Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики синхронных машин

Характеристики синхронных машин  [c.309]

В работах М. М. Ботвинника [6, 7] показаны пути улучшения моментно-угловой характеристики Мэ—[(в) при регулировании напряжения в продольной и поперечной осях, исходя из условия получения электромагнитного момента Мэ, не зависящего от угла 9, а также определены соответствующие законы регулирования напряжения возбуждения в обмотках ротора. В работе Д. А. Городского [24] исследованы характеристики синхронных машин продольно-поперечного возбуждения в динамических режимах, рассмотрены законы регулирования возбуждения из условия постоянства э. д. с. за переходным индуктивным сопротивлением.  [c.104]


Техническая характеристика синхронных машин (электродвигателей)  [c.244]

Из уравнений (4.7) видно, что Ёф является функцией 1а, а следовательно, /ф, т. е. ЭДС источника определяется режимом работы. цепи. В частном случае неявнополюсной синхронной машины, когда xa=xq, Ёф определяется только ЭДС возбуждения и не зависит от тока цепи. Если учесть также влияние магнитного насыщения, то в общем случае не только ЭДС, но и параметры схемы замещения будут иметь нелинейные характеристики в зависимости от тока цепи. Тем не менее переход к схемам замещения и векторным диаграммам позволяет использовать для решения хорошо известные методы расчета линейных и нелинейных электрических цепей постоянного и переменного тока.  [c.88]

Динамическая характеристика синхронного двигателя (2.34) является существенно нелинейной, что весьма затрудняет исследование динамических процессов в машинных агрегатах с такими двигателями. При малых рабочих углах (M < 0,9Мт, где Мт — максимальный момент двигателя по статической характеристике) можно использовать упрощенную линеаризованную динамическую характеристику в виде [104]  [c.29]

Однако бывают случаи, когда силы зависят не только от положения, но еще и от скорости и времени или зависят только от скорости или от времени. Например, в электродвигателях (кроме синхронных машин переменного тока) развиваемый ими движущий момент зависит, как правило, от угловой скорости их ротора точно так же в центробежных насосах и вентиляторах потребляемый момент изменяется в квадратичной зависимости от угловой скорости (о механических характеристиках машин см. п. 27). В этих случаях теорема об изменении кинетической энергии не может свести задачу i интегрируемым дифференциальным уравнениям (так как работа сил не может быть определена без знания самого закона движения), поэтому задача определения движения машины должна в таких случаях строиться на решении дифференциального уравнения движения системы в обобщенных координатах, соответствующего обобщенным силам или обобщенным моментам, т. е. так называемого дифференциального уравнения Лагранжа 2-го рода. Для установления этого уравнения воспользуемся зависимостью (48). Из нее для бесконечно малого промежутка времени получим  [c.251]

Синхронные прерыватели предназначены для синхронного включения и выключения, регулирования величины и длительности сварочного тока контактных машин. Технические характеристики синхронных прерывателей приведены в табл. 94, игнитронных — в табл. 95.  [c.100]


Ha рис. 50 приведены характеристики переходных процессов, полученные в результате моделирования прн = 1,0, ii.y T = 1,5 ( о (где ifo — сила тока возбуждения двигателя при холостом ходе). На экспоненциальную закономерность изменения силы тока возбуждения двигателя в соответствии с вьь ражением (231) накладываются колебательные процессы вследствие действия реакции якоря синхронной машины (рис. 50,6).  [c.119]

Колебания скорости звена приведения при работе машинного агрегата приводят к изменению момента движущей силы Мд, так как для большинства двигателей Мд является функцией ш (см. гл. 22). У ряда двигателей — синхронных электродвигателей, гидродвигателей и др. (см. гл. 20), имеющих жесткую характеристику, эти колебания незначительны. Но для некоторых (асинхронных, постоянного тока с параллельным возбуждением и др.) они существенны. Поэтому для более точного определения момента инерции маховика следует учитывать характеристику двигателя. Если участок  [c.345]

Таким образом, нрименение рычажно-балансирного механизма обеспечивает выравнивание нагрузок между ветвями как в установившихся, так и в переходных режимах работы двухдвигательного синхронного привода. Этот механизм обладает малой инерционностью и достаточно высоким быстродействием. Широкий диапазон варьирования конструктивных параметров механизма делает возможным его применение в машинных агрегатах с различными динамическими характеристиками.  [c.110]

Червячно-винтовая передача необратима. Выходная жесткость передачи возрастает с увеличением передаточного отношения. Однако его увеличение влечет за собой повышение кинематических погрешностей (неравномерность скорости) и препятствует расширению диапазона регулирования скоростей движения активного захвата. Поэтому обычно диапазон регулирования скоростей в машинах с механическим возбуждением находится в пределах 3—4 порядков и в исключительных случаях достигает 5—6 порядков. Для расширения диапазонов регулирования непосредственно приводом используют следящие гидропередачи. Наилучшими регулировочными параметрами (идеально жесткая скоростная характеристика в пределах мощности) обладают синхронные следящие гидропередачи.  [c.175]

Тормозные характеристики асинхронных двигателей. Торможение асинхронных двигателей в основном можно производить тремя методами 1) противовключением 2) рекуперативным торможением при работе машины как асинхронного генератора выше синхронной скорости 3) динамическим торможением, т.е.  [c.17]

МОЩНОСТИ для центробежных гидравлических и синхронных электрических машин, открывающем уникальную возможность для синтеза простых, удобных для практического применения тригонометрических выражений характеристики РЦН.  [c.52]

ТО выражение для расчета характеристики полезной мощности РЦН приобретает вид, аналогичный определению активной мощности синхронной электрической машины [44]  [c.90]

В пятом разделе установлен изоморфизм выражений мощности для центробежных гидравлических и синхронных электрических машин, дающий возможность синтеза простых, удобных для практического применения тригонометрических выражений характеристик ЦН в системе относительных единиц. Их характерной особенностью есть использование в качестве главного конструктивного параметра ЦН номинального значения расчетного угла нагрузки, введенного по аналогии с синхронной электрической машиной, определение которого ведется через каталожные параметры машины. Проиллюстрировано хорошее совпадение расчетных и экспериментальных характеристик напора ЦН магистральных нефтепроводов.  [c.32]

Учитывая указанные обстоятельства, в Японии, чтобы получить данные, выражающие сравнительно общие, универсальные характеристики термической усталости, проводят [4] испытания, разделяя температурный цикл и цикл деформации и устанавливая условия независимости каждого цикла. При этом используют машину для испытаний на усталость путем растяжения—сжатия с электрогидравлическим сервоприводом. Испытания на мало-цикловую усталость с заданной деформацией осуществляют [5, 6] при треугольном цикле деформации, приведенном на рис. 7.2, и синхронном треугольном температурном цикле. При проведении испытаний подобным методом получают специфические данные по термической усталости, соответствующие нулевому интервалу температур (А.Т = 0), усталость рассматривают как изотермическую.  [c.247]


В качестве преобразователей частоты иногда используют синхронные и асинхронные машины. Для получения жестких характеристик и достаточной перегрузочной способности асинхронного двигателя при изменении частоты питаемого тока необходимо магнитный поток поддерживать постоянным. Это требование может быть выполнено, если отношение иЦ при изменении частоты вращения будет поддерживаться постоянным, что можно доказать преобразованием формулы, определяющей ЭДС асинхронного двигателя = СеФ/, откуда магнитный поток  [c.49]

Главный электродвигатель прокатного стана приводит во вращение валки и является двигателем специального (металлургического) типа с воздушным продуваемым охлаждением. На станах с постоянней скоростью прокатки применяют синхронные или асинхронные двигатели на станах с регулируемой скоростью прокатки применяют двигатели постоянного тока, питаемые от специальных машинных преобразователей или ртутных выпрямителей. Мощность главных электродвигателей и число оборотов колеблются в очень больших пределах в зависимости от типа стана. Мощности двигателей для некоторых станов приведены в краткой характеристике станов.  [c.395]

Основной путь снижения потерь энергии в электрических преобразователях — применение полупроводниковой техники, имеющей более высокие энергоэкономические характеристики. В частности, рекомендуется замена машинных возбудителей синхронных двигателей статическими. На одном из химических  [c.12]

В программу типовых испытаний входят все пункты приемо-сдаточных испытаний определение тока, соответствующего превышению температуры при номинальном режиме работы (при этом токе проводят приемо-сдаточные испытания на нагревание) испытание на нагревание при продолжительной или соответственно при повторно-кратковременной мощности построение сетки кривых нагревания и охлаждения тяговых электродвигателей и генераторов снятие а) скоростных характеристик при номинальной мощности двигателя (на характеристике наносится зависимость питающего напряжения от тока якоря) и для всех основных ступеней регулирования возбуждения электродвигателей б) нагрузочных характеристик при разных токах нагрузки до 1,5 номинального тока для генераторов и для электродвигателей при токах якоря 0 0,5 1,0 1,5 номинального определение потерь, к. п. д. и зоны наилучшей коммутации определение зависимости статического давления в камере со стороны входа воздуха в машину от количества продуваемого через машину воздуха испытание на вибропрочность (допускается проверка по узлам) определение массы (допускается проверка по узлам). Примерно в таком же объеме проводятся испытания для тяговых синхронных генераторов.  [c.63]

Вопросам анализа частотного спектра, а также определению частотных характеристик посвящена обширная специальная литература, например [9]. Кратко отметим только особенности использования тех или иных методов при исследовании частотных спектров параметров вибраций электрических машин. Для частотного анализа вибраций могут быть использованы различные анализаторы на базе электрических фильтров, а также на принципе синхронного детектирования с ручной или автоматической настройкой.  [c.87]

Для подвесного рельсового транспорта асинхронный электродвигатель особенно ценен тем, что его масса и габаритные размеры по сравнению с другими электродвигателями невелики, а отсутствие коллектора или контактных колец уменьшает эксплуатационные расходы и повышает надежность работы. Двигатель способен работать в тяговом и генераторных режимах и в границах допускаемой тепловой нагрузки может работать во всех четырех квадрантах его характеристики (тяга, рекуперативное торможение, торможение при вращении в обратном направлении и тяга при движении в обратном направлении). Недостатком двигателя является большой пусковой ток, что ограничивает число включений в 1 ч при обычных схемах управления. Синхронная частота вращения двухполюсной машины при питании от сети промышленной частоты тока 50 Гц достигает 3000 6б/мин. На рис. 2.8, а показана скоростная характеристика трехфазного асинхронного электродвигателя с короткозамкнутым ротором, имеющего повышенное скольжение, а на рис. 2.8, б — кривая для определения его мощности N при разных режимах работы ПВ, %.  [c.24]

ТОТЫ вращения Л. Определение установившегося режима работы проводится при условии равенства электромагнитного момента и момента сопротивления При этом для синхронных машин необходимо строить угловую характеристику Л/э=/(0), где в — угол нагруэки.  [c.238]

Если предположить, что установившийся режим работы синхронного двигателя нарушен, например, резким изменением нагрузки на валу машинного агрегата, то в течение короткого времени после нарушения режима можно пренебречь влиянием демпферных обмоток и считать нотокосцепления цепи возбуждения постоянными. Пренебрегая, так же как и при получении статической характеристики (2.33), активным сопротивлением статора, можно получить динамическую характеристику синхронного двигателя [16, 107]  [c.29]

Регуляторы времени (цикла сварки) предназначены для управления сварочным циклом контактных машин. Технические характеристики синхронных регуляторов т пз РЦС пряведекы в табл. 92.  [c.100]

В общем случае при неформальной постановке задача оптимизации ЭМУ включает в себя выбор онтималыюго типа об1 СКта (например, электрические машины постоянного тока с электромагнитным возбуждением и возбуждением от постоянных магнитов, асинхронные с короткозамкнутым и фазным ротором, синхронные и пр ), его конструктивной схемы (нормальное и обращенное, цилиндрическое и торцевое исполнение, способы охлаждения и передачи электрической энергии на вращающиеся части устройства, тин опор вращающихся частей и пр.), оптимизацию параметров объекта (геометрические размеры, обмоточные данные, характеристики электрических и магнитных материалов), а также поиск способов оптимального управления объектом (например, способов изменения напряжения и частоты питания) и, наконец, оптимизацию значений допусков па параметры.  [c.143]


Привнесенное в машиностроительную промышленность из ранее сформировавшихся смежных промышленных отраслей и примененное вначале для выполнения особо тяжелых и трудоемких подсобных работ, подъемно-транспортное оборудование вошло затем в основной комплекс производственных средств машиностроения наряду с технологическим и контрольно-измерительным оборудованием. Представленное ко времени становления этой отрасли тяжелой индустрии единичными конструкциями общего назначения, оно пополнялось в дальнейшем специализированными машинами и установками, постепенно вводившимися для обслуягивания межоперационной доставки и отдельных технологических процессов — на литейных участках, в окрасочных и сушильных камерах, в закалочных печах и пр. Исходные тенденции простого повышения силовых и скоростных характеристик независимо работающих механизмов прерывного действия позднее дополнялись в нем тенденциями совмещения раздельно выполнявшихся рабочих операций, перехода от применения только стационарных машин к применению более маневренных передвижных машин и, наконец, тенденциями преимущественного использования принципа непрерывности транспортного процесса. Когда же в ходе развития машиностроительной техники — но мере накопления элементов механизации и автоматизации в пределах еще обособленных цеховых участков и освоения массового поточного производства — на рубеже XIX и XX вв. все отчетливее стала определяться необходимость объединения технологических агрегатов в едином производственном потоке, именно подъемно-транспортное оборудование во многом способствовало формированию взаимосвязанной, синхронно действующей системы машин и устройств, войдя в эту систему автоматических линий, цехов и заводов как органически свойственное ей связующее звено.  [c.171]

В практике исследования переходных процессов в машинах переменного тока используется эффективная замена реальной трехфазной машины эквивалентной ей по намагничивающим силам обмоток статора и ротора двухфазной машиной с синхронно вращающимися в пространстве ротором и статором. Обмотки ротора и статора, расположенные вдоль осей втлбранной координатной системы, могут вращаться с произвольной угловой скоростью а. При исследовании динамических процессов в машинных агрегатах с асинхронными двигателями, в частности при построении динамической характеристики двигателя, предпочтительной сравнительно с другими координатными системами является система х, у, О, вращающаяся от-  [c.24]

Невозможность получения точных значений физикомеханических и геометрических параметров применяемых упругих тел и изменение этих параметров в процессе эксплуатации механизмов не позволяют в ряде случаев получить стабильные кинематические характеристики упомянутых механизмов и обеспечить синхронность их движения, что снижает точность предварительных кинематических расчетов. Однако наряду с этими недостатками такие механизмы обладают и рядом преимуществ, главными из которых являются простота конструкции, значительное редуцирующее действие, отсутствие зазоров и люфтов при трогапии с места и реверсировании, легкость бесступенчатой регулировки передаточного отношения, возможность работы до жесткого упора. Эти преимущества в ряде случаев играют решающую роль (как, например, в описанных выше механизмах верньерных устройств, предельных резьбовертах, схватах роботов и др.), и поэтому их использование в ряде машин и приборов оправдано. Следует отметить перспективность использования подобных механизмов в связи с появлением новых металлических, полимерных и металлополимерных материалов, обладающих высокими и стабильными параметрами упругости и износостойкости. Актуальными задачами являются конструктивные совершенствования описанных механизмов и пх испытания в условиях длительной эксплуатации.  [c.162]

Изготовляются однофазные и трёхфазные. Допускают широкую регулировку скорости без потерь. Вращающаяся часть (якорь) имеет коллектор и выполняется аналогично якорям машин постоянного тока. Конструкция статора такая же, как у синхронных или асинхронных машин. Коммутация хуже, чем у машин постоянного тока. Для улучшения её применяются компенсационные обмотки, добавочные полюса. В зависимости от схемы включения имеют шунтовые или сериесные характеристики.  [c.540]

Механические характеристики коллекторных двигателей переменного тока. Число различных типов коллекторных двигателей переменного тока, предложенных изобретателями, чрезвычайно велико. Практическое значение имеют лишь следующие двигатели 1) однофазный репульсионный двигатель с двумя комплектами щёток, соединёнными по хорде оба комплекта щёток вв1 механически связаны и перемещаются вместе (фиг. 31,6) 2) однофазный репульсионный двигатель с двумя комплектами щёток, из которых один неподвижен, а второй перемещается (фиг. 31, й) 3) трёхфазный последовательный коллекторный двигатель (фиг. 31,8) и 4) трёхфазный шунтовой коллекторный двигатель а) с возбуждением со статора (фиг. 31, г) и б) с возбуждением с ротора (фиг. 31,5). Репульсионные двигатели строятся мощностью до 75 кет и имеют нормальные пределы регулирования от 50 до 120% синхронной скорости. Трёхфазные коллекторные двигатели за границей строятся мощностью до 150 квт с пределами регулирования от 50 до 1500/о синхронной скорости для шунтовых и от 50 до 120% для сериесных. Большие пределы регулирования ограничены коммутацией. Специальными мерами с понижением мощности эти пределы иногда могут быть расширены для шунтовых машин вниз до 15<1/о синхронной скорости.  [c.18]

Информационно-измерительная система для экспериме1ггальных исследований механики машин (ИИС) предназначена для автоматизащ1и экспериментальных исследований в области механики машин в целях оперативного определения динамических характеристик объектов машиностроения при импульсном, гармоническом и случайном воздействиях. Информационно-измерительная система содержит электронные устройства, методическое и математическое обеспечение, а также мини-ЭВМ типа СМ4 и ЕС 1010. Электронные устройства обеспечивают синхронный и параллельный сбор информации по 16 каналам с частотой дискретизации до 25 кГц. Допускается удаленность обрабатывающей ЭВМ до 5 км при однопроводной кабельной линии связи.  [c.124]

Относительно небольшое изменение нагрузки само собой распределяется между всеми вращающимися в системе машинами, обладающими 1массами, как известными у агрегатов станций, так и неизвестными у моторов сети. Поэтому изменение оборотности всех параллельно работающих синхронных агрегатов за время регулирования ничтожно (доли процента). Следовательно, ничтожны и влияние оборотности на режим турбины, учитываемое по ее характеристике, и сама временная неравномерность точность ее определения поэтому неважна.  [c.221]

Показано, что выражение для расчета характеристики полезной мощности РЦН приобретает вид, аналогичний определению активной мощности синхронной электрической машины Если пренебречь влиянием вязкости жидкости (Гек=0 ), то получим аналогичную (17) тригонометрическую форму записи напорной характеристики, которая подтверждает адекватность комплексной и исходной, реализованной в координатах действительных чисел, моделей РЦН  [c.22]

Привод подачи для станков с ЧПУ. В качестве привода используют двигатели, представляющие собой управляемые от цифровых преобразователей синхронные или асинхронные машины. Бескол-лекторные синхронные (вентильные) двигатели для станков с ЧПУ изготовляют с постоянным магнитом на основе редкоземельных элементов и оснащают датчиками обратной связи и тормозами. Асинхронные двигатели применяют реже, чем синхронные. Привод движения подач характеризуется минимально возможными зазорами, малым временем разгона и торможения, небольшими силами трения, уменьшенным нагревом элементов привода, большим диапазоном регулирования. Обеспечение этих характеристик возможно благодаря применению шариковых и гидростатических винтовых передач, направляющих качения и гидростатических направляющих, беззазорных редукторов с короткими кинематическими цепями и т.д.  [c.275]


Входной вал приводного механизма вращается по заданному закону [ф ( )) влияние машины на этот закон движения предполагается несущеегвенным. Это предположение справедливо в тех случаях, когда источник энергии (двигатель) имеет большую мощность, незначительная часть которой потребляется рассматриваемым механизмом, или когда двигатель обладает рабочей характеристикой с большой крутизной (электродвигатели синхронные, асинхронные, постоянного тока).  [c.258]

Для работы на морских судах и в народном хозяйстве применяются асинхронные короткозамкнутые электродвигатели с повышенным скольжением серии МАП 120—720 с тормозами серии ТМТ 12—72 и без тормозов. Двигатели мощностью от 1,2 до 85 кВт выпускаются односкоростными с синхронной частотой вращения 1000 и 1500 об/мин двухскоростными и трехскоростными — для кратковременного и повторнократковременного режимов работы двухскоростными — для кратковременного режима работы, допускающими стоянку под током короткого замыкания одно-, двух- и трехскоростными — для работы в системах частотного регулирования (табл. II. 1.21). Структура условного обозначения MAnXi2Xa—Х3/Х3/Х3Х4Х5 М — машина А — асинхронная П — повышенного скольжения Xi -г- условный габаритный размер по диаметру статора (1, 2, 4, 5, 6 или 7) 2 — порядковый номер серии Хг — условный габаритный размер по длине статора на одном диаметре (1 или 2) Хд — число полюсов (одно-, двух-или трехскоростной двигатель) Х4 — климатическое исполнение Xft — категория размещения. Характеристики двигателя приведены в ТУ 16—513.334—77 Электродвигатели асинхронные серии МАП 120—720 с тормозами серии ТМТ 12—72 .  [c.249]

Для машин постоянного тока — генератора и тяговых двигателей — заводом Электротяжмаш применяется метод А. Б. Иоффе 15]. Для синхронных генераторов следует рекомендовать метод Потье [2]. Для асинхронных двигателей нагрузочные характеристики не строят. Рабочие характеристики получают на основании характеристики холостого хода методом построения круговых диаграмм [2].  [c.62]


Смотреть страницы где упоминается термин Характеристики синхронных машин : [c.21]    [c.40]    [c.432]    [c.542]    [c.4]    [c.79]    [c.219]    [c.262]    [c.16]    [c.70]    [c.124]    [c.33]    [c.39]   
Технический справочник железнодорожника Том 2 (1951) -- [ c.309 ]



ПОИСК



Машина синхронная

Синхронные Характеристика



© 2025 Mash-xxl.info Реклама на сайте