Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Внешние факторы электрохимической коррозии металлов

ВНЕШНИЕ ФАКТОРЫ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ МЕТАЛЛОВ  [c.341]

К внешним факторам электрохимической коррозии металлов относятся факторы, связанные с составом коррозионной среды и условиями коррозии температура, давление, скорость движения среды, внешняя поляризация и др.  [c.341]

К опасным видам местной электрохимической коррозии металлов относятся контактная, щелевая, точечная (питтинговая), межкристаллитная и коррозионное растрескивание. Контактная коррозия металлов уже рассмотрена нами во внешних факторах электрохимической коррозии металлов, а коррозионное растрескивание — во внутренних факторах электрохимической коррозии. Остальные виды местной электрохимической коррозии тоже уже упоминались в тексте, но требуют более подробного описания.  [c.414]


Глава XI. Внешние факторы электрохимической коррозии металлов  [c.5]

Потенциал нулевого заряда металла зависит не только от природы металлов, но и от адсорбции поверхностно активных веществ, которые могут сдвигать потенциал нулевого заряда. Так, адсорбция анионов сдвигает его в сторону более отрицательных значений, а адсорбция катионов — в сторону более положительных значений. С этой точки зрения потенциал нулевого заряда как фактор электрохимической коррозии является переходным между внутренними и внешними факторами.  [c.165]

Скорость электрохимической коррозии металлов зависит от сложного комплекса физико-химических, тепловых, механических и других факторов, называемых внутренними и внешними. К внутренним факторам, помимо рассмотренных в гл. 1 термодинамической стабильности металлов и их строения, относятся структурные особенности сплавов, способность металлов и сплавов к пассивации, влии-ние механических напряжений на коррозионный процесс, характер обработки и состояние поверхности сплавов н др. Внешние факторы включают характер агрессивной среды, концентрацию водородных ионов, температуру и скорость движения потока раствора, давление, влияние блуждающих токов, микроорганизмов и др.  [c.15]

В целом только комплексный подход, учитывающий электрохимическую природу коррозии, внутреннее строение металла и воздействие внешних факторов, может быть в полной мере плодотворен при анализе причин выхода металлоизделия из строя, правильном выборе материала и оценке его ресурса. К внешним факторам мы относим такие, как чистота отделки поверхности, наличие приложенных извне напряжений, конструктивное оформление данного узла и др.  [c.6]

Продукты коррозии получаются в результате химического или электрохимического разрушения металлических деталей под воздействием внешних факторов. При этом на поверхности деталей образуется пленка красновато-бурового цвета гидроксидов металлов (на алюминиевых деталях пленка имеет серовато-белый цвет гидрата оксидов алюминия). Факторами, обусловливающими коррозию, являются влага, коррозионноактивные продукты горюче-смазочных материалов, внешние условия.  [c.15]

В промышленности широко применяется нанесение металлических покрытий на поверхность конструкционных материалов для защиты их от коррозии и в декоративных целях. Металлические покрытия не только изолируют металл-основу от коррозионной среды, но в некоторых случаях даже обеспечивают электрохимическую его защиту. По своему виду и сопротивлению воздействию внешних факторов покрытий предмет подобен металлу, который применен в качестве покрытия.  [c.192]


Пассивное или активное состояние металла определяется как внутренними, так и внешними факторами. Внутренние факто-. ры коррозии термодинамическая устойчивость металла, выраженная через равновесный электрохимический потенциал, положение металла в периодической системе, чистота металла, величина зерна, термическая или механическая обработка металлов и яр. Внешние факторы, определяющие коррозионное поведение металла,— характер среды, температура, концентрация водородных ионов.  [c.888]

При исследовании электрохимических реакций под тонкими пленками электролитов обычно полагают, что довольно быстро устанавливается стационарный режим и лимитирую-ющие стадии реакций остаются неизменными во времени. Между тем в процессе саморастворения металлов (т. е. в отсутствие внешнего тока) не исключается возможность изменения во времени как скорости электрохимических реакций, так и природы лимитирующего фактора. Последнее связано с накоплением продуктов коррозии во времени и изменением состояния поверхности металла.  [c.174]

К внешним факторам электрохимической коррозии металлов относятся факторы, связанные с составом коррозионной среды п условиями коррозии температура, давление, скорость движения, внешняя поляризация и др. Важным показателем является величина pH среды, которая определяет механизм катодной реакции и состав продуктов коррозии (диаграммы Пурбе). Для нейтральных растворов важен ионный состав, который непосредственно влияет на стадийность процесса коррозии и на свойства продуктов коррозии,  [c.24]

Скорость и характер процесса. электрохимической коррозии металлов зависят от многих факторов, которые под )аздсляются иа внутренние и внешние.  [c.69]

Непостоянство условий (изменение поверхности электродов и др.) в процессе работы элемента и сложность их учета не позволяют практически использовать приведенные способы расчета, хотя для ряда простых коррозионных систем получено количественное совпадение между рассчитанными и наблюдаемым скоростями коррозии. На скорость электрохимической коррозии металлов влияет много различных факторов. Все они разделяются на две большие группы внутренние и внешние факторы коррозии. К внутренним факторам относятся термодинамическая устойчивость металла, положение его в периодической системе элементов, структура, наличие В нутренних напряжений в металле, состояние поверхности металла и т. п.  [c.37]

Одними из наиболее важных и точных методов лабораторных коррозионных исследований являются электрохимические. Чаще всего исследуется изменение потенциала металла в определенной коррозионной среде в зависимости от времени. Из-за относительно большой продолжительности исследований эта зависимость регистрируется обычно с помощью автоматического самописца. Более полную картину коррозионного процесса дают так называемые поляризационные кривые, по которым судят о поляризуемости данного металла, о роли катодных и анодных реакций и влиянии внутренних и внешних факторов на коррозионный процесс. Особенно важное место занимают поляризационные измерения при исследовании пассивирующихся систем (см. ингибиторы коррозии).  [c.36]

При рассмотрении электрохимической коррозии выделяют влияние на скорость растворения внутренних, присущих металлу, факторов и внешних факторов, относящихся к коррозионной среде. К внутренним относятся факторы, связанные с природой металла, его составом, структурой, состоянием поверхности, напряжениями и др. Важнейшей характеристикой природы металла являются его термодинамическая устойчивость и способность к кинетическому торможению анодного растворения (пассивация). Имеется определенная связь между положением металла в Периодической системе элементов Д. И. Менделеева и их коррозионной стойкостью. Для металлических сплавов на основе твердых растворов характерно скачкообразное изменение коррозионных свойств при концентрациях, равных гг/8 атомной доли более благородного компонента (правило Таммана), в связи с образованием плоскостей упорядоченной структуры, обогащенных атомами благородного компонента. Правило Таммана было подтверждено на ряде твердых растворов, а также иа технических пассивирующихся сплавах  [c.23]


Важным внешним фактором является температура, поскольку она непосредственно входит во все уравнения электрохимической кинетики, определяет растворимость газов в электролитах и влияет на структуру и свойства продуктов коррозии. При неравномерном распределении температуры на поверхности металла могут возникнуть термогальванические пары, анодами в которых являются более горячие участки.  [c.24]

Практическое использование электрохимических принципов защиты от коррозии требует знания кинетики анодного и катодного процессов на металлах и влияния на нее внутренних и внешних факторов в широкой области потенциалов между крайними значениями равновесных потенциалов термодинамически возможных в системе металл — раствор анодных и катодных реакций. Как следует, например, из рис. 1, при протекании процесса в области перепассивации (фв), когда для защиты от коррозии целесообразно смещать потенциал коррозии в сторону отрицательных значенйй, не любое торможение катодной реакции приведет к подавлению коррозионного процесса (см. кривые ф 1 и ф°/1/). Без знания границ устойчивого пассивного состояния защитить металл невозможно.  [c.10]

В условиях электрохимической коррюзии при отсутствии внешней поляризации на поверхности металла устанавливается коррозионный или стационарный потенциал <р, соответствующий равенству скоростей анодной и катодной реакций. Величина потенциала коррозии зависит от природы металла, состояния поверхности, состава и концентрации электролита, условий диффузии, температуры и других факторов, которые влияют на скорость катодных и анодных реакций. При стационарном потенциале в случае коррозии металла с физически и химически однородной поверхностью плотности тока катодной и анодной реакций равны. В случае локализации катодных и анодных процессов при этом потенциале оказываются равными нулю не плотности токов этих реакций, а силы токов, поскольку величины катодной и анодной поверхностей могут быть различны. В этом случае величина коррозионного разрушения металла характеризуется плотностью тока на анодных участках.  [c.11]

Металлы обладают электрической проводимостью, в десятки и сотни раз более высокой, чем проводимость электролитов. Поэтому (за исключением тех особых случаев коррозии, когда имеется очень большая прогяженность конструкции по сравне-нию с ее сечением, или случаев плохого контакта катодных № аюдных участков во ннешней цепи) можно в общем считать,, что коррозионные системы не имеют заметного сопротивления во внешней цепи. Таким образом, роль омического фактора при-электрохимической коррозии, как правило, целиком определяется сопротивлением внутренней цепи — электролита.  [c.168]

Анализируя литературные источники и производственные данные (в частности, ОГКМ, АНК "Башнефть", ОАО "Татнефть") о применении конструкционных материалов для оборудования и трубопроводов, работающих в сероводородсодержащих средах, можно сделать вывод о том, что коррозия углеродистых сталей в таких условиях неотвратима, поскольку образующиеся продукты коррозии не способствуют наступлению пассивного состояния металла ни при каких комбинациях внешних и внутренних факторов. В связи с отмеченным, действенным направлением по повышению долговечности конструкций может быть применение коррозионно-стойких материалов и покрытий, предотвращающих или снижающих интенсивность воздействия рабочих сред за счет рационального использования электрохимических характеристик материала подложки и покрытия, а также барьерного эффекта.  [c.27]

Ряд теоретических и практических вопросов коррозии часто выясняют, исследуя работу модели коррозионного элемента. Распространению этого метода способствовали исследования Эванса, Г. В. Акимова и его школы. Модель микроэлемента представляет собой замкнутые металлическим проводником анод и катод, погруженные в коррозионную среду (рис. 225). Такая система моделирует корродирующий силав, так как коррозию силава в электролите можно упрощенно представить как работу бинарного гальванического элемента анод—катод. Приведенная на схеме установка позволяет исследовать влияние на величину тока и потенциалы электродов внешнего сопротивления пары, перемешивания раствора в анодном и катодном пространстве, различных добавок к раствору в анодном и катодном пространствах. На основании такого исследования можно сделать вывод о влиянии перечисленных факторов на поляризацию анода и катода, о степени анодного, омического и катодного контроля и контролирующем факторе коррозии. Аналогичные установки используют для исследования электрохимического иоведения разнородных металлов в контакте друг с другом, т. е. контактной коррозии и протекторной защиты. Специальные установки позволяют проводить эти опыты одновременно на большом числе гальванических пар.  [c.391]

Контактная коррозия возникает и в случае различия электрохимических характеристик разных участков одного и того же металла. В лабораторных условиях контактную коррозию исследуют измерением коррозионных токов моделируемых макропар. При этом рассчитывают весовые потери и устанавливают контролиру-ЮШ.ИЙ фактор коррозии по коррозионной диаграмме, построенной по измеряемым значениям силы тока и потенциалов электродов коррозионной пары в нейтральном электролите при изменении внешнего сопротивления. Если в качестве электродов гальванического элемента служат анодные и катодные составляющие структуры какого-либо металла, то такая пара может моделировать работу коррозионных микроэлементов данного металла.  [c.45]



Смотреть страницы где упоминается термин Внешние факторы электрохимической коррозии металлов : [c.121]    [c.33]    [c.43]    [c.261]   
Смотреть главы в:

Курс теории коррозии и защиты металлов  -> Внешние факторы электрохимической коррозии металлов



ПОИСК



Коррозия металлов

Металлы электрохимическая

Факторы внешние

Факторы коррозии

Факторы коррозии внешние

Факторы электрохимические

Электрохимическая коррози

Электрохимическая коррозия

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте