Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Навье — Стокса уравнение в кинетической теории

Смысл величин Р ,. .., Р станет особенно выпуклым, если вспомним, как в кинетической теории газов получаются уравнения Навье — Стокса. Мы знаем, что ряд свойств газа, такие, как вязкость, диффузия, теплопроводность, обязан своим происхождением суммарному эффекту молекулярных движений, каковые в деталях мы описать не можем. Более того, в кинетической теории газов показывается что компоненты тензора напряжений в уравнениях Навье — Стокса  [c.693]


Все наши рассуждения не выходят за рамки механики сплошных сред. Молекулярная природа жидкостей и газов при этом в расчет не принимается. Это может, конечно, в некоторых случаях вызвать сомнения в применимости теории. Такие сомнения возникают, например, в применимости уравнений Навье—Стокса к изучению полетов на больших высотах или к изучению ударного слоя в связи с тем, что средняя длина свободного пробега молекул является в этих случаях величиной того же порядка, что и характерный размер. Однако вопрос решается в конце концов не убедительностью доводов, а сравнением результатов теории с экспериментом. При таком сравнении оказывается, что уравнения Навье—Стокса дают хорошие результаты в указанных, выше и в подобных случаях. Добавим, что при выборе между кинетической теорией и теорией сплошных сред основным фактором является простота и стройность последней теории.  [c.194]

Кинетическая теория классического газа представляет собой вполне законченную область физики. Для описания газа используется уравнение Больцмана, которое решается обычно методом Чепмена-Энскога, т.е. разложением по обратным степеням члена столкновений. Тем самым из уравнения Больцмана выводятся уравнения газодинамики, т.е. уравнения Навье-Стокса. Кинетические коэффициенты этих уравнений вычисляются с помощью уравнения Больцмана. В случае очень резких градиентов, например, имеющих место в ударной волне, вместо уравнений Навье-Стокса можно воспользоваться методом моментов с той или иной процедурой замыкания высших моментов. Такой подход дает вполне удовлетворительные результаты.  [c.305]

Ниже будут рассмотрены методы построения моделей сплошных сред, т. е. методы отыскания необходимого числа определяющих течение параметров и построения управляющих ими уравнений, с помощью кинетического уравнения Больцмана. В принципе соответствующие уравнения для макроскопических величин можно построить и из феноменологических (макроскопических) рассмотрений, минуя кинетическую стадию ). Однако входящие в эти уравнения кинетические коэффициенты (коэффициенты вязкости, теплопроводности, диффузии и т. п.) не могут быть найдены из феноменологических теорий и для их определения требуются дополнительные соображения или эксперименты. Так, например, при феноменологическом выводе уравнений Навье—Стокса, предполагая пропорциональность компонент тензора напряжений компонентам тензора деформаций, мы должны ввести 81 неизвестный коэффициент пропорциональности. Вводя дополнительные предположения об изотропности и однородности среды, все эти коэффициенты удается выразить через два коэффициента вязкости, кото-  [c.96]


Третья задача связи (ударный слой) должна привести к вычислению поправки к классическим соотношениям Рэнкина — Гюгонио, необходимой для того, чтобы вычисления на континуальном уровне давали те же самые результаты, что и решение уравнения Больцмана вдали от ударного слоя. Та же необходимость возникает в теории Навье — Стокса [40], когда требуется учесть взаимодействие между ударным и пограничным слоями. Несмотря на то что уравнения Навье — Стокса дают гладкую структуру ударной волны, они должны допускать разрывы, чтобы описать кинетические эффекты. Для разложения Гильберта кинетическое решение задачи связи трудно уже в нулевом приближении (задача о структуре скачка см. разд. 6 гл. VII), но условия сращивания тривиальны (соотношения Рэнкина — Гюгонио) аналогичная задача для теории Чепмена — Энскога (или модифицированного разложения, рассмотренного в разд. 4) пока еще не сформулирована.  [c.291]

Хорошее согласование такого рода теории с экспериментом вновь свидетельствует о важности уравнений Навье — Стокса. Тем не менее, если подойти к передней кромке достаточно близко, то следует отказаться от уравнений Навье — Стокса в пользу уравнения Больцмана. Однако полное кинетическое описание слишком трудно, и лишь небольшое число работ посвящено этой задаче.  [c.422]

В 8 с помощью кинетического уравнения Больцмана введены уравнения гидродинамики и в частности, в качестве первого приближения уравнения Навье— Стокса. Получены кинетические коэффициенты (теплопроводности и внутреннего трения), а также проведен расчет затухания акустических колебаний в нейтральной системе, возникающего в результате диссипативных потерь при прохождении в ней волны плотности. В 9 включены несколько задач, посвященных системам типа легкой компоненты, а также необходимые для общей постановки электронной теории оценки идеальности вырожденного электронного газа в реальных металлах вблизи поверхности Ферми и способности электронного газа экранировать ионные заряды. Последний 10 посвящен обсуждению проблем использования уравнений кинетического баланса (модельная система с равными вероятностями перехода, двухуровневая система и т. п.).  [c.359]

Все теоретические исследования о движении вязкой жидкости исходят из предпосылки о справедливости уравнений Навье —Стокса для истинного неустановившегося пульсирующего движения. Однако ввиду крайней запутанности, извилистости и сложности траекторий частиц жидкости при турбулентном движении и, повидимому, вообще всех основных функпиональных связей получение решения уравнений Навье — Стокса для таких движений представляет собой крайне громоздкую и сложную задачу, которую можно сравнить с задачей об описании движения отдельных молекул большого объёма газа. Поэтому, подобно тому как в кинетической теории газов, так и в гидромеханике основные задачи о турбулентных движениях жидкости ставятся как задачи о разыскании <функциональных соотношений между средними величинами.  [c.128]

В своих работах Трусделл идет еще дальше, о Н ставит -под сомнение положения газокинетической теории и говорит о современном кризисе в кинетической теории газов. В работе под таким названием он анализирует сложившееся положение в кинетической теории газов и показывает, что вопрос о сходимосоти последовательных приближений отнюдь не тривиален. Для одного конкретного примера им наглядно показано, что могут быть. случаи, когда все приближения оказываются хуже первого, которое является асимптотическим решением. Не исключена возможность, что при строгой постановке задачи это асимптотическое решение. будет ближе к уравнениям Навье — Стокса, чем все существующие приближенные решения уравнения Больцмана.  [c.58]

Уравнение Эйлера (26а) определяет движение идеальной жидкости. Для получения уравнений гидродинамики реальной (вязкой) жидкости или газа надо искать решение уравнения Больцмана, отличное от локального распределения Максвелла. Мы получим тогда уравнения Навье—Стокса, Барнетта и т. д., в которых коэффициенты вязкости, теплопроводности и диффузии выражаются через молекулярные характеристики. Эти уравнения представляют собой замкнутую систему уравнений термодинамики необратимых процессов. Такой вывод этих уравнений в общем случае выходит за рамки нашего курса. Мы ограничимся здесь только характеристикой методов решения кинетического уравнения Больцмана и рассмотрим ряд частных задач статистической теории неравновесных систем.  [c.142]


Как известно, уравнения переноса количества движения и энергии в современной молекулярно-кинетической теории выводят, исходя из решений так называемого интегро-дифференциального уравнения Больцмана. Решение уравнения Больцмана в первом приближении, т. е. когда можно пренебречь градиентами скоростей и температур по средней длине свободного пути молекул, приводит к уравнениям движения газа в форме Навье — Стокса. Второе приближение, найденное Барнетом по методу Энского—Чепмена, вводит в систему уравнений движения и теплового потока принципиально новые члены, которые существенным образом меняют законы дисперсии акустических волн. В этом случае в какой-то степени уже учитывается изменение градиентов скоростей и темпёратур на средней длине свободного пути молекул. Существует решение уравнения Больцмана и в третьем приближении. Оно 54  [c.54]

Идея А. С. Предводителева получила стр огое математическое доказательство в работах Айкенберри и Трусделла. В одной из последних работ ТруСделл Л. 13] утзерждает, что в поддающихся расчету и экспериментальной проверке задачах кинетической теории уравнения второго приближения по методу Энского — Чепмана справедливы для более узкой области со стояний газа, чем уравнения в при ближении Навье — Стокса. С помощью нов ого приема исследования — итерационного метода— ои показал, что приближения лю бого порядка хуже пер вого и что уравнения Навье — Стокса могут оказаться искомым асимптотическим решением.  [c.524]

В предельном случае малых длин пробега мы приходим к задачам, которые могут быть решены в рамках теории сплошной среды или, точнее, с применением уравнений Навье — Стокса. По существу, это задачи обычной газовой динамики. Однако по установившейся традиции некоторые из них изучаются динамикой разреженных газов. В число таких задач входят, например, некоторые задачи о вязких течениях при малых числах Рейнольдса, о течениях с взаимодействием пограничного слоя с невязким потоком, о близких к равновесным течениях с релаксацией возбуждения внутренних степеней свободы, о течениях со скольжением и температурным скачком на стенке и т. д. К решению этих задач могут быть привлечены методы газовой динамики. В то же время эти задачи, решаемые в рамках теории сплошной среды, тесно связаны с кинетической теорией, так как только с помощью кинетической теории, из анализа уравнения Больцмана, можно обоснованно вывести уравнения Эйлера и Навье—Стокса и их аг алоги для рела-ксирующих сред, установить область их применимости и снабдить их правильными начальными и граничными условиями и коэффициентами переноса.  [c.5]

Этот факт использован Вальо-Лауреном, предложившим теорию, в которой склеиваются решения Навье — Стокса для области высоких давлений с решением кинетического уравнения в области низких давлений (доклад в Вычислительном центре АН СССР, январь 1964 г.).  [c.304]

Сомнения вызывали не столько сами уравнения, сколько условия прилипания на твердых стенках. Эти условия являются чисто опытными, до сих пор не имеющими твердого теоретического обоснования. Между тем не исключено, что малое скольжение, допускаемое кинетической теорией, в некоторых случаях способно вызвать, как и малая вязкость, немалые эффекты. Самое повышение порядка уравнений, учитывающих вязкое трение, могло явиться источником теоретической неудовлетворенности. Так, если исходить при выводе уравнений движения из кинетической теории газов, где уравнения Навье — Стокса получаются в качестве второго приближения, то возникает вопрос о постановке граничных условий, папри-мор для третьего приближения — уравнений Барнета. Что же, кроме скорости, надо еще задавать и трение на стейке Сама постановка подобного вопроса говорит о неблагополучии ситуации.  [c.6]

О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]


Подставляя ряд (1.4) в уравнение Больцмана и приравнивая коэффициенты при равных степенях получают рекуррентную систему уравнений для определения и т. д. При построении решения методом Знскога — Чепмена /<°) " /о функция выражается через производные от гидродинамических величин п, и и Т и т. д. Зная функции можно выписать любые гидродинамические (макроскопические) величины в частности, это позволяет выразить тензор напряжений и вектор потока тепйа через п, ии Т и их производные. Заменяя в общих уравнениях сохранения тензор напряжений и вектор потока тепла через гидродинамические величины, при оставлении в ряде (1.4) одного члена получим уравнения Эйлера, при двух — уравнения Навье—Стокса, при трех—уравнения Барнетта и т. д. ). Важно отметить, что кинетическая теория позволяет не только найти связи между тензором напряжения и вектором потока тепла и производными от гидродинамических величин, но и выразить входящие в эти связи коэффициенты пропорциональности (коэффициенты переноса) через известные свойства молекул. Этот метод используется для определения коэффициентов вязкости, теплопроводности и других переносных свойств газов и газовых смесей в широком диапазоне давлений и температур, для которых чрезвычайно трудно получить экспериментальные значения.  [c.426]

С математической точки зрения система уравнений Навье — Стокса представляет собой совокупность нелинейных уравнений в частных производных первого н второго порядка смешанного гинерболо-параболического типа. Эта система уравнений может быть получена феноменологически [1, 2] или при помощи кинетической теории газов в результате применения к решению уравнения Больцмана известного метода Чепмена — Энскога [6, 8—10] разложения функции распределения молекул по скоростям в ряд по степеням малого параметра.  [c.13]


Смотреть страницы где упоминается термин Навье — Стокса уравнение в кинетической теории : [c.291]    [c.188]    [c.188]    [c.4]    [c.6]    [c.816]   
Статистическая механика (0) -- [ c.129 ]



ПОИСК



Г Кинетическая теория—Уравнени

Кинетические уравнения

Навой 97, XIV

Навье

Навье уравнение

Навье — Стокса уравнение в кинетической теории примеры применения

Навье—Стокса

Стокс

Стокса Навье — Стокса

Стокса уравнение

Теории Уравнения

Теория Стокса

Теория Уравнения кинетические

Уравнение Навье—Стокса



© 2025 Mash-xxl.info Реклама на сайте