Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Симметричные волчки) из колебательного спектра

Правила отбора. Можно показать, что правила отбора для инфракрасного вращательно-колебательного спектра симметричных волчков такие же, как для вращательного и колебательного спектров в отдельности, с той разницей, что для вращательных переходов теперь является существенным не направление собственного дипольного момента, а направление изменения дипольного момента (или, иначе говоря, направление переходного момента).  [c.443]


Закон распределения Максвелла — Больцмана 531, 543 Запрет пересечения частот одного и того же типа симметрии 218, 257, 342, 357 Запрещенные колебательные переходы в асимметричных волчках 353, 499 в линейных молекулах 409 в симметричных волчках 391, 44J в сферических волчках 486 Заторможенное внутреннее вращение влияние на химическое равновесие 558 доля в термодинамических функциях 368, 542, 548, 555, 558 интенсивность в инфракрасных спектрах 530  [c.601]

Наиболее длинноволновая область поглощения СН3 расположена вблизи 2160 А. Для этой области поглощения характерны два диффузных максимума. Соответствующая полоса в спектре поглощения СВз, расположенная при 2140 А, имеет гораздо более четкий контур с частично разрешенной тонкой структурой (фиг. 96). К этой полосе примыкают три очень слабые полосы как со стороны длинных, так и со стороны коротких длин волн. Наличие в системе единственной интенсивной полосы указывает на то, что конфигурация молекулы в верхнем и нижнем электронных состояниях должна быть практически одной и той же. Тонкая структура полосы может быть полностью объяснена, если полоса является параллельной полосой симметричного волчка (фиг. 97). Чередование интенсивности линий в полосе и, в частности, очень низкая интенсивность линии Л (0) свидетельствуют о том, что по крайней мере в одном из двух участвующих в электронном переходе состояний молекула имеет плоскую конфигурацию, так как чередование интенсивности линий в подполосе ЛГ = О (фиг. 97) может наблюдаться только в случае симметрии 1>з . Таким образом, анализ распределения интенсивности в колебательной и вращательной структуре рассматриваемой системы приводит к выводу, что молекула должна иметь плоскую структуру в обоих электронных состояниях, участвующих в переходе. Следует, правда, отметить, что нельзя исключить возможность того, что структура молекулы СН3 слегка отклоняется от плоской конфигурации, но лишь в пределах, оставляющих возможность для появления инверсионного удвоения, столь большого по величине, что в спектре поглощения наблюдается лишь одна инверсионная компонента.  [c.523]

Характер колебательно-вращательного спектра у молекул типа симметричного волчка сложнее, чем у линейных молекул и молекул типа сферического волчка, в особенности если направление дипольного момента не совпадает с осью молекулы.  [c.11]


Вращательные уровни энергии — это уровни, связанные с вращательным движением молекулы как целого. Вращение молекул приближенно рассматривают как свободное вращение твердого тела с тремя моментами инерции вокруг трех взаимно перпендикулярных осей. При этом возможны три случая 1) сферический волчок (все три момента инерции одинаковы) 2) симметричный волчок (два момента инерции одинаковы, третий отличен от них) 3) асимметричный волчок (все три момента инерции различны). Разности энергий соседних вращательных уровней составляют от сотых долей электрон-вольта для самых легких молекул до стотысячных долей электрон-вольта для наиболее тяжелых молекул. Вращательные переходы непосредственно изучаются методами инфракрасной спектроскопии и комбинационного рассеяния света, а также методами радиоспектроскопии. Колебательно-вращательные спектры получаются в ре-дультате того, что изменение колебательной энергии сопровождается одновременными изменениями вращательной энергии. Такие изменения происходят и при электронно-колебательных переходах, что и обусловливает вращательную структуру электронно-колебательных спектров.  [c.228]

Если молекула находится в вырожденном колебательном состоянии (П, А,...), то имеется колебательный момент количества движения 1 к12т ) (/=1, 2,...) относительно оси молекулы, и в этом случае, точно так же как и в случае двухатомных молекул (см. Молекулярные спектры I, гл. III, 2), необходимо применять формулу для энергии симметричного волчка. Следовательно, с точностью до постоянного слагаемого мы имеем формулу  [c.399]

Анализ инфракрасных полос, моменты инерции и междуатомные расстояния симметричных волчков. Если в параллельной полосе не разрешена тонкая структура К (т. е. при совпадении всех подполос), полоса имеет в основном ту же структуру, что и перпендикулярная полоса линейной молекулы, и мы можем найти значения вращательных постоянных В и В" таким же способом, как и ранее, а именно из комбинационных разностей (]) = = R J) — P J) и J) = R J— ) — P J- - ) соответственно (см. стр. 419). Применяя этот способ к параллельным полосам, воспроизведенным на фиг. 123 и 124, мы получаем постоянные В 1 наряду с другими величинами, собранными в приводимой ниже табл. 132. Разумеется, разность А,Р" ), полученная иэ различных параллельных полос одной и той же молекулы, должна быть одинаковой при каждом из значений У, если нижнее состояние является общим. Помимо этого, сумма частот двух последовательных линий в чисто вращательном спектре также должна быть точно равна соответствующему значеник> разности во вращательно-колебательном спектре  [c.462]

Правила отбора. Совершенно аналогично случаю линейных молекул и молекул, являющихся симметричным волчком, до тех нор, пока взаимодействие колебания и вращения не слин1ком велико, правила отбора для переходов между колебательными уровнями во вращательно-колебательном спектре и в чисто колебательном спектре совершенно одинаковы (табл. 55). В частности, основное состояние может комбинировать (в инфракрасном поглощении) только с колебательными состояниями типа Еа. Правило отбора для вращательного квантового числа J также обычное  [c.481]

Правила отбора. Если взаимодействие вргицения и колебания не слишком велико, то в комбинационных спектрах, так же как и в инфракрасных сохраняются колебательные правила отбора, полученные для чисто колебательных спектров. Правило отбора для J то же, что и для симметричного волчка  [c.487]

Переходы Е — А,. Если верхнее состояние комбинационной полосы тетраэдрической молекулы является дважды вырожденным, то могут появляться все пять ветвей, определенные условиями (4,88). В подобном случае можно ожидать, что структура полосы будет очень схожа со структурой полносимметричной комбинационной полосы симметричного волчка. Различие должно проявляться лишь в распределении интенсив-иостей линий, которое будет менее закономерным. До сих пор ни одна из таких полос не была наблюдена экспериментально. Так как ири колебании (е) не имеется колебательного момента количества движения, то расстояние между последовательными линиями Р, R и О, S ветвей должно равняться 2В и 46 соответственно. Вращательные линии в спектрах Hj, S1H4 и GeHj при более высоких значениях J должны расщепляться вследствие кориолисова взаимодействия с близким по частоте колебанием V4(/s).  [c.487]


Чтобы рассмотреть свойства вращательно-колебательного спектра, мы должны прибавить к прежним правилам отбора для симметричного волчка правила отбора для квантового числа —А, внутреннего вращения. Нильсен [661] показал, что  [c.527]

Перпендикулярные полосы. Для перпендикулярных полос молекул типа слегка асимметричного волчка существует правило отбора АК = +1. Помимо этого, должны соблюдаться правила отбора для симметрии (11,97) — (11,99) и электронно-колебательно-вращательные правила отбора, приведенные в табл. 15. На фиг. 106 подробно объясняется структура перпендикулярной полосы аналогично тому, как это б].1Ло сделано на фиг. 99 в случае симметричного волчка. Для простоты было принято, что А =А", В -= В" и С = С". Для построения схемы полосы были использованы уровни совершенно жесткого асимметричного волчка, для которого х = —0,95. Относительные интенсивности были взяты из таблиц Кросса, Хайнера и Кинга [257] для температуры 300° К. Сравнив фиг. 106 с фиг. 99, можно увидеть, что внешний вид грубой структуры (A -структуры) совершенно такой же, как и в случае настоящего симметричного волчка. Если, как мы это и сделали, считать одинаковыми вращательные постоянные в верхнем и нижнем состояниях, то в спектре должен наблюдаться ряд эквидистантных подполос. Если же вращательные постоянные различаются, то подполосы должны расходиться. При небольшом разрешении наиболее характерной особенностью полосы являются ( -ветви этих подполос, правда, теперь уже не похожие но внешнему виду на отдельные линии, как это было в случае симметричного волчка. Как и прежде, подполосы образуют две ветви, одну ветвь типа г и одну ветвь типа р, в соответствии со значением АК = И- 1 и —1, причем одна из них примыкает к другой без какого-либо разрыва.  [c.251]

Одни из них, гомогенные, обусловлены взаимодействием между двумя электронно-колебательными состояниями одинаковых тинов, случайно имеющими почти одинаковые энергии в небольшой области значений / (взаимодействие Ферми). Другие, гетерогенные, вызваны взаимодействием двух электронноколебательных состояний различных типов кориолисово взаимодействие). Отличие от других похожих случаев, встречающихся в колебательно-враща-тельных спектрах [см. [23], стр. 495], состоит в том, что теперь два взаимодействующих состояния могут принадлежать к различным электронным состояниям. Гомогенные возмущения обусловлены электронно-колебатель-ным взаимодействием, а гетерогенные — взаимодействием вращения с электронным (или электронно-колебательным) движением. Кориолисовы силы, возникающие при вращении, приводят к взаимодействию между электронноколебательными состояниями, типы которых отличаются от вращательных типов. Из-за низкой симметрии молекул тина асимметричного волчка такие возмущения, по-видимому, бывают здесь чаще, чем в более симметричных молекулах. Однако их труднее обнаружить, так как формулы вращательной энергии более сложны. Конкретных примеров известно очень мало.  [c.119]

Подробный обзор колебательно-вращательных спектров КР высокого разрешения, полученных в последние годы, а также информации, извлекаемой из этих спектров, дан в [16]. Он включает в себя данные по КР-спектрам двухатомных и линейных молекул (Н2, N2, О2, С2Н2, СгМ2 и др.), молекул симметрии зv, молекул типа симметричного, асимметричного и сферического волчков.  [c.157]


Смотреть страницы где упоминается термин Симметричные волчки) из колебательного спектра : [c.131]    [c.601]    [c.602]    [c.603]    [c.615]    [c.620]    [c.625]    [c.638]    [c.505]    [c.545]    [c.557]   
Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.174 , c.182 ]



ПОИСК



274, 323—327 симметричный

Волосевич

Волчков

Волчок

Волчок симметричный

Колебательные

Колебательный спектр

Ле, Л[0], Ару Врр >Э 0 Вру симметричных волчков

Симметричные волчки (молекулы) комбинационный вращательно-колебательный спектр 469 (глава



© 2025 Mash-xxl.info Реклама на сайте