Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Доплеровское уширение

Это соотношение показывает, что доплеровское уширение велико для легких атомов при высокой температуре и играет основную роль при исследовании низкого давления, когда можно не учитывать столкновительное уширение.  [c.67]

Рассмотрим более подробно природу доплеровского уширения спектральной линии. Пусть имеется некоторый ансамбль излучающих атомов (ионов), участвующих в хаотическом тепловом движении. В этом случае скорости частиц распределены по закону Максвелла, т.е. относительное число частиц dn/n, проекции скорости которых лежат в интервале от до l x + определяется выражением  [c.391]


Какими параметрами определяется доплеровское уширение спектральной линии  [c.453]

Доплеровское уширение линий. Хаотическое движение излучающих частиц приводит к доплеровскому уширению спектральных линий. При максвелловском распределении частиц по скоростям выражение для формы спектральной линии имеет гауссовский вид  [c.262]

Увеличение резонансного поглощения в большом энергетическом диапазоне является основным фактором, влияющим на значение нейтронного потока в реакторе БН. Так как это захват в воспроизводящем материале, то истинным результатом доплеровского уширения являются существенное снижение количества нейтронов и соответствующая потеря реактивности. Эта потеря реактивное может быть больше, чем добавочное увеличение реактивности, из-за ужесточения спектра, если воспроизводящая составляющая зоны достаточно большая по сравнению с составляющей деления. И, как следствие, обогащение топлива для реакторов-размножителей на быстрых нейтронах с жидкометаллическим теплоносителем будет ограничено в пределах 12—25 %. Даже с этим ограничением температурные отрицательные значения коэффициентов реактора на быстрых нейтронах достаточно малы — около 2- Ю" .  [c.179]

Рис. 4. Модовый состав резонатора при доплеровском уширении атомной линии Рис. 4. Модовый состав резонатора при доплеровском уширении атомной линии
Наибольшая мощность (45 и 37%) приходится соответственно на излучение длин волн 0,4880 (голубая линия) и 0,5017 мкм (зеленая линия). Суммарная мощность излучения на трубках длиной 50 см составляет несколько ватт. Ширина линий определяется доплеровским уширением, обусловленным высокой ионной температурой (обычно свыше 2000 К). Доплеровская ширина оказывается при этом порядка нескольких тысяч мегагерц, в то время как частотный интервал между модами резонатора равняется нескольким сотням мегагерц, поэтому генерация, как правило, происходит на многих модах.  [c.43]

В случаях большой интенсивности лазерного излучения, особенно при импульсном режиме работы лазера, имеют место явления двухфотонного поглощения, состоящие в том, что молекула одновременно поглощает два фотона и переходит в энергетическое состояние, энергия которого равна сумме энергий двух падающих фотонов. Исследование спектров флуоресценции и поглощения подобных систем открывает новые возможности, которые были исключены при использовании обычного источника света. Так, если систему атомов или молекул освещать двумя лазерами, обеспечивающими излучения на частотах Vj и Vg, направленные навстречу друг другу, а частицы при этом перемещаются со скоростью v вдоль линии распространения лучей, то будут наблюдаться новые волны, одна с частотой Va (1 — v ) и другая с частотой (1 + vie). При достаточно высоких интенсивностях лазерных лучей двухфотонное поглощение приведет систему в состояние с энергией /г (vj + Vg) -+ ft (vj — v ) vie. Видно, что доплеровское уширение имеет  [c.221]


ППЧ реализуется как при внеш. микроскопич. воздействии [вследствие описываемого величинами о и 2. в (12) взаимодействия с др. частицами, приводящего к сбою фазы атомного осциллятора — см. Уширение спектральных линий], так и в результате хаотизации параметров излучаемого фотона независимо от микроскопич. воздействия среды (при доплеровском уширении).  [c.568]

В условиях большого доплеровского уширения и прн редких столкновениях Д = (Q/k)Nl N1 — концентрация возбуждённых частиц), при этом  [c.468]

Так как излучающие частицы движутся с различными скоростями и в различных направлениях, то частотные сдвиги излучаемых ими линий различны. Поэтому даже в случае отсутствия столкновений неподвижный спектральный прибор будет регистрировать множество естественно уширенных линий, различно смещенных относительно частоты Vo. Суперпозиция этих смещенных линий и дает наблюдаемый профиль уширенной линии. Это так называемое доплеровское уширение линии является неоднородным. Каждая конкретная частица в описанной ситуации может излучать линию лишь в узком, определяемом естественным уширением, спектральном диапазоне, сдвинутом относительно vo на конкретную величину, однозначно связанную со скоростью и направлением движения этой частицы. Естественно, что и поглощать излучение с фиксированной частотой смогут только те частицы, доплеровский сдвиг которых соответствует этой частоте.  [c.21]

Естественная ширина спектральной линии возникает при отсутствии внешних воздействий на излучающие атомы. Столкновения излучающих атомов, а также эффект Доплера приводят к ударному и доплеровскому уширению спектральных линий. На этом явлении основан один из методов определения температуры газа.  [c.248]

Ширина лэмбовского провала порядка ширины линии, обусловленной столкновительным уширением, выражение для которого дано в разд. 6.З.З.1. Предполагая, что в газовой смеси СОг N2 Не парциальные давления равны 1,5 мм рт. ст., 1,5 мм рт. ст. и 12 мм рт. ст., получаем Aw 64,3 МГц. Доплеровское уширение составляет Avq 60 МГц.  [c.545]

Когда преобладает доплеровское уширение (т. е уширение за счет столкновений пренебрежимо мало), форма линии описывается соотношением  [c.108]

Эквивалентная ширина одиночной линии, уширенной за счет соударений, может быть определена из уравнения (2.706), если подставить в него значение Xv из (2.65) и затем проинтегрировать его. Аналогично Wi для линии с доплеровским уширением можно определить путем подстановки в уравнение (2.706) значения Xv из (2.69) и проведения интегрирования. Подробности этих вычислений и окончательные выражения для Wi можно найти в книге [49].  [c.109]

Доплеровская полуширина 108 Доплеровское уширение 107  [c.606]

Для того, чтобы сравнить оценку Lkoi- по формуле (5. 54) с дан ными опыта, надо выбрать определенный источник света. Пуегь интерферометр освещается излучением газоразрядной плазмы низкого давления, когда столкновениями можно пренебречь, а основной причиной уширения спектральной линии служ1гг хаотическое тепловое движение излучающих атомов. Механизм этого доплеровского уширения рассмотрен в гл. 7, а сейчас мы ограничимся некоторыми простыми оценками.  [c.232]

Доплеровское уширение спектральных линий в значительной степени лимитирует возможности оптической спектроскопии высокого разрешения. Известно (см. 5.7), что, увеличивая коэффициент отражения зеркал интерферометра при высокой точности их изготовления, повышая расстояния между отражающими поверхностями и используя сложные интерфером.етры (мультиплексы), можно довести разрешающую силу интерферометра до значения порядка 10 и даже более. Однако при реализации столь большой разрешающей силы в оптических экспериментах часто возникают серьезные затруднения. Конечно, могут появиться задачи, при которых требуется с высокой точностью записать широкий контур, но если обратиться к возможности раздельного наблюдения двух близких по длине волны линий при учете неизбежных флуктуаций источника, то, даже используя прибор высокой разрешающей силы, нельзя их разрешить, если доплеровские контуры сильно перекрываются. Нетрудно оценить ту область, где возникают такие перекрытия пусть л = 5000А и 6Лдо = 0,005А тогда У./ЪУ. 10 , что и объясняет трудность реализации разрешающей силы, если она составляет несколько миллионов.  [c.393]

Таким образом в опыте Гольдхабера и др. осуществляется очень интересный случай резонансного рассеяния -квантов без использования эффекта Мессбауэра. Естественно, что наблюдение резонансного рассеяния такого характера возможно только при описанной выше кинематике процесса (т. е. когда нейтрино летит вверх, а ядро Sm, и у-квант вниз, причем у-квант вылетает из движущегося ядра) и при Тя=Тя. На самом деле энергия е-захвата ядра (0,900 Мэе) несколько отличается от энергии возбуждения ядра (0,961 Мэе). Поэтому Гя 2,88 эвФТ/=3,28 эв. Однако это различие компенсируется небольшим отклонением направления вылета -квантов от вертикали (см. рис. 152). Заметим, что для успеха опыта достаточно совпадения Гя и Тп с погрешностью до доплеровского уширения линии испускания, которое сравнительно велико  [c.251]


Эффект Доплера существенно сказывается на структуре спектральных линий источников света. Вообще следует отметить, что во. всех газоразрядных источниках света атомы и ионы газа летят с большими скоростями во всех направлениях. В зависимости от скорости они будут давать разное доплеровское смещение частоты юлучения, в результате чего спектральные линии оказываются расщиренными. Это явление называют доплеровским уширением спектральных линий.  [c.220]

Ширина спектральных линий в полом катоде обусловлена в основном доплеровским уширением. Для его уменьшения прибегают к охлаждению катода. Вследствие выделения тепла при разряде температура газа внутри полости катода может быть заметно выше температуры его стенок. Для линий водородоподобных атомов, сильно подверженных эффекту Штарка, может оказаться существенным их уширение заряженными частицами в плазме. Резонансные линии элементов нередко испытывают уширение вследствие самопоглощения. (Об уширенин спектральных линий см. задачу 17 I.)  [c.74]

Исследование формы К. с. л. используется для определения физ. характеристик излучающих и поглощающих объектов. Форма К. с. л. оптически тонкого объекта определяется доплеровским уширением и взаимодействием излучающих атомов с окружающими частицами. В разрежеиных газах и плазме К. с. л. гауссов, при умеренных давлениях — лоренцевский (для нейтральных газов — вплоть до давлений н неск. дес. атмосфер, в плазме — для линий атомов и ионов низкой кратности, кроме водородоподобных, при плотности электронов —10 см ). При высокой плот-  [c.450]

Применение когерентных источников излучения позволяет наблюдать методами М. с. весьма узкие спектральные линии, т. е. достигать высокого спектрального разрешения. Типичные ширины линий, обусловленные столкновениями частиц в газе,— от 10 МГц до 1 МГц при давлениях от 1 до 10 Па. При разрежении газа ширины линий определяются Доплера эффектом при движении частиц и соударениями со стенками поглощающей ячейки, они составляют в микроволновом диапазоне от 1 МГц до 0,1 МГц. Для дальнейшего сужения линий применяют ряд способов устранения доплеровского уширения. Ширины линий в таких субдоплеровских спектрометрах определяются временем взаимодействия частиц с полем излучения (см. Неопределенностей соотношения). В молекулярных и атомных перпен-  [c.133]

ТО в спектральном контуре поглощения (усиления) этой волны образуется провал на частоте Длительность существования провала определяется временем жизни частиц на возбуждённом уровне. Перестройкой частоты пробного пучка удаётся измерить естеств. форму линий перехода, совпадающую с формой провала в насыщенном спектре поглощения (усиления) и обычно скрытую неоднородным (в газе — доплеровским) уширением. Этим методом можно также определить времена релаксации двухуровневой системы, Т. о., Н. с. позволяет измерять параметры одиночного оптич. резонанса, не поддающиеся измерению методами линейной спектроскопии. Циркулярно поляризованная волна накачки может индуцировать в среде гиротропию для пробной световой волны.  [c.306]

Оптические реперы. Используемые в СВЧ-диапазоне методы получения узких спектральных линий оказались не применимыми в оптич. области спектра (доплеровское уширение мало в СВЧ-диапазоне). Для О. с. ч. важны методы, н-рые позволяют получать резонансы в центре спектральной линии. Это даёт возможность непосредственно связать частоту излучения с частотой квантового перехода. Перспективны три метода метод насыщенного поглощения, двухфотонного резонанса и метод разнесённых оптич. полей. Осн. результаты по стабилизации частоты лазеров получены с помощью метода насыщенного поглощения, к-рый основан на нелинейном взаимодействии встречных световых волн с газом. Нелинейно поглощающая ячейка с газом низкого давления может находиться внутри резонатора лазера (активный репер) и вне его (пассивный репер). Из-за эффекта насыщения (выравнивание населённостей уровней частиц газа в сильном поле) в центре доплеровски-уширен-ной линии поглощения возникает провал с однородной шириной, к-рая может быть в 10 —10 раз меньше доплеровской ширины. В случае внутренней поглощающей ячейки уменьшение поглощения в центре линии приводит к появлению узкого пика на контуре зависимости мощности от частоты генерации. Ширина нелинейного резонанса в молекулярном газе низкого давления определяется прежде всего столкновениями и эффектами, обусловленными конечным временем пролёта части-  [c.451]

П, э. играет большую роль в квантовой электронике в нелинейной оптике ячейки с просветляющимся веществом используются для т, н. пассивной модуляции добротности и синхронизации мод лазеров, формирования коротких импульсов в лазерных усилителях и т. п. П, э. в газовых средах, помещённых в резонатор лазера а. обладающих доплеровски уширенной линией поглощения на частоте генерации, используется для стабилизации частоты и сужения линий генерации. В нели-нейной спектроскопии наблюдение П. а. в неоднородно уширенных линиях поглощения является ордт/i из методов регистрации спектров с высоким разрешением.  [c.151]

УШИРЁНИЕ СПЕКТРАЛЬНЫХ ЛИНИЙ—физ. процессы, приводящие к немонохроматичности спектральных линий и определяющие их контуры. Любое воздействие на излучающую или поглощающую квантовую систему (атом, молекулу) влияет на контур спектральной лилии (ширину и сдвиг). Радиац. затухание ответственно за естественную ширину спектральной линии. Тепловое движение в газе приводит к доплеровскому уширению. Взаимодействие атома или молекулы с окружающими частицами вызывает уширение, сдвиг и асимметрию контура спектральной линии, зависящие от сорта возмущающих частиц и характеристик их движения.  [c.262]


В лазерном переходе неона иа длине волны 1,15 мкм преобладает доплеровское уширение с шириной Дго = 910 Гц. Время жизии верхнего уровня 10 с. Вычислите максимальное значение сечеиия перехода, если время жизни лазерного перехода равно полному времени жизни верхнего состояния.  [c.104]

ГГЦ для доплеровски уширенной линии газового лазера, работающего в видимой или ближней ИК-области, до 300 ГГц и выше для перехода ионов в твердом теле (см. табл. 2.1). Таким образом, число мод, лежащих в пределах ширины полосы лазера, в рассматриваемых примерах может составлять приблизительно от 6 до 2-10 . Разница в усилении между этими модами уже достаточно мала для 6 мод и становится совсем незначительной для 10 мод. Поэтому на первый взгляд следовало бы ожидать, что при достаточно высокой скорости накачки будет возбуждаться значительная часть этих мод.  [c.254]

Величина Avo может иметь значения в области от I ГГц для доплеровски уширенного перехода в видимой области спектра до 300 ГГц в твердотельных лазерах (см. табл. 2.1). Однако в случае резонатора длиной 1 м величина Av.= l/2nT.=  [c.273]

Рис. 5.21. Насыщение усиления в газовом лазере с доплеровски уширенным переходом. Рис. 5.21. <a href="/info/144382">Насыщение усиления</a> в <a href="/info/7267">газовом лазере</a> с доплеровски уширенным переходом.
Рис. 5.23, Выходная мощность Р как функция частоты для газового лазера с поглотителем, имеющим доплеровски уширенную линию (на частоте Vo) и помещенным внутрь резонатора (обращенный провал Лэмба). Рис. 5.23, <a href="/info/29405">Выходная мощность</a> Р как функция частоты для <a href="/info/7267">газового лазера</a> с поглотителем, имеющим <a href="/info/147893">доплеровски уширенную линию</a> (на частоте Vo) и помещенным внутрь резонатора (обращенный провал Лэмба).
Вообще говоря, энергетические уровни в газах уширены довольно слабо (ширина порядка нескольких гигагерц и меньше), поскольку действующие в газах механизмы уширения слабее, чем в твердых телах. Действительно, в газах, находящихся при обычных для лазеров давлениях (несколько мм рт. ст.), столк-новительное уширение очень мало и ширина линий определяется главным образом доплеровским уширением. В связи с этим в газовых лазерах не используется, как в твердотельных лазерах, оптическая накачка с помощью ламп. В самом деле, такая накачка была бы крайне неэффективна, поскольку спектр излучения этих ламп является более или менее непрерывным, в то время как в активной газовой среде нет широких полос поглощения. Как уже упоминалось в гл. 3, единственный случай, когда генерация была получена в газе при оптической накачке такого типа, — это цезий, возбуждаемый линейной лампой, заполненной гелием. В данном случае условия для оптической накачки вполне благоприятны, поскольку некоторые линии излучения Не совпадают с линиями поглощения s. Однако цезиевый лазер  [c.343]

В то же время из выражения (2,116) находим, что (при Av = 0) 1/стт(0)Avq. На частотах УФ- и ВУФ-диапазонов при умеренных давлениях можно считать, что ширина линии Avo определяется доплеровским уширением. Следовательно [см, (2,78)], Avo Vo, поэтому dPno /dV увеличивается как (если положить Vp л Vo). При более высоких частотах, соответствующих рентгеновскому диапазону, ширина линии определяется естественным уширением, так как излучательное время жизни становится очень коротким (порядка фемтосекунд). В этом случае Avo Vq и dP JdV увеличивается как v . Таким образом, если мы, к примеру, перейдем из зеленой области (Х = 500 нм) всего лишь в мягкий рентген (X л 10 нм), то длина волны уменьшится в 50 раз, а dP op dV увеличится на несколько порядков С практической точки зрения заметим, что многослойные диэлектрические зеркала в рентгеновской области обладают большими потерями и трудны в изготовлении. Основная проблема состоит в том, что в этом диапазоне разница в показателях преломления различных материалов оказывается очень малой. Поэтому для получения приемлемых коэффициентов отражения необходимо использовать большое число (сотни) диэлектрических слоев, а рассеяние света на столь большом числе поверхностей раздела приводит к очень большим потерям. Поэтому до сих пор рентгеновские лазеры работают без зеркал в режиме УСИ (усиленное спонтанное излучение),  [c.434]

Среди многочисленных факторов, влияющих на форму спектральной линии, самыми важными в инфракрасной области являются уширение за счет соударений и доплеровское уширение. Уширение первого типа происходит из-за возмущающего влияния соседних молекул газа, и поэтому его иногда относят к уши-рению за счет давления. Доплеровское уширение является следствием теплового движения излучающих молекул газа. Оно определяет форму спектральных линий при высоких температурах и (или) низких давлениях. Уширение за счет соударений, наоборот, существенно при низких температурах и (или) высо-  [c.107]


Смотреть страницы где упоминается термин Доплеровское уширение : [c.392]    [c.394]    [c.607]    [c.16]    [c.299]    [c.307]    [c.307]    [c.28]    [c.365]    [c.606]    [c.262]    [c.685]    [c.347]    [c.549]    [c.108]    [c.109]   
Сложный теплообмен (1976) -- [ c.107 ]

Лазерная светодинамика (1988) -- [ c.47 ]



ПОИСК



Доплера эффект доплеровское уширение

Доплеровское п естественное уширение

Доплеровское уширение в М-приближеиии

Линии уширенне доплеровское

Линии уширенне доплеровское лазера минимальная достижима

Линии уширенне доплеровское механизмы

Линии уширенне доплеровское неоднородное, однородное

Линии уширенне доплеровское ударное

Линии уширенне доплеровское флуоресцентная

Линии уширенне доплеровское формула Шавлова и Таунса

Причины уширения. Однородное и неоднородное уширения. Естественная ширина линии излучения как однородное уширение. Ударное уширение. Доплеровское уширение. Форма составной линии излучения Модулированные волны

Уширение линии доплеровское

Уширение линии доплеровское за счет соударений

Уширенне доплеровское



© 2025 Mash-xxl.info Реклама на сайте