Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Симметричные колебательные собственные

Как было указано раньше (стр. 118), при отсутствии вырождения колебательная собственная функция может быть, независимо от величины ангармоничности, либо симметричной, либо антисимметричной по отношению к любой из операций симметрии, разрешенных для молекулы иначе говоря, функция должна принадлежать к одному из возможных типов симметрии (см. раздел Зг). Очевидно, что для данного колебательного уровня симметрия функции  [c.228]


Если инверсионным удвоением нельзя пренебречь, тогда требуется специальное рассмотрение свойств симметрии. Мы опять разберем только случай молекулы типа XYg, принадлежащей к точечной группе Св. (подобной, например, молекуле NHg). Ранее (стр. 240) было показано, что колебательная собственная функция более низкой составляющей инверсионного дублета остается неизменной, тогда как собственная функция более высокой составляющей меняет при инверсии знак. Комбинируя это свойство с положительной и отрицательной (-)-, —) симметрией вращательных уровней сплющенного симметричного волчка (фиг. 8,6), мы получаем четность вращательных уровней для полносимметричного вырожденного колебательного уровня, как показано слева для каждого уровня на фиг. 120. Теперь необходимо учесть, что каждая колебательная собственная функция является суммой или разностью собственных функций левой и правой форм, и поэтому колебательные уровни можно классифицировать в соответствии с типами симметрии точечной группы D3 (потенциальное поле имеет симметрию точечной группы Ддд). Легко заметить, что положительные колебательные подуровни невырожденного колебательного состояния принадлежат к колебательному типу симметрии Ац отрицательные — к типу симметрии А . Комбинируя эти типы симметрии с типами симметрии вращательных уровней для полносимметричного колебательного уровня (фиг. 118,а), мы получим полную симметрию (без учета ядерного спина), указанную на фиг. 120,а справа от каждого уровня. Таким же образом получается полная симметрия для вырожденного колебательного уровня на фиг. 120,6. При равенстве нулю спина одинаковых ядер будут иметься только вращательные уровни Aj. В случае полносимметричного колебательного уровня отсюда следует, как и ранее, что встречаются только уровни с О, 3, 6,. ..  [c.441]

Задача о колебаниях вала с диском, расположенным симметрично по отношению к опорам, была первой задачей в области изгибных колебаний вращающихся валов, разрешавшейся теоретически и экспериментально. В 1869 г. Рэнкиным [10] впервые был сделан теоретический анализ колебательного движения гибкого вала с диском, а в 1889 г. Лавалем была построена турбина с гибким валом, рабочая угловая скорость которого была выше его критической скорости. Применение такого вала было основано на использовании обнаруженного эффекта самоцентрирования вала, проявляющегося в закритической области вращения. Если при скорости вращения ниже критической всякая неуравновешенность детали (диска), прикрепленной к валу, вызывает большие колебания и динамические реакции подшипников, то при скорости вращения выше критической, как показали теория и опыт, колебания успокаиваются и практически почти уничтожаются при дальнейшем возрастании скорости. В этом, собственно, и состоит явление самоцентрирования, удачно использованное для создания новой для того времени конструкции вала турбины.  [c.118]


Конструктивные исполнения электрических машин не всегда бывают симметричными относительно средней поперечной плоскости, как, например, у турбогенераторов. В колебательную систему ротор — опоры вносит несимметрию также и различная податливость подшипников машины. В этих случаях собственные формы изгиба также становятся несимметричными, собственные частоты изгибных колебаний обеих сторон ротора не совпадают и на одном подшипнике критическая частота вращения наступает раньше, чем на другом.  [c.45]

Правила отбора. Можно показать, что правила отбора для инфракрасного вращательно-колебательного спектра симметричных волчков такие же, как для вращательного и колебательного спектров в отдельности, с той разницей, что для вращательных переходов теперь является существенным не направление собственного дипольного момента, а направление изменения дипольного момента (или, иначе говоря, направление переходного момента).  [c.443]

Теория малых колебаний механических систем с несколькими степенями свободы, изложенная в предыдущем параграфе, находит широкое применение при исследовании колебательных спектров многоатомных молекул. В данном параграфе мы рассмотрим в качестве примера свободные колебания симметричной трехатомной молекулы XjY. Однако, прежде чем приступить к расчету собственных частот и форм нормальных колебаний указанной молекулы, необходимо сделать ряд общих замечаний.  [c.246]

Эта система является симметричной относительно вертикальной плоскости, равноотстоящей от обоих маятников. Как видно из рис. 3.14, б, вторая форма собственных колебаний является симметричной относительно этой плоскости и называется симметричной формой колебаний. Чтобы представить эту форму колебаний, можно использовать половину системы, закрепив неподвижную пружину в точке, расположенной в середине ее пролета (в этом случае эффективная жесткость половины пружины равна 2к). С другой стороны, первая форма собственных колебаний (см. рис. 3.14, а) будет антисимметрична относительно упомянутой плоскости симметрии, вследствие чего она и называется антисимметричной формой колебаний. В этом случае можно пользоваться половиной системы, если позволить средней точке пружины свободно перемещаться через плоскость симметрии (следовательно, здесь эффективная жесткость половины пружины равна нулю). В общем случае в колебательной системе, имеющей единственную плоскость симметрии, будут возникать относительно этой плоскости только симметричная и антисимметричная формы, поэтому вместо исходной системы можно рассмотреть две приведенные системы. Одна из них должна быть закреплена в плоскости симметрии с тем, чтобы появились только симметричные формы перемещений, а другая должна допускать только антисимметричные перемещения.  [c.221]

Колебательную скорость пластин представим в виде двойного ряда по собственным симметричным и неосесимметричным формам колебаний в вакууме. Полагая, как и выше, что пластины закреплены по контуру шарнирно, имеем  [c.197]

Здесь неизвестные комплексные амплитуды "Ро, r i, TI2 - функции "медленного" времени = 5i i с, - неизвестная циклическая частота (фазовая скорость) нейтральных азимутальных волн Фо, ро - собственное решение линеаризованной задачи устойчивости, соответствующей (2.2), для монотонных вращательно-симметричных возмущений Ф , /> и Ф2, Р2 независимые собственные решения линеаризованной задачи устойчивости для колебательных трехмерных возмущений. При этом вектор Ф2 получается инверсией (1.4) из вектора Ф], так что Ф2 = УФ]. Величины порядков 5 , 5, и выше в (2.3) опущены.  [c.100]

Полная колебательная собственная функция (1 , согласно (2,46), является произведением собственных функций <1(50, <1 2( 2)>--- гармонических осцилляторов, соответствующих ЗЛ —6 или ЗЛ —5 нормальным координатам. Поэтому, если мы имеем только невырожденные нормальные колебания, то полная собственная функция по отношению к данной операции симметрии будет симметричной при условии, что число множителей ( ,/), антисимметричных относительно этой операции симметрии, является четным полная собственная функция будет антисимметричной, если имеется нечетное число антисимметричных множителей. Поведение полной собственной функции [Ю отношению к данной операции симметрии не зависит от числа симметричных множителей. Иначе говоря, в силу антисимметричности функций 4 г( ) антисимметричных нор-  [c.115]


К плоскости Од ху), И по три кванта каждого из колебаний и антисимметричных по отношению к плоскости о хг), то полная колебательная собственная функция будет симметричной относита 1ьно обеих плоскостей симметрии. Действительно, и в том, и в другом случае сумма является четной.  [c.116]

Обобщение предыдущих результатов. Мы вывели свойства симметрии колебательных собственных функций из свойств симметрии нормальных координат. В действительности, свойства симметрии собственных функций имеют значительно более общий характер и не зависят от предположения о гармоничности колебаний. Потенциальная энергия, даже если она и не является простой квадратичной функцией от составляющих смещений, как в (2,25), должна быть инвариантна по отношению ко всем операциям симметрии, образующим точечную группу, к которой принадлежит молекула. Поэтому уравнение Шредингера (2,40) инвариантно по отношению к этим операциям симметрии и, следовательно, собственная функция относительно этих операций симметрии может либо быть только симметричной, либо антисимметричной, если состояние является невырожденным либо может преобразоваться также и в линейную комбинацию взаимно вырожденных собственных функций, если состояние вырожденно (см. Молекулярные спектры 1, гл. V, 1). Можно показать, что последнему случаю соответствует ортогональное преобразование, при двукратном вырождении имеющее вид (2,75) или (2,76).  [c.118]

Невырожденные колебания. Ответ на поставленный выше вопрос очень легко найти на основе развитых ранее соображений (стр. 115) в случае невырожденных колебаний. Мы видели, что полная колебательная собственная функция является симметричной или антисимметричной по отношению к известному элементу симметрии в зависимости от того, является ли сумма (т. е. сумма колебательных квантовых чисел всех колебаний, антисимметричных по отношению к данному элементу симметрии) четной или нечетной. Поэтому мы можем сразу же определить поведение полной колебательной собственной функции по отношению ко всем элементам симметрии, а следовательно, и ее тип симметрии. Достаточно ограничиться рассмотрением независимых элементов симметрии. Например, если в случае молекулы С3Н4 (мы предполагаем, что она принадлежит к точечной группе Уд) возбуждается два кванта для  [c.140]

В случае линейных молекул с центром симметрии (принадлежащих к точечной группе >00 л, как, например, молекулы СО и С Н ) положительные вращательные уровни являются симметричными, отрицательные — антисимметричными по отношению к одновременной перестановке всех пар одинаковых ядер. Это имеет место для всех колебательных уровней, являющихся симметричными по отношению к инверсии (типы симметрии И, П , g,...) обратное соотношение имеет место для всех колебательных уровней, антисимметричных по отнопюнию к инверсии (типы симметрии П , Д ,. ..). На фиг. 99, б" показано несколько примеров. Все эти соотношения аналогичны соотношениям для различных электронных состояний двухатомных молекул их доказательство совершенно аналогично приведенному в книге Молекулярные спектры I, гл. V, 2, если рассматриваемые там электронные собственные функции заменить колебательными собственными функциями.. Для двухатомных молекул колебательные собственные функции всегда полносимметричны в данном случае предполагается, что электронная собственная функция является полносимметричной. Последнее утверждение практически всегда справедливо для электронного основного состояния, но не всегда справедливо для возбужденных электронных состояний, для которых поэтому нужно применять другие правила.  [c.400]

Тогда, если бы заданное произведение (117.9) было единственным членбм в колебательной собственной функции, то произведение (117.13) было бы характером для ф т . Нам необходимо симметризовать произведение (117.9) с учетом того, что всего имеется п к]) фононов. Эти фононы мы должны распределить симметричным образом по всем состояниям. Например, все фононы могут относиться к одному осциллятору, который будет находиться при этом в ( /)-м состоянии. Но из эквивалентности всех осцилляторов следует, что в таком состоянии может оказаться любой из них. В этом случае след полученного представления вычисляется в пространстве функций. ....  [c.372]

Влияние рассеивания энергии в системе. При небольшом коэффициенте диссипативных сил D фазовый портрет автоколебаний симметричный. Амплитуда автоколебаний большая. Частота вибраций низкая, близкая к собственной частоте колебательной системы 0,lfi гц. Например, при А 0,1, D = 0,05, ПВ =-- 3 частота автоколебаний лгшш на одну треть больше резонансной частоты свободной системы. При увеличении рассеивания энергии в системе амплитуда автоколебаний резко уменьшается, частота возрастает, см. рис. 2. При D = 1,0 частота автоколебаний более чем в десять раз превышает собственную частоту системы. Одновременно появляется положительное смещение, см. рис. За, 36 и Зв.  [c.70]

В работах [L.86, L.85] проводилось измерение нагрузок на профилях NA A0012 и 0006, а также модифицированных профилях NA A 23010 и 23006 при колебаниях по углу атаки и по вертикали. Отмечено затягивание динамического срыва, при котором максимальные значения коэффициентов подъемной силы превышают стационарные, а также появление отрицательного демпфирования колебаний по углу атаки при срыве. При этом оказалось, что отрицательное демпфирование зависит от числа Маха. Приведены данные и по нестационарному сопротивлению профиля. У изогнутых профилей характеристики оказались лучше, чем у симметричных они имели большее значение максимального коэффициента подъемной силы при колебаниях, а отрицательное демпфирование соответствовало большим значениям средних углов атаки. Показано, что путем установки пружины, при которой собственная частота колебаний профиля соответствует собственной частоте крутильных колебаний лопасти (4—6 Гц), и приведения профиля в колебательное движение с частотой вращения винта можно воспроизводить на двумерной модели срывные характеристики, соответствующие работе винта при полете вперед. Предложен способ расчета подъемной силы при динамическом срыве, требующий решения дифференциального уравнения второго порядка и учитывающий затягивание срыва, возрастание подъемной силы и запаздывающее восстановление плавного обтекания (по этому вопросу см. также работы [L.87] и [G.103]).  [c.813]


Для вращательных состояний молекулы типа жесткого симметричного волчка число К является точным квантовым числом, однако для колебательно-вращательных или ровибронных состояний оно является приближенным квантовым числом. Это квантовое число теряет смысл за счет эффектов центробежного искажения и кориолисова взаимодействия. Так как гамильтониан молекулы коммутирует с операцией обращения времени (которая переводит любую волновую функцию в ее комплексносопряженную см. гл. 6), каждая собственная функция всегда содержит суммы или разность собственных функций с k = К н k == —К. Поэтому энергетические уровни могут быть классифицированы по значениям положительного квантового числа К, а не квантового числа k, получающего положительные и отрицательные значения. Квантовое число J является приближенным для полных внутренних состояний Е и теряет смысл, например, при учете взаимодействия Япзг, зависящего от ядерного спина. Однако число F является точным квантовым числом для изолированной молекулы в свободном пространстве.  [c.309]

Если два одинаковых ядра имеют спин, равный нулю, встречаются только те уровни, для которых полная собственная функция с имме грична по отношению к перестановке этих - двух ядерг следовательно, в полностью симметричном электронном и колебательном состоянии антисимметричные вращательные уровни (см. фиг. 19) отсутствуют точно так же, как и в случае двухатомных молекул. Если спин ядер не равен нулю, то появляются и симметричные и антисимметричные уровни, однако они будут иметь различные статистические веса, которые попрежнему те же, что и для соответствующих двухатомных молекул, и таким же образом зависят от применяемой статистики. Например, для молекул Н О, Н,2С0 антисимметричные уровни имеют статистический вес, превосходящий в три раза статистический вес симметричных уровней, в молекулах 0 0, О СО статистические веса антисимметричных и симметричных уровней относятся как 1 2. Здесь конечно, не учитывается обычный множитель 2У- -1 (><оторый один и тот же для всех 2У-)- 1 уровней с данным У). Разумеется, для молекул, подобных НОО, НВСО, не получается различия в весе симметричных и антисимметричных уровней.  [c.67]

ЧТО положительной является поочередно то верхняя, то пижняя компонента. Если уровень П соответствует однократному возбуждению деформа-ционпого колебания в электронном состоянии то верхние компоненты уровней С четными J являются отрицательными , а с нечетными — положительными , в то время как в электронном состоянии 2 наблюдается противоположный порядок. В электронно-колебательных уровнях I g, Пg, g,. . . симметричных молекул, т. е. в уровнях, у которых электронноколебательная собственная функция остается неизменной нри отражении в центре, положительные уровни симметричны и отрицательные антисимметричны (см. символы в скобках на фиг. 26), а в электронно-колебательных уровнях П , Лц,. .. наоборот. Отнотение статистических весов симметричных и антисимметричных уровней определяется отношением  [c.74]


Смотреть страницы где упоминается термин Симметричные колебательные собственные : [c.623]    [c.64]    [c.115]    [c.115]    [c.117]    [c.616]    [c.619]    [c.623]    [c.637]    [c.119]    [c.297]    [c.125]    [c.228]    [c.252]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.0 ]



ПОИСК



274, 323—327 симметричный

Колебательные

Симметричные колебательные собственные функции



© 2025 Mash-xxl.info Реклама на сайте