Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Составы электрохимическая — Составы

Исследования фазового состава электрохимического никель- фосфорного покрытия показали, что на образцах из быстрорежущей стали из твердого сплава структура покрытия одинакова. Это означает, что химический состав металла подложки не влияет электрохимически на фазовый состав. Это подтверждают исследования фазового состава осадков на графитовом катоде с меднением и без него. Рентгенограммы, снятые с обоих образцов, оказались одинаковыми и по фазам и по интенсивности присутствие меди не изменило фазового состава покрытия. Это -значит, что покрытия будут всегда одинаковой структуры, на какой бы материал они не наносились.  [c.140]


Влияние ингибиторов на кинетику электрохимических реакций, т. е. на скорость коррозионного процесса, определяется также в потенциостатическом режиме. Для этого снимаются анодные и катодные поляризационные кривые. В общем случае анализ формы поляризационных кривых и изучение характера их зависимости от состава раствора, температуры, ингибирующих добавок позволяют получить довольно полные сведения о природе изучаемого электрохимического процесса, В зависимости от того, как влияют на кинетику электрохимической реакции конкретные ингибиторы и в какой степени замедляют ее, их делят на анодные, катодные или смешанные. В результате дополнительных графических построений, определяют точки саморастворения и затем скорость коррозионного процесса (г/(м ч), по формуле  [c.179]

Металлические материалы имеют в соответствии с их химическим составом одну или несколько металлических фаз и очень небольшое количество неметаллических включений. Металлические фазы в свою очередь состоят из кристаллитов, атомы металла в которых расположены упорядоченно. Металлическое состояние характеризуется тем, что ато мы отдали часть своих внешних электронов электронному газу, который распространяется на весь объем металла и обеспечивает его хорошую электрическую проводимость порядка 10 См см-. В соответствии с этим и чистые элементы реагируют в электрохимическом отношении не как одна компонента. Приближенно можно считать, что существует мезо-мерное состояние  [c.44]

Степень повреждения покрытия при реакциях, названных в пунктах а и 6, для имеющейся системы зависит от состава коррозионной среды и от потенциала или плотности тока. В принципе вышеназванные процессы возможны и без катодной поляризации при свободной коррозии, если образуется коррозионный элемент. При этом поверхность с покрытием является катодом, а металл без покрытия, например на участках повреждений покрытия и наличия пор —анодом ([1,3] см. также раздел 4.2 и рис. 2.6). По этим причинам для оценки покрытий нужно учитывать и электрохимические влияющие факторы — независимо от того, применяется ли катодная защита или нет [4].  [c.164]

Влияние кислорода. Скорость коррозии металлов в нейтральных растворах существенно зависит от концентрации растворенного в коррозионной среде кислорода, который обеспечивает протекание катодной реакции. В большинстве случаев кислород поступает из атмосферы, и скорость коррозии в соответствии с механизмом диффузионной кинетики электрохимического процесса прямо пропорциональна его концентрации. Линейная зависимость наблюдается до тех пор, пока не будет достигнута достаточно высокая концентрация кислорода, после чего поверхность металла начинает пассивироваться. Содержание кислорода в коррозионной среде зависит как от состава и концентрации солей, так и от температуры, условий перемешивания и других факторов, определяющих его растворимость в данной среде.  [c.25]


В зоне соприкосновения двух разнородных материалов возникает контактная разность электрических потенциалов. Один металл из этой пары, обладающий менее отрицательным потенциалом по сравнению с другим, является более благородным . Поверхность конструкционного материала может быть неоднородной по химическому составу, по физическим свойствам (местные нагартовки и пр.). Может быть неоднородной и среда-электролит (различная концентрация примесей). Это приводит к образованию макро- и микрогальванических элементов с появлением электрических токов, которые и являются причиной электрохимической коррозии. В системе возникают анодные и катодные участки. Анодные участки обладают более отрицательным электродным потенциалом. Здесь металл переходит в виде гидратированного иона в раствор, оставляя на поверхности электроны (процесс окисления). В области катода притекающие с анодного участка электроны передаются частицам вещества-деполяризатора, например кислорода. В зависимости от того, кинетика какой реакции определяет коррозию, говорят об анодном или катодном контроле скорости коррозии.  [c.22]

Свойства протектора определяются составом сплава, массой и формой, способом изготовления, электрохимическим эквивалентом, составом активатора, коэффициентом использования, стационарным потенциалом в грунте и т.д.  [c.76]

Электрохимическое поведение стали в промышленных растворах нитрата аммония, сложных удобрений на основе нитрата аммония, в растворах карбоната аммония, сульфата аммония и в аммиакате в аммонийно-аммиачных растворах при pH > 10 не зависит от анионного состава раствора и определяется только концентрацией аммиака и величиной pH. Это подтверждается данными, полученными в промышленных растворах (см. рис. 3.2, 3.3). Поэтому кривые для жидких удобрений совпадают с кривыми для чистых (лабораторных) водных растворов аммиака, имеющих соответствующие pH и концентрацию аммиака (см. рис. 3.2). Ни анионы, ни С0(ЫН2)г при pH > 10 в таких растворах не влияют на ход анодных поляризационных кривых.  [c.45]

Очень широкое распространение получили электрохимические методы исследования пассивности снятие потенциостатических кривых, анодных и катодных кривых заряжения, изучение кривых спада потенциала, исследование емкости двойного слоя, кинетики электродных процессов при поляризации импульсным и переменным током. Для определения структуры, толщины и состава образующихся при пассивации защитных пленок применяют электронографический, оптический, микрохимический, радиографический и некоторые другие методы.  [c.18]

Термический цикл сварки, оказывая теплофизическое воздействие на металл, формирует его физико-механическое состояние, определяет неоднородность металла в зонах сварного соединения различие структуры, химического состава, напряженного состояния. Повышенная неоднородность сварных соединений при одновременном воздействии коррозионной среды, а также остаточных и эксплуатационных напряжений служит причиной зарождения очагов коррозионно-механического разрушения. Физико-механическое состояние определяет различие в коррозионном и электрохимическом поведении зон сварного соединения, которое может быть оценено значениями электродных потенциалов локально в каждой зоне. Проведенные исследования позволили установить, что в большинстве случаев шов является более отрицательным (менее благородным), чем основной металл, а это значит, что в трубопроводе в образовавшемся коррозионном гальваническом элементе шов — основной металл именно шов будет подвергаться анодному растворению. Так происходит, например, у сварных соединений, выполненных электродами с фтористокальциевым покрытием. Однако, как показали эксперименты, при некоторых условиях возможно изменение значения неоднородности, а также изменение полярности зон сварного соединения.  [c.31]

Электрохимическое Ванна состава, кг/м  [c.596]

Скорость растворения сплавов зависит главным образом от их состава, электрохимической активности и электрохимических эквивалентов компонентов, составляющих сплав, а также от физико-химических параметров электролита. При увеличении содержания в сплаве хрома затрудняется нарущение его пассивного состояния при воздействии галоидных анионов [193]. Вследствие различия электрохимических эквивалентов компонентов сплава, их потенциалов растворения и способности к пассивированию во многих случаях при ЭХО происходит увеличение в поверхностном слое содержания более электроположительных составляющих (например, никеля, меди, молибдена). При этом в анодной поляризационной характеристике сплава может наблюдаться несколько участков, соответствующих пассивации его различных компонентов [178]. Это обусловливает необходимость обеспечения приблизительно одинаковой скорости растворения всех основных компонентов сплава при подборе электролита. Определенное влияние на процесс анодного растворения кроме химического состава сплава оказывает и его структура. Связь производительности электрохимической обработки сталей с их микроструктурой показана в работе [127]. При анодном растворении жаропрочных сплавов на никелевой основе отмечалось преимущественное растворение (растравливание) границ зерен вследствие их относительно более высокой активности. В зависимости от природы фаз, составляющих данный сплав, существенно различаются параметры возникающих на них пленок [117].  [c.34]


Эта коррозия является одной из разновидностей структурной коррозии сплавов. При воздействии на поверхность сплава растворов электролитов структурные составляющие корродируют со скоростями, которые зависят от их электрохимических свойств, состава коррозионной среды и величины электродного потенциала.  [c.99]

В работах И. Л. Розенфельда [13] показано существенное влияние на развитие электрохимической коррозии состава среды. В реальных условиях службы металла теплоэнергетических установок, как показали работы  [c.30]

Травление металла для получения рельефных изображений производится химическим или электрохимическим путем. Составы растворов и режимы травления приведены в табл. 16.  [c.42]

Оксидные и фосфатные покрытия. Оксидные и фосфатные по крытия на черных металлах могут быть получены термическим, химическим и электрохимическим путем. Термический способ заключается в нагреве детали из стали на воздухе, в среде водяного пара или расплавленной селитре. При этом на поверхности металла образуется пленка толщиной около мк, которая в зависимости от его состава и температуры оксидирования имеет различную окраску. Воздушно-термический способ широко используется для получения тонких изоляционных пленок на деталях электротехнической аппаратуры.  [c.244]

Следовательно, при взаимодействии неметаллических материалов с различными химическими реагентами, включая электролиты, как правило, невозможно протекание электрохимических процессов. Изменение химического состава или структуры взаимодействующих материалов и веществ может быть лишь следствием различных химических реакций. Значит, химическая устойчивость какого-либо неметаллического материала к действию того или иного химического реагента изначально будет определяться его химической природой (химическим составом).  [c.13]

Установка является автономным источником гарантированного электроснабжения индивидуальных потребителей единичной мощностью до 160 Вт (светильники, телеаппаратура, электронасосы, электробытовые кухонные приборы, аппаратура связи, навигации и др.), имеющим в своем составе электрохимический накопитель энергии (аккумулятор).  [c.109]

Скорость и характер процесса электрохимической коррозии металла зависят от многих факторов, действующих одновременно. К внутренним факторам электрохимической коррозии металлов относятся факторы, связанные с природой металла, его составом, структурой, состоянием поверхности, напряжениями в металле и др.  [c.324]

К внешним факторам электрохимической коррозии металлов относятся факторы, связанные с составом коррозионной среды и условиями коррозии температура, давление, скорость движения среды, внешняя поляризация и др.  [c.341]

Так как возможности ряда напряжений для предсказания электрохимического поведения металлов ограничены и этот ряд не включает сплавы (условия равновесия твердых сплавов со средой еще недостаточно изучены), можно составить так называемый электрохимический (или гальванический) ряд, в котором металлы и сплавы расположены в соответствии с их действительными потенциалами, измеряемыми в данной среде. Потенциалы, определяющие положение металла в электрохимическом ряду, могут включать как обратимые, так и стационарные значения, поэтому в ряду представлены сплавы и пассивные металлы. Ниже приводится электрохимический ряд металлов, контактирующих с морской водой [5а] (потенциалы возрастают сверху вниз)  [c.41]

РЕЗУЛЬТАТЫ ИСПЫТАНИЙ. Испытания, проведенные в Шеффилде (Англия), указывают на плохую защитную способность в промышленной атмосфере ЛКП, нанесенных на поверхность стали, предварительно выдержанную на воздухе — см. табл. 15.Г. Относительно большой срок службы, обнаруженный для ЛКП на неповрежденной прокатной окалине, по-видимому, не реализуется в практических условиях. Например, трудно было бы предотвратить растрескивание больших участков прокатной окалины различного состава, которое может происходить до и после покраски. Разрыв прокатной окалины приводит к отслаиванию ЛКП, особенно после того, как началось электрохимическое взаимодействие между металлом и окалиной в результате проникновения водного раствора к поверхности металла.  [c.254]

Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31].  [c.338]

В тех случаях, когда необходимо очистить поверхность металла от окисных пленок, после обезжиривания применяют электрохимическое или химическое травление. В табл. 4-1 [43] приведены составы травителей для титана и жаропрочных сплавов на основе кобальта или никеля.  [c.88]

Учет заряда фаз и составляющих не меняет, как видно, общей схемы расчета химических и фазовых равновесий полученные в этом разделе выводы и формулы не отличаются принципиально от результатов 16, достаточно заменить химические потенциалы на электрохимические. Специфика электрохимических равновесий проявляется в более сложных системах — электрохимических цепях. Последние широко используются в экспериментальной термодинамике для электрических измерений термодинамических свойств веществ. В рассмотренной двухфазной системе разность ф —<рР, мембранный потенциал, не может быть измерена, поскольку, как говорилось, нет возможности выделить из общей работы переноса заряженной массы из одной фазы в другую ее электрическую часть. Можно, однако, добавить к такой системе еще две фазы одинакового химического состава и измерять разность электрических потенциалов между ними, а рассчитывать при этом разность химических потенциалов в интересующих фазах. Схему такого электрохимического элемента можно представить в виде  [c.151]


В процессе эксплуатации оборудование контактирует с разнообразными средами, обладающими коррозионно-агрессивными свойствами, однако в большинстве случаев инициатор коррозионных процессов — вода, и коррозия протекает по электрохимическому механизму. Агрессивность водной фазы зависит главным образом от ее химического состава и физического состояния. Основные факторы, определяющие физико-химическое состояние воды, - это состав и содержание растворенных солей, наличие кислорода и кислых газов (углекислого газа, сероводорода), их парциальное давление, температура, скорость движения и характер потока.  [c.4]

Методы, связанные с регистрацией электрических характеристик исследуемого объекта, позволяют кодировать информацию о свойствах объекта непосредственно в форме электрического сигнала, наиболее удобной для последующего преобразования. Электрохимические методы требуют весьма различных инженерных решений аналитической аппаратуры. Особенно это относится к узлам первичного преобразования информации об объекте (кон-дуктометрия, полярография) или самого объекта (электрофорез, изоэлектрическая фокусировка). Еще большее разнообразие характеризует электрохимические методы в плане их информативности. В этом отношении на один полюс можно поставить методы определения элементарных ионов, а на другой — исследование функционального состояния и жизнеспособности органических тканей. Промежуточными областями аналитического диапазона электрохимических методов является определение различных неорганических и органических соединений, ферментативной и иммунной активности, белкового состава, дисперсионный и электроспектроскопический анализы суспензий всевозможных частиц, в том числе биологических клеток. Общая черта, объединяющая вышеуказанные методы в одну группу, заключается в комплексном характере взаимодействия объекта, поддерживающей среды (если таковая имеется), электродной системы и электрического поля. Основные электрохимические методы нашли отражение в табл. 2. Кроме них, применяются еще некоторые методы.  [c.128]

При взаимодействии на поверхности сплава растворов электролитов структурные составляющие корродируют со скоростями, которые зависят от их электрохимических свойств, состава коррозионной среды и величины электродного потенциала. В общем случае при данном электродном потенциале сплава скорости коррозии структурных составляющих paзличн J. Межкристаллитная коррозия сплава будет иметь место при наличии, по крайней мерэ, следующих условий /9/  [c.84]

Приведенная выше схема, описывающая механизм коррозионного растрескивания а- и псевдо-а-сплавов титана, достаточно хорошо подтверждается экспериментальными данными по коррозионному растрескиванию (а + Р) -и /3-сплавов. В процессах коррозионного растрескивания единственным отличием этих сплавов от а-сплавов является возможность протекания интенсивного анодного растворения в -фазе при определенном ее составе. Наличие в составе /3-фазы хрома или марганца в сочетании с примесями внедрения способствует появлению сегрегатов с существенно более низким электрохимическим потенциалом, обеспе-  [c.72]

Поэтому, хотя в неводных электролитах общая скорость коррозии металлов невысока (е мало), эти электролиты являются оптимальными для выявления электрохимической гетерогенности шероховатой поверхности металла и для избирательного травления, например, металлографических шлифов. Эмпирически подобранный электролит для избирательного травления дислокаций на железе [41 ] содержит в качестве растворителя метиловый спирт (е = 33). Оптимальный эффект травления реактивом состава метиловый спирт + 1% РеС1з можно объяснить наличием всех необходимых компонентов растворитель с низким е, ионы Fe " " как сильный окислитель (деполяризатор), ионы С1" как сольватирующие анионы и легко разрушающие первичную окисную пленку. Несколько худшие результаты с этиловым спиртом, несмотря на близкие значения е, вызваны, видимо, наличием у молекулы щетки углеводородного радикала, мешающей ионам железа и хлора приближаться к поверхности металла.  [c.170]

К сожалению, бо-лыпинство фирм, которые изготавливают ингибиторы коррозии, не сообщают их состав, поэтому подчас трудно составить себе представление о том, какие химические соединения или функциональные группы в сложных соединениях или смесях выполняют защитные функции. Знать же это совершенно необходимо для понимания механизма защиты металлов ингибиторами. В связи с этим рассмотрение пассивирующих и защитных свойств различных неорганических и органических соединений представляет большой интерес. Не менее важным является установление общих закономерностей защиты металлов от коррозии ингибиторами характер адсорбции, в.лияние ингибиторов на электрохимическую кинетику, связь между составом и структурой химических соединений и их защитными свойствами, влияние ингибиторов на поведение многоэлектродных систем, методы определения защитных свойств ингибиторов, возможность развития локальной коррозии в присутствии ингибиторов. Рассмотрение этих вопросов, несомненно, облегчит труд исследователей, занимающихся поисками новых ингибиторов, а также труд инженерных работников, использующих ингибиторы коррозии в технике.  [c.6]

Специфика процесса электрохимической размерной обработки определяет особенности качества обработанной поверхности. Формирование микрорельефа поверхности при ЭХО в отличие от резания в значительной мере определяется при этом химическим составом и структурой обрабатываемого материала, химическим составом, температурой и скоростью движения электролита. Силовой и тепловой факторы практически не участвуют в образовании поверхностного слоя (при отсутствии коротких замыканий, гидравлических ударов и других нарушений процесса ЭХО). Поверхностный слой создается в результате электрохимического растворения материала и химического воздействия среды. Шероховатость обработанной поверхности, являющаяся наиболее важной геометрической характеристикой циклической прочности, в зависимости от условий ЭХО изменяется в широком диапазоне от Кг == 10- 40 мкм до Яг. = 0,02- 0,16 мкм (ГОСТ 2789—73),. Для большинства конструкционных материалов при ЭХО в опти-малъном режиме получить шероховатость в пределах Яа = 0,32 4-2,5 мкм не представляет технологических трудностей [210]. Таким образом, шероховатость поверхности ЭХО не только не уступает основным чистовым методам механической обработки, но и некоторые из них превосходит.  [c.66]

В зависимости от состава пигментов и пленкообразуюшей основы лакокрасочные покрытия играют роль барьера, пасси-ватора или протектора, и их заш,итные действия обусловливаются двумя основными факторами механической изоляцией )а-щищаемой поверхности от внешней среды химическим или электрохимическим взаимодействием покрытия с заш,ищаемой поверхностью.  [c.161]

Широко используют в коррозии также различные аналитические методы — электрохимические (кулоно-метрию, электрометрическое титрование, полярографические определения) и ряд других — хроматографию, спектрографию, ядерный магнитный резонанс и даже построение спектров Мессбауэра. По существу, почти все методы физико-химических исследований металлов и особенно касающиеся изучения свойств, состава и строения их поверхности находят применение и в коррозионных исследованиях.  [c.6]


Чтобы этот процесс протекал обратимо, Вагнер и Энгельгардт составили электрохимический элемент  [c.249]

Материалы об электрохимическом осаждении металлов изложены в том порядке, который эти металлы занимают в Периодической системе элементов, поскольку их свойства, в особенности свойства соответствующих химических соединений, оказывают влияние на свойства электролитов, характер химических и электрохимических реакций, протекающих при нанесении покрытий. Так, общность элементов первой группы — меди, серебра, золота проявляется в способности образовывать комплексные соединения с цианидом, дифосфатом и некоторыми другими лигандами, что нашло отражение в составах электролитов для электрохимического осаждения этих металлов. Приводимые в книге сведения  [c.3]

В начале в раствор переходят одновременно цинк и медь в пропорции, соответствующей составу сплава. Ионы меди затем вторично выделяются из раствора, а образовавшийся осадок меди ускоряет электрохимическую коррозию латуни, как добавочный катод. В результате в раствор переходят ионы цинка, и с течением времени обесцинкование распространяется так глубоко, что приводит к образованию сквозных поврежде1шй латуни. Для уменьшения обесцннкования латуней сплав дополнительно легируют небольшими количествами олова, никеля, алюминия, а чаще всего мышьяка, порядка 0,001—0,012%. Возможный механизм влияния мышьяка — увеличение перенапряжения вторичного выделения меди.  [c.253]

Позднее эта точка зрения была распространена и на металлы, которые не образуют интерметаллидных соединений, но для которых характерно изменение фаз йли образование сегрегаций легирующих элементов или примесей в вершине трещины в ходе пластической деформации вследствие градиента состава здесь образуются гальванические элементы. Варианты этой теории содержат предположение, что трещины образуются механически и что электрохимическое растворение необходимо только для периодического сдвига барьеров при росте трещины [25]. Но хрупкое разрушение пластичного металла вряд ли возможно в вершине трещины. Кроме того, было показано, что удаление раствора Fe lg из трещины, образованной в напряженном монокристалле ujAu, сопровождается релаксацией напряжений в кристалле и —. .в результате —немедленным прекращением растрескивания, сменяющимся пластической деформацией [26]. Аналогичным образом, трещина, распространяющаяся в напряженной нержавеющей стали 18-8, погруженной в кипящий раствор Mg lj, останавли-  [c.138]

Все перечисленные теории связывают склонность сплавов к МКК со структурными изменениями, т.е. с выделениями новых фаз (в основном карбидных) на границах зерен, которыэ могут происходить при термической обработке и других видах химмко-металлургическо-го и термического воздействия, например, при сварке, пайке, наплавке. В последующих случаях МКК обычно проявляется в зоне термического влияния. Развитие МКК зависит как от состава сплавов, так и от коррозионной среды и имеет, как правило, электрохимический механизм.  [c.84]

Углеводороды могут изменять кинетику электрохимических реакций в зависимости от анионного состава электролита и концентрации ионов водорода- В растворе хлористого натрия и в растворе уксусной кислоты в присутствии индивидуальных углеводородов октана, бензола, циклогексана наблюдалось увеличение коррозионных потерь. Это объясняется наличием растворенного кислорода в углеводородах, что приводит к повышению содержания кислорода в системе и увеличению доли коррозионного процесса, протекающего с кислородной деполяризацией [21]. Увеличение коррозионных потерь в растворе хлортстого натрия составляло в среднем 20-30 %, а в водных растворах уксусной кислоты скорость коррозии возрастала заметнее, чем в растворе хлористого натрия. Наводороживание в присутствии сероводорода в обоих растворах уменьшается, что в работе [21] объясняется связыванием кислородом адсорбировавшегося водорода по реакции 1/2 О2 + 2Надс - НаО. В сероводородсодержащих растворах Na l количество диффузионно-подвижного водорода достигало 2,2 см /ЮО г. Введение малых добавок -6,25 % октана, циклогексана и нефти привело к его снижению до 1,2 1,0 1,4 см /ЮО г соответственно [21]. Бензол при этой концентрации оказывал меньшее влияние, однако в связи с более высокой растворимостью сероводорода в бензоле, чем в октане и тем более в циклогек-  [c.32]

К электрохимическим относятся методы получения покрытий под действием электрического поля на катоде (цинкование, кадмирование, хромирование, никелирование, осаждение сплавов различного состава), анодное и анодно-катодное оксидирование (анодирование алюминия и его сплавов, микродуговая обработка) электрофоретическое и электростатическое осаждение порошковых материалов, нанесение комбинированных покрытий за счет сочетания процессов электролитического и электрофоретического осаждения.  [c.50]


Смотреть страницы где упоминается термин Составы электрохимическая — Составы : [c.357]    [c.242]    [c.115]    [c.390]    [c.396]    [c.161]    [c.142]    [c.266]    [c.48]    [c.77]   
Гальванические покрытия в машиностроении Т 2 (1985) -- [ c.0 ]



ПОИСК



1.161—Приготовление электролито выравнивающего электролита 2.6 Состав электролита для электрохимического полирования

Вариант 6.1. Определение зависимости качества электрохимического оксидного покрытия от состава электролита

Обезжиривание электрохимическое 205 — Составы электролитов и режимы их работы

Полирование электрохимическое поверхности алюминия — Составы электролитов и режимы полирования

Растворы для электрохимического обезжиривания деталей перед электролитическими покрытиями Состав

СОСТАВЫ ДЛЯ РАЗМЕРНОЙ ХИМИЧЕСКОЙ И ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ МЕТАЛЛОВ

СОСТАВЫ ДЛЯ ЧИСТОВОЙ ЭЛЕКТРОХИМИЧЕСКОЙ И ХИМИЧЕСКОЙ ОБРАБОТКИ ПОВЕРХНОСТИ МЕТАЛЛОВ

СОСТАВЫ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО (ГАЛЬВАНИЧЕСКОГО) НАНЕСЕНИЯ МЕТАЛЛИЧЕСКИХ ПОКРЫТИЙ

Содержание и состав проектной документации по защите сооружений от электрохимической коррозии

Состав электрохимическое 2. — Особенности процесса

Составы для местной защиты поверхности в процессах электрохимической и химической обработки

Составы для электрохимического полирования

Составы электрохимическое — Виды

Составы электрохимическое — Сс ставы

Травление электрохимическое 207 — Составы электролитов и режимы их работы

Электрохимический

Электрохимическое Состав электролитов



© 2025 Mash-xxl.info Реклама на сайте