вещество сравнительно редко сталкиваются с электронами и ядрами, но зато при столкновении, как правило, резко отклоняются от своего пути, т. е. практически выбывают из пучка. Вторая отличительная особенность 7-квантов состоит в том, что они обладают нулевой массой покоя и, следовательно, не могут иметь скорости, отличной от скорости света (см. гл. I, 2). А это значит, что 7-кванты в среде не могут замедляться. Они либо поглощаются, либо рассеиваются, причем в основном на большие углы.  [c.447]

Сейчас чаще используются радиотехнические схемы с активным гашением, в которых возникающий при разряде передний фронт импульса включает быстродействующие спусковые устройства, снимающие напряжение на счетчике. Совершенно иной механизм гашения возникает при добавлении в трубку многоатомных газов, например паров этилового спирта. Пары спирта сильно поглощают фотоны с энергиями, достаточными для выбивания фотоэлектронов из катода. При этом молекула спирта возбуждается и диссоциирует, но практически не испускает электронов. Поэтому повторные, лавины за счет фотоэлектронов с катода возникнуть не могут. Подавляются и повторные лавины за счет положительных ионов. Именно, положительные ионы основного газа счетчика (например, аргона), двигаясь к катоду, сталкиваются с молекулами спирта. Ионизационный потенциал спирта (11,7эВ) ниже ионизационного потенциала аргона (15,7 эВ). Поэтому при столкновении иона аргона с молекулой спирта энергетически выгодным является переход электрона к иону аргона с ионизацией молекулы спирта и нейтрализацией аргона. В результате до катода доходят только ионы спирта, которые при нейтрализации не выбивают электроны, а разваливаются. Счетчики, наполненные многоатомными газами, называются самогасящимися. В счетчиках, работающих в режиме  [c.497]

Интересным свойством нейтронов является их способность отражаться от различных веществ. Это отражение не когерентное, а диффузное. Его механизм таков. Нейтрон, попадая в среду, испытывает беспорядочные столкновения с ядрами и после ряда столкновений может вылететь обратно. Вероятность такого вылета носит название альбедо нейтронов для данной среды. Очевидно, что альбедо тем выше, чем больше сечение рассеяния и чем меньше сечение поглощения нейтронов ядрами среды. Хорошие отражатели отражают до 90% попадающих в них нейтронов, т. е. имеют альбедо до 0,9. В частности, для обычной воды альбедо равно 0,8. Неудивительно поэтому, что отражатели нейтронов широко применяются в ядерных реакторах и других нейтронных установках. Возможность столь интенсивного отражения нейтронов объясняется следующим образом. Вошедший в отражатель нейтрон при каждом столкновении с ядром может рассеяться в любую сторону. Если нейтрон у поверхности рассеялся назад, то он вылетает обратно, т. е. отражается. Если же нейтрон рассеялся в другом направлении, то он может рассеяться так, что уйдет из среды при последующих столкновениях.  [c.549]

В качестве примера неорганической реакции приведем несколько фактов, касающихся радиолиза воды — процесса, играющего фундаментальную роль для понимания любых реакций, проходящих в водных растворах. Главной трудностью опытного изучения механизма радиационно-химических процессов является то, что промежуточные ионы и свободные радикалы живут очень короткое время из-за высокой химической активности. Несколько дольше эти промежуточные продукты живут в парах низкого давления (10 — 10 мм рт. ст.), где столкновения более редки. Поэтому главным источником информации о природе ионов, образуемых излучениями, является масс-спектрографическое исследование облучаемых паров. Так, при облучении водяного пара электронами с энергией 50 эВ установлено, что различные положительные ионы образуются в следующих относительных количествах  [c.661]

Для того чтобы получить выражения для правых частей (1.2.2) и (1.2.3), которые называют столкновительными членами, необходимо знать механизм столкновения молекул.  [c.11]

Механизмом, с помощью которого осуществляется любой релаксационный процесс, является обмен различными вида ми энергии при столкновении молекул друг с другом к обмен атомами при элементарных химико-кинетических актах. Продолжительность релаксации каждой степени свободы оценивается с точки зрения эффективности обмена соответствующим видом энергии при соударениях.  [c.129]

Механизм радиационного отжига изучен недостаточно. Столкновения нейтронов с атомами углерода служат причиной образования термиче-  [c.200]

Основным механизмом взаимодействия быстрых нейтронов с веществом является упругое рассеяние на ядрах атомов. В среднем нейтрон передает атому мишени энергию, равную Е/А. Атомы средних или тяжелых элементов, получив энергию от быстрого нейтрона, движутся со скоростью, значительно меньшей скорости внешних орбитальных электронов, поэтому должна происходить не ионизация их, а потеря энергии в основном за счет упругих столкновений с другими атомами твердого тела. В результате только небольшая часть энергии нейтрона теряется на иони-  [c.281]


Еще труднее выделить чистую теплопроводность в газах. Ее механизм заключается в переносе кинетической энергии молекулярного движения в результате хаотического столкновения отдельных молекул газа. Это явление можно трактовать как стремление более быстрых, подвижных, подогретых молекул газа поделиться своей энергией движения с инертными, холодными соседями.  [c.116]

Достоверных сведений о механизме поглощения СО из атмосферы нет, хотя отдельные возможные приемники этого газа исследовались. Активные механизмы стока СО. безусловно, существуют, потому что фоновая концентрация СО, судя по всему, оставалась неизменной в течение того же периода времени, когда возрастал уровень выбросов в атмосферу двуокиси углерода Oj. Окись углерода химически инертна при концентрациях, обычно существующих в атмосфере, и фотохимические реакции с участием СО происходят довольно редко — окись углерода почти полно-стью прозрачна для солнечных лучей правда, она может превращаться в двуокись углерода при соударении ее молекул с атомарным кислородом, но такие столкновения бывают редко. Кроме того, в нижних слоях атмосферы химические реакции с участием СО протекают крайне медленно например, реакции  [c.304]

При одновременном действии нескольких механизмов рассеяния подвижность можно найти из следующих соображений. Величина W = 1/т представляет собой среднее число столкновений электрона за единицу времени. При одновременном действии нескольких независимых механизмов рассеяния полное число столкновений за единицу времени равно сумме чисел столкновений, обусловленных разными механизмами рассеяния электрон-фононным ьУф, элект-рон-примесным Шц и т. д.  [c.186]

Определенный практический интерес в рассматриваемой области представляет вопрос о влиянии смачивателей и смачиваемости пылинок на коэффициент их осаждения. Изучение этого вопроса рядом авторов заключалось, главным образом, в подборе смачивателей, добавляемых к воде для повышения эффективности столкновений, механизм же процесса исследован недостаточно. Поэтому приведенные в литературе данные часто противоречивы. Так, Бургож и Расбах [Л. 14] не обнаружили влияния смачивателей на осаждение масляного тумана распыленной водой. К таким же выводам пришли Джонстон, Филд и Фаслер [Л. 15], исследуя  [c.18]

При обычной максимальной рабочей температуре для вакуумных ленточных ламп 1850 °С давление паров вольфрама чрезвычайно низко и им можно пренебречь. Однако для ламп, предназначенных для работы при более высокой температуре, в оболочку вводится инертный газ, например аргон. Присутствие газа понижает потери вольфрама на испарение. Большинство испарившихся атомов вольфрама не успевает продиффун-дировать через граничный слой газа и уйти с конвекционным потоком, а затем после столкновений с атомами газа вновь конденсируется на поверхности вольфрама. Очень большие потери вольфрама могут быть обусловлены процессом, известным как эффект водного цикла . Потери в этом процессе являются наиболее существенными и могут приводить к большим дрейфам градуировки при высоких температурах. Принято считать, что эффект водного цикла имеет следующий механизм. Водяной  [c.353]

Изложенный механизм справедлив для случая небольшой разности температур между пористым материалом и паровой фазой смеси. Совершенно по-другому испарение потока завершается в тех случаях, когда вследствие подвода теплоты теплопроводностью в область испарения температура пористой матрицы быстро возрастает. В этом случае в месте, где температура проницаемого каркаса достигает определенной величины Г, соответствующей предельно достижимому перегреву жид кости, теплоноситель не может больше существовать в жидкостной фазе на поверхности частиц, жидкость перестает смачивать материал и микропленка свертывается в микрокапли. В итоге происходит резкое уменьшение интенсивности теплообмена при смене режима испарения микропленки на режим конвективного теплообмена дисперсного потока перегретого пара с мельчайшими каш1ями. Здесь микрокапли при столкновении с поверхностью каркаса уже не растекаются по ней, вследствие чего испарение их затруднено.  [c.82]

Для того, чтобы сравнить оценку Lkoi- по формуле (5. 54) с дан ными опыта, надо выбрать определенный источник света. Пуегь интерферометр освещается излучением газоразрядной плазмы низкого давления, когда столкновениями можно пренебречь, а основной причиной уширения спектральной линии служ1гг хаотическое тепловое движение излучающих атомов. Механизм этого доплеровского уширения рассмотрен в гл. 7, а сейчас мы ограничимся некоторыми простыми оценками.  [c.232]

С точки зрения сохранения энергии и импульса я°-мезон был создан в этом акте столкновения до этого столкновения он не существовал. Энергия для катализации создания л°-мезона была доставлена нейтроном и протоном. я -мезон может рассматриваться как созданный из вакуума — соверщенно аналогично тому, как электронно-позитронная пара создается гамма-лучом. Подробное описание механизма такого рода процессов возможно только на языке релятивистской квантовой теории. Взаимодействие между пионами (я-мезонами) и нуклонами (протонами и нейтронами) таково, что, если бы, пользуясь идеальным  [c.428]

При энергиях налетающих электронов, превыщающих приблизительно 140 МэВ, начинает действовать дрхтой механизм потери энергии и импульса. В этой области при неупругих столкновениях наблюдается, что  [c.433]

Подвижность носителей. Подвижность носителей заряда определяется согласно (7.124) временем релаксации т. Время релаксации было введено в модели свободных электронов Друде для объяснения теплопроводности и электропроводности металлов. Предполагалось, что за единичнре время любой электрон испытывает столкновение с вероятностью, равной 1/т, т. е. считалось, что результат столкновения не зависит от состояния электронов в момент рассеяния. Такое упрощение является чрезмерным. Частота столкновений электрона сильно зависит, например, от распределения других электронов, так как в силу принципа Паули электроны после столкновений могут переходить только на свободные уровни. Кроме того, в твердом теле существуют различные механизмы рассеяния. Поэтому при таком описании столкновений от приближения времени релаксации отказываются. Вместо введения времени релаксации предполагают существование некоторой вероятности того, что за единичное время электрон из зоны п с волновым вектором к в результате столкновения перейдет в зону с волновым вектором ki. Эту вероятность находят с помощью соответствующих микроскопических расчетов. Такой подход, однако, очень сильно осложняет рассмотрение.  [c.249]

При рассмотрении механизма рассеяния предполагалось, что фотон сталкивается со свободным электроном. Для легких атомов и периферических, слабо связанных электронов такое допущение вполне оправдано, так как энергия связи электрона ничтожно мала по сравнению с энергией фотона рентгеновских лучей. Но внутренние электроны, особенно в тяжелых атомах, связаны настолько прочно, что их уже нельзя рассматривать как свободные. Поэтому при столкновении фотон обменивается энергией и количеством движения с атомом в целом. Учет этого обстоятельства объясняет ряд особенностей эффекта Комптона и в первую очередь наличие несмещенной линии, а также соотношение интенсивностей смещенной и несмепщнной линий.  [c.182]

По механизму преобразования энергии различают резонансную, спонтанную, вынужденную и рекомбинационную люминесценцию. Эти механизмы отличаются друг от друга характером перехода молекулы с уровня первоначального возбуждения на уровень, с которого происходит переход с излучением кванта. Если первоначальный уровень возбуждения и уровень излучения принадлежат одной и той же молекуле (атому), то люминесценция называется спонтанной (рис. 99, а). В этом случае молекула (атом) называется центром люминесценции, а ж ол-внутрицентро-вым. Если уровни первоначального возбуждения и излучения совпадают, то люминесценция называется резонансной. Ясно, что в этом случае энергия испущенного кванта равна энергии поглощенного. При спонтанной люминесценции в большинстве случаев энергия испущенного кванта меньше энергии поглощенного. Такая люминесценция называется стоксовой. Однако в достаточно большом числе случаев осуществляется анти-стоксова люминесценция, когда после возбуждения в результате столкновений происходит увеличение колебательной энергии молекулы, т.е. ее переходы по колебательным уровням возбужденного состояния не вниз, как изображено на рис. 99,а, а вверх. В результате уровень излучения оказывается выше первоначального уровня возбуждения и энергия испущенного кванта-больше энергии поглощенного. Однако интенсивность антисток-сова излучения мала по сравнению с интенсивностью стоксова излучения, поскольку в соответствии с распределением Больцмана концентрация молекул С увеличением их энергии быстро (экспоненциально) убывает.  [c.329]


Относительные движения комнонеит, описываемые диффузионными скоростями или диффузионными потоками piW.- и непосредственно влияющие лишь на концентрацию компонент р /р, определяются диффузионным механизмом (столкновения молекул при их хаотическом движении). Законы диффузии (в том числе тер-мо- и бародиффузии) устанавливают зависимость (как правило линейную) для мгновенных значений piW в зависимости от градиентов концентраций компонент, градиентов температуры и давления. Используя эти законы диффузии, мы пренебрегаем инерцией относительного движения компонент.  [c.25]

О некоторых механизмах, стабилизирующих течения дисперсных сред. В реальных течениях возможно существование различных дополнительных механизмов, стабили.чпрующих течение и неучтенных в обсуигдавшихся системах уравнений. Рассмотрим влияние давления псевдогаза, молекулами которого являются дисперсные частицы, обусловленное пх взаимодействием, друг с другом (нанример, из-за столкновений). В качестве иллюстрации введем это давление p,i, описываемое зависимостью  [c.316]

Перейдем к объяснению механизма адрон-адронной динамики на основе кварк-партонной модели. Партонные динамические свойства адронов наиболее отчетливо проявляются при больших быстротах столкновения, когда  [c.381]

В резонансной области энергий первое основное допущение кварк-партонной модели не выполнено. Поэтому все три этапа столкновения сливаются в один. Это означает, что партонная структура при этих энергиях еще не проявляется, так что за основные частицы приходится принимать сами барионы и мезоны. В таком подходе приходится проводить сложные и громоздкие количественные расчеты, базирующиеся на технике диаграмм Фейнмана, Главная трудность состоит в том, что константы связи адронных узлов велики по сравнению с единицей. Это означает, что в этих взаимодействиях нельзя выделить какой-то основной элементарный процесс, подобный виртуальному рождению фотона (см. рис. 7.9) в квантовой электродинамике. Поэтому в изучаемый процесс заметный вклад вносит большое число различных диаграмм. В электромагнитных взаимодействиях, как и во всех взаимодействиях с малой константой связи, соблюдается простое правило чем больше узлов имеет диаграмма, тем меньше вероятность описываемого этой диаграммой механизма. В сильных взаимодействиях вероятность того или иного механизма практически не зависит от числа узлов в соответствующей диаграмме. Определяющим фактором здесь становится степень виртуальности промежуточных частиц.  [c.384]

Вопрос о механизме высвобождения ядерной энергии в водо-родно-гелиевой среде является не совсем тривиальным. Дело в том, что обычные ядерные реакции, которые мы анализировали в гл. IV, в такой среде непосредственно происходить не могут. Действительно, при столкновении двух протонов или двух а-частиц образования новых ядер не происходит  [c.604]

Имеются и другие механизмы образования зародышевых трещин, детальный анализ которых выполнен В. И. Трефиловым, В. Л. Иденбомом, Т. Екобори и др. Например, часто зарождение трещин наблюдается в месте встречи двойника деформации с каким-либо трудно проницаемым барьером границей зерна или другим двойником (рис. 225, г, д). Двойники распространяются с высокой скоростью и возникающие при столкновении с препятствием напряжения не успевают релаксировать. Особенно благоприятные условия для зарождения трещин создаются при встрече растущего двойника деформации с ранее образовавшимся, для которого было характерно другое направление двойникования (см. рис. 225,(3). В этом случае концентрация напряжений в месте встречи особенно велика. В поликристаллах и осо-  [c.428]

В области изучения износа транспортных машин имеются исследования по износу автомобилей [1 98], самолетов [38, 97], железнодорожного транспорта, судовых установок [1011 и др. Характерным для всех транспортных машин является взаимосвязь износа с динамическими параметрами машины. Нередко поломки элементов машины связаны с износом ее механизмов, так как в результате износа возрастают динамические нагрузки. Стремление к высоким скоростям и нагрузкам современных транспортных машин приводит к жестким требованиям в отношении износа основных элементов, влияющих на эти показатели и опре-деляюш,их безопасность движения. Существенно также влияние окружающей среды — запыленности и влаги воздуха, наличия агрессивных сред, возможности столкновения с препятствиями, качества дорог и покрытий аэродромов. Кроме того, из-за сильной изменчивости режимов работы, для транспортных машин характерен широкий диапазон силовых и температурных нагрузок.  [c.367]

Микрокартину протекания коррозионных разрушений в метанольных растворах наблюдали авторы работы [ 70]. Они установили, что зарождение трещин происходит в месте столкновения полосы скольжения с границей зерна. Возникающая "ступенька" приводит к нарушению защитной пленки, а концентрация напряжений обусловливает развитие трещин по границе зерна (рис. 43). Этот механизм определяет распространение  [c.79]

На рис. 5.1 схематически показаны пять возможных механизмов воздействия излучения. Вакансии образуются как результат первичного столкновения нейтрона с атомом. Этот нейтрон продолжает испытывать столкновения с атомами до тех пор, пока не растратит свою энергию. Вторичный эффект является следствием передачи энергии нейтроном атому, с которым он столкнулся. Этот атом сталкивается с другими атомами, выбивая их из мест, занимаемых ими в кристаллической решетке, и передавая им энергию. В конце концов, выбитый атом теряет всю энергию и остается в промежуточном положении кристаллической решетки. Таким образом, при столкновении нейтронов и атомов решетки образуются два типа точечных дефектов — вакансии и смещенные атомы, расположенные в междоузлиях. Дине и Виньярд [3] вычислили число пар вакансия — смещенный атом в меди, образующихся при столкнове-  [c.233]

Нейтроны не имеют электрического заряда, и, следовательно, механизм их взаимодействия с веществом иной по сравнению с тем случаем, когда главную роль играют кулонов-ские силы. Как отмечалось в гл. 7, нейтроны можно охарактеризовать их скоростью. Heii-троны с энергией менее 0,05 эВ называют теп-ловыми , нейтроны с энергией до 0,1 кэВ относят к медленным, а с энергией, превышающей 0,1 кэБ, — к быстрым. Быстрые нейтроны передают энергию главным образом в результате прямых столкновений с ядрами. Если масса ядра более чем в 5 раз превосходит массу нейтрона, при таком столкновении в соответствии с законами сохранения энергии и момента количества движения количество энергии, передаваемой ядру, будет очень незначительно. Иначе обстоит дело при взаимодействии нейтронов с живой тканью, содержащей большое количество атомов водорода и  [c.336]

Если толщина пленки d порядка длины свободного пробега электрона в диэлектрике или меньше ее (d < X), то использовать понятие подвижности носителей заряда для расчета сопротивления такой пленки нельзя. В этом случае электроны металла, преодолевшие потенциальный барьер Фо и влетевшие в диэлектрическую пленку, будут попадать на второй контакт практически без столкновений (рис. 10.3, б). Такой механизм прохождения свободных зарядов через тонкую диэлектрическую пленку называют надбарьерной инжещией, или надбарьерной эмиссией. Воспользовавшись аналогией с термоэлектронной эмиссией в вакуум, можно определить плотности встречных электронных токов с металлических контактов по формуле Ричардсона — Дешмена  [c.274]


Смотреть страницы где упоминается термин Столкновения механизмы : [c.300]    [c.23]    [c.126]    [c.193]    [c.153]    [c.386]    [c.75]   
Физика твердого тела Т.2 (0) -- [ c.219 , c.314 , c.315 ]

Физика твердого тела Т.1 (0) -- [ c.219 , c.314 , c.315 ]



ПОИСК



Столкновения



© 2025 Mash-xxl.info Реклама на сайте