Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытания динамические ползучесть

Динамическое старение осуществляли в установке ИП-2, предназначенной для испытаний на ползучесть при растяжении, в диапазоне температур от комнатной до 600° С при напряжениях от 0,5 Го,2 до 1,05 Сто,2  [c.46]

Рнс. 4.35. Результаты комбинированных испытаний (а, б) стали с 0,14 % С при 450 С на динамическую ползучесть при статическом растяжении в сочетании с переменным кручением  [c.123]

Рис. 5.2. Результаты испытаний жаропрочных сплавов на динамическую ползучесть До разрушения и сопоставление экспериментальных и расчетных данных [2] а — сталь с 13 % Сг, 450 °С. 100 ч / — разрушение 2 — е = 5 % 5 — е = 1 % Рис. 5.2. <a href="/info/677333">Результаты испытаний</a> <a href="/info/51119">жаропрочных сплавов</a> на <a href="/info/130068">динамическую ползучесть</a> До разрушения и сопоставление экспериментальных и расчетных данных [2] а — сталь с 13 % Сг, 450 °С. 100 ч / — разрушение 2 — е = 5 % 5 — е = 1 %

Наибольшее внимание уделяется методике испытаний на ползучесть, релаксацию и длительную прочность. Однако в лабораторной практике получили распространение и другие методы горячих механических испытаний — как статические (растяжение, кручение, изгиб, твердость), так и динамические (изгиб, разрыв). Особое место занимают горячие испытания на усталость. Большинство этих методов имеет немаловажное значение для установления полной механической характеристики жаропрочных сплавов.  [c.3]

Проводят также испытания резин на стойкость в агрессивных средах при многократных деформациях растяжения (ГОСТ 9.062—75) на образцах, изготовленных в пресс-формах в виде колец с наружным диаметром 19,0 0,3 мм, внутренним диаметром 15,0 0,3 мм и высотой 6,0 0,2 мм. Для испытаний используют установку, обеспечивающую частоту приложения нагрузки от 0,33 до 2 Гц минимальное растягивающее усилие — 5 Н, максимальное — 20, 30, 40, 50 Н с предельным отклонением 0,5Н температуру испытаний поддерживают в диапазоне 23—100 °С с предельным отклонением 2 °С. При испытаниях фиксируют время до разрыва образца и величину деформации. По диаграмме деформация — время фиксируют длину образца в начальный момент приложения максимальной нагрузки и к моменту разрыва образца Ьд при максимальной нагрузке или через 10 ч испытаний. Вычисляют динамическую ползучесть Ед по формуле  [c.141]

Применение электронного устройства регулирования скорости на установке для испытаний материалов растягивающими нагрузками расширило диапазон технических возможностей установки, позволило проводить испытания при скоростях, характерных для ползучести и более высоких, вплоть до скоростей, соответствующих динамическому нагружению.  [c.85]

I. Предварительные замечания. В 2.11 и 2.13 были описаны статические кратковременные испытания гладких образцов из различных материалов на растяжение и сжатие при комнатной температуре. Предыдущие параграфы настоящей главы содержат описание различных упругих и механических свойств материалов и оценку влияния различных факторов на эти свойства. Уже при этом обсуждении приходилось обращаться к результатам динамических испытаний (при определении сопротивляемости ударному воздействию и при оценке влияния скорости деформирования на различные свойства), кратковременных и длительных испытаний при высоких температурах (при определении предела длительной прочности и предела ползучести, а также при оценке влияния температурного фактора на различные свойства), длительных испытаний при переменных по величине и знаку нагрузках, длительных испытаний при комнатной температуре и постоянной нагрузке и при монотонно убывающей нагрузке. Приходилось, наряду с рассмотрением результатов испытания гладких образцов, обращаться и к анализу материалов испытаний образцов с надрезом указывалось, что, кроме непосредственного определения интересующих инженера свойств материала, существуют косвенные пути оценки этих свойств (при помощи определения твердости) отмечалось, что,  [c.298]


Например, в случае суперсплава с крупным зерном (поведение I типа) на воздухе наблюдается ускоренная ползучесть и разрушение образца в результате распространения одной-двух трещин, образующихся на внешней поверхности (рис. 13, а). В вакууме (рис. 13, б) разрушение происходит в результате объединения многочисленных полостей, образовавшихся в местах стыка трех зерен внутри образца. На воздухе трещины зарождались в местах пересечения границ зерен с поверхностью (где в результате окисления проис.ходило обеднение выделениями) и распространялись по границам зерен. Еще одна интересная особенность результатов, полученных на воздухе,— наличие ступенек на участках ускоренной ползучести (см. рис. 3 и 4). По-видимому, они связаны с легким образованием трещин в местах выхода межзеренных границ на поверхность (этому соответствуют резкие перепады ступенек) и последующим замедлением или даже прекращением их развития (относительно плоский участок ступеньки). Притупление трещин происходит в окисленном и лишенном фазы у поверхностном слое (рис. 14). Такое прерывистое развитие трещин продлевает продолжительность стадии ускоренной ползучести. Этот эффект имеет, по-видимому, динамический характер, поскольку при испытаниях в вакууме предварительно окисленных образцов такой ступенчатой кривой ползучести не наблюдалось, хотя скорость ползучести и была уменьшена присутствием окалины. При вакуумных испыта-  [c.42]

Для измерения деформаций и усилий на образце служат две динамические пружины, жестко прикрепленные к нижнему захвату. Жесткость нагружения образца варьируется установкой сменных динамометрических пружин разной толщины. При испытании на термоциклическую ползучесть верхний захват соединяется с механизмом нагружения рычажного типа, обеспечивающим наибольшее усилие до 2000 Н. Нагрев образца осуществляется прямым пропусканием тока.  [c.171]

В развиваемом подходе внешние факторы учитываются с помощью соотношений, связывающих критические параметры подобных точек бифуркаций. Показана возможность резко повысить информативность результатов испытаний на кратковременное растяжение, усталость и ползучесть с определением степени деградации материала при заданных условиях службы на основе параметрических карт механического состояния сплава. Установленная возможность определения свойств материала в автомодельных условиях в зависимости только от одного параметра — структуры (в данном случае динамической) — явилась основой для разработки принципов управления диссипативными свойствами сплавов.  [c.130]

К основным механическим свойствам металлов относят прочность, твердость, упругость, пластичность, ударную вязкость. Прочность — способность металла сопротивляться разрушению или появлению остаточных деформаций под действием внешних сил. Большое значение име т удельная прочность, ее находят отношением предела прочности к плотности металла. Для стали прочность выше, чем для алюминия, а удельная прочность ниже. Твердость — это способность металла сопротивляться поверхностной деформации под действием более твердого тела. Упругость — способность металла возвращаться к первоначальной форме после прекращения действия сил. Пластичность — свойство металла изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом. Ударная вязкость — способность металла сопротивляться разрушению под действием динамической нагрузки. Кроме указанных механических свойств можно назвать усталость (выносливость), ползучесть и др. Для установления характеристик механических свойств производят их испытания.  [c.30]

Под жаропрочностью понимают свойство металлов при высоких температурах сопротивляться деформации и разрушению при действии приложенных напряжений [4]. Как и обычная прочность, жаропрочность должна быть обеспечена в условиях самых разнообразных схем напряженного состояния, обусловленных эксплуатацией котельного оборудования статического приложения растягивающей или изгибающей нагрузки, динамического воздействия внешних сил, приложения перемещенной нагрузки и т. д. Жаропрочность котельных материалов оценивают по результатам длительные испытаний на растяжение или изгиб при высоких температурах. Основными характеристиками жаропрочности являются предел ползучести и предел длительной прочности. Жаропрочность зависит от химического состава и структуры. Структура, в свою очередь, зависит от технологии изготовления детали и обработки.  [c.45]


Прочность при динамических нагрузках определяют по данным, полученным в результате испытаний на ударную вязкость, предел выносливости и ползучесть. Значительно чаще используют испытания на ударную вязкость.  [c.552]

При определении модуля упругости статическим методом его значения будут меняться в зависимости от времени испытания, так как на упругую деформацию могут накладываться деформации, связанные с ползучестью. Поэтому при высоких температурах предпочтительнее применять динамические методы определения модуля упругости.  [c.125]

Механические испытания определяют прочность и надежность сварных соединений. Их разделяют на статические и динамические. К статическим испытаниям, когда усилие плавно возрастает или длительное время остается постоянным, относят испытания стыкового соединения на растяжение, наплавленного металла на растяжение, стыкового соединения на изгиб, на ползучесть, на твердость. К динамическим относят испытания на ударный изгиб, когда определяется ударная вязкость, и испытания на усталость (выносливость) для определения способности металла сопротивляться действию переменных нагрузок при изгибе, растяжении и кручении.  [c.252]

Зависимость упругости и температурного расширения от температуры. В литературе имеются скудные сведения об экспериментальном определении модулей упругости и сдвига при сравнительна высоких температурах, приближающихся к температуре плавления 0 тела. Значения этих модулей, определенные из статических испытаний при повышенной температуре, могут оказаться заниженными из-за неизбежной пластической деформации и ползучести, которые становятся существенными при высоких температурах, в особенности для ковких металлов. Более достоверные результаты получаются при динамических испытаниях, когда образец заставляют совершать упругие колебания.  [c.40]

Прочность при динамических нагрузках определяют по данным испытаний на ударную вязкость, на предел выносливости и ползучесть. Наиболее часто применяют испытания на ударную вязкость в МН-м/м  [c.10]

Испытание пряжи на разрывных машинах недостаточно для оценки ее свойств в условиях, отвечаюш,их ее рабочему состоянию в изделии поэтому необходимо иметь показатели долговременной прочности, ползучести и циклической прочности. При этом, чем слабее прочность связи нитей с резиной в резино-текстильной конструкции, тем значительнее будет снижение прочности текстиля при динамическом утомлении, поскольку нарушение такой связи облегчает расшатывание структуры пряжи и ведет к усталости и разрушению волокон.  [c.54]

Кроме статических и динамических, в необходимых случаях производят испытания на усталость, ползучесть и износ, которые дают более полное представление о свойствах материалов.  [c.27]

Получаемый при такой скорости нагружения модуль упругости также обычно используют для упругопластического расчета, хотя модуль упругости, определенный при измерении частот собственных колебаний, является более точным. Значения модуля упругости, полученные при высоких температурах с обычными скоростями деформирования —5-10 %/с), как правило, занижены по сравнению с динамическими модулями, так как в значения деформаций, измеряемых при статических испытаниях, неминуемо входят деформации ползучести. Значения модулей упругости для ряда жаропрочных материалов, определенные на образцах-камертонах по относительному изменению частот собственных колебаний, даны в табл. 3.2. Здесь указаны значения модулей упругости, определенные при статических испытаниях.  [c.33]

Фирма MTS (США) выпускает универсальные гидравлические и гидрорезонансные испытательные машины различной мощности — от 0,1 до 5 Мн (от 10 до 500 тс), предназначенные для проведения испытаний на статическое растяжение, сжатие и изгиб, на малоцикловую усталость, кратковременные или длительные испытания на ползучесть, усталостные испытания при постоянной амплитуде с различной формой цикла (синусоидальная, треугольная, трапецевидная и др.), усталостные испытания с программным изменением ам плиту-ды, среднего уровня напряжений и частоты, а также с изменением указанных параметров по случайному закону. Кроме того, машины оборудованы системой обратной связи и могут воспроизводить эксплуатационный цикл нагружения, записанный на магнитофонную ленту или перфоленту. При усталостных испытаниях всех видов осуществляют регистрацию скорости роста трещин, накопления усталостных повреждений и пластических деформаций и оценивают чувствительность металла к концентрации напряжений по динамической петле гистерезиса. Частота циклов может изменяться от 0,0000 1 до 990 Гц. Особенность компоновки машин этой фирмы — разделение на отдельные независимые блоки исполнительного, силозадающего и програм-мно-регистрирующего агрегатов.  [c.206]

Фирма Amsler (Швейцария) выпускает также виброфор HFP 1478 мощностью 0,1 МН ( 10 тс) с частотой нагружения от 50 до 300 Гц. Эта машина резонансного типа. Испытания на ней проводятся при температурах от —il90 до 800°С при растяжении-сжатии с определением характеристик усталостной и статической прочности, а также для определения характеристик динамической ползучести, упругости и циклической вязкости.  [c.211]

Приведем перечень основных видов испытаний, которые в настоящее время используют при исследовании механических и технологических свойств металлов и сплавов статические испытания в условиях одноосного напряженного состояния испытания на ударную вязкость и вязкость разрущения пластометрические исследования испытания на статическую и динамическую твердость и микротвердость испытания на предельную пластичность и технологические испытания (пробы) испытания в условиях сложнонапряженного состояния испытания на ползучесть, длительную прочность и жаростойкость испытания на циклическую, контактную прочность, усталость н в условиях сверхпластичности высокоскоростные испытания испытания при наложении высокого гидростатического давления испытания в вакууме, ультразвуковом поле, в условиях сверхпластичности и т. д.  [c.38]


На рис. 5.1, б сравнивают экспериментальные и расчетные величины 1бО-часовой длительной прочности углеродистой стали с 0,15 % С при 450 °С (v = 30 Гц), полученные на основе данных, приведенных на рис. 4.34, б. Видно, что совпадение экспериментальных и расчетных значений очень хорошее. Данные испытаний на динамическую ползучесть до разрушения некоторых жаропрочных сплавов представлены на рис. 5.2. Здесь приведены экспериментальные данные Лазана [3, 4 ] по сплавам N-155, 19-9DL и Vitallium. Для стали с 13 % Сг при 450 °С и стали 18 Сг—8Ni— Nb при 650 °С экспериментальные величины прочности несколько превышают. значения, рассчитанные по, уравнению (5.2). Однако для углеродистой стали с 0,15 % С при 450 °С оценка прочности с помощью указанного уравнения возможна. Кроме того, можно отметить, что для сплавов. N-155 (см. табл. 1.4), 19-9DL (19 Сг— 9 Ni—Мо—W), Vitallium (HS-21, табл. 1.4) наблюдается тенденция упрочнения по мере увеличения долговечности до разрушения расчетная кривая, полученная с помон ью уравнения (5.2) (сплошная линия), характеризует безопасные параметры.  [c.133]

Надежность работы в значительной мере зависит от соответствия примененных материалов и их качества требованиям нормативнотехнологической документации. Действующие нормы и правила предусматривают механические испытания и металлографический анализ основного металла и сварных соединений котлов, трубопроводов пара и горячей воды и сосудов, работающих под давлением. Объемы и методы механических испытаний и металлографических исследований строго регламентированы [23, 24, 25]. Механические испытания ставят своей задачей определение механических свойств при комнатной и рабочей температуре, без знания которых нельзя правильно выбрать материал для изготовления детали и оценить состояние металла в процессе эксплуатации. Основными видами механических испытаний являются испытания на растяжение, твердость и на ударный изгиб (динамические испытания). Технологические испытания на загиб, раздачу и свариваемость служат для оценки возможности проведения технологических операций, необходимых для изготовления и монтажа оборудования (сварки, гибки, вальцовки и т. п.). Такие важнейшие для котельных материалов испытания, как испытания на ползучесть, длительную прочность, сопротивление усталости, релаксацию напряжений, не предусматриваются действующими правилами котлонадзора в качестве контрольных и служат в основном для выбора допускаемых напряжений и установления ресурса работы элементов, изготовленных из различных сталей.  [c.8]

Ползучесть при комбинированном статиковибрационном нагружении. Регулярная последовательность нагружения статическими и переменными напряжениями при повышенной температуре влияет на процессы статической и динамической ползучести изменяет скорость и уровень деформации к моменту разрушения. В табл. 2.14 приведены основные характеристики программ, а также результаты испытаний сплава ХН70ВМТЮ в виде значений at и на статических и динамических режимах, а также = где  [c.81]

Динамические характеристики оптию-механических свойств полимеров в значительной мере могу т отличаться от статических из-за влияния временного фактора. Так, при действии кратковременных имульсных нагрузок процессы, связанные с регистрацией в модели оптической картины полос, длятся от нескольких микросекунд до сотен микросекунд. В этом случае обычные квазистатические испытания на ползучесть и релаксацию напряжения не могут отражать сути происходящих при динамическом воздействии явлений, протекающих в полимерном материале.  [c.254]

При повышенных температурах иепытания на усталость обычно наблюдается снижение пределов выносливости а связи с влиянием процессов ползучести, особенно в случае, если среднее напряжение цикла не равно нулю (кривые 1 и 4 на рис. 49). В углеродистых сталях в интервале температур испытаний 150 - 400 С наблюдается аномальное повышение пределов выносливости по сравнению с испытамиями при комнатной температуре, связанное с протеканием процессов динамического деформационного старения (рис. 49, кривая 3).  [c.81]

При испытании с параметром o= onst (рис. 16) материал нагружают прямоугольным импульсом напряжений различной длительности (рис. 16, а). Для динамического нагружения образца обычно используется удар длинного стержня, скорость которого определяет амплитуду, а длина — длительность ил пуль-са [81]. Указанному параметру испытания в пространстве aet соответствует плоскость o= onst (см. рис. 16, б), параллельная плоскости Eot, в которой лежит регистрируемая кривая e t). По своему характеру эта кривая аналогична обычной кривой ползучести (см. рис. 16, г) и позволяет выявить особенности зарождения и развития малой пластической деформации в им-пульсно нагруженном материале. Испытания с таким параметром широко применяются для исследования явления задержки текучести [337] и закономерностей распространения упругопластических волн в стержнях. Вместе с тем очевидно, что такие испытания не позволяют иолучнть данные о сопротивлении материала деформации в виде характеристик прочности (см. рис. 16, в).  [c.66]

Прочность при динамических нафуз-ках определяют по данным испытаний на ударную вязкость (разрушение ударом стандартного образца на копре), на усталостную прочность (определение способности материала выдерживать, не разрушаясь, большое число повторно-переменных нафузок), на ползучесть (определение способности нафетого материала медленно и непрерывно деформироваться при постоянных нафузках). Наиболее часто применяют испытания на ударную вязкость (рис. 1.7)  [c.12]

Отношения Mk и Hk) 7/Alp, приведенные в табл. 10.2, показывают, что динамическое подобие для целлулоидных моделей при Т = 25 °С реализуется, если модель больше натуры в 3,2 раза. При температуре испытаний Т = 45 °С динамическое моделирование практически неосуществимо. Статическое моделирование при отсутствии объемных сил, когда критерии подобия pt k /A = idem и FI/A = idem не принимаются во внимание, наоборот, следует производить при температуре целлулоида Т = 45 С. В этом случае размеры модели могут быть выбраны произвольно, а время испытаний, в сравнении о натурой, уменьшается в 4,6 раза. При моделировании процесвов ползучести о помощью плаот-  [c.244]

Современные методы расчёта (см. гл. П — X зтого тома) отражают влияние динамичности нагрузок, формы и жёсткости деталей, типа напряжённого состояния, пластичности, усталости, ползучести и ряда других факторов на несущую способность, поддающихся расчётному или экспериментальпо.му определению. Ряд факторов не поддаётся таким определениям, и их влияние должпо быть отражено в запасе прочности на основании наблюдений за работой деталей и узлов, статистического анализа данных эксплоатации и испытания машин. И. С. Стрелецким [47] и А. Р. Ржаницыным [21] на основании статистических кривых распределения возникающих усилий и отклонений механических свойств, а также анализа основных факторов отклонения между действительными и расчётными усилиями, обоснована каноническая структура запаса прочности п в виде произведения минимального числа сомножителей п = 1- г,2- Щ, каждый из которых отражает важнейшие факторы отклонения между рассчитываемой и фактической несущей способностью детали или конструкции [31]. К одной группе факторов относятся а) разница в величине нагрузок, вводимых Б расчёт, и нагрузок действительных (определение последних в ряде случаев затруднительно, например, нагрузки, развиваемые при горячей и холодной обработке металлов, нагрузки на ходовую часть автомобилей, динамические усилия на лопатки турбин и т. д.) б) разница в величине уси-  [c.383]


Совсем иной характер изменения деформаций наблюдается при повышенной скорости нагружения сг = 22 МПа/с, которой соответствуют скорости 6, близкие к порогу динамической чувствительности материала. Из рис. 1,6, г видно, что в этом случае имеет место запаздьшание деформаций материала по отношению к приложенной нагрузке. Так, рост деформации начинается не сразу, а спустя некоторое время после начала нагружения. В момент нагружения прирост деформации оказывается заметно меньшим, чем на такой же ступени для образца А-8, испытанного с малой скоростью а. Недобор деформации на участке нагружения при повьппенной скорости нагружения о в основном компенсируется в первые несколько секунд после фиксации нагрузки, когда для образца А-7 продолжается заметное нарастание деформаций (рис. 1, г). При больших временах на участке о = = onst скорость 6 резко падает и происходит медленное нарастание деформаций, подобное процессу ползучести для образца А-8. В результате прирост деформации на ступени у образца А-7, испытанного с повышенной скоростью а, оказьшается примерно таким же, как и на соответствующей ступени у образца А-8 (рис. 1, в, г).  [c.147]

Условия длительных испытаний образцов при одноосном напряженном состоянии не могут, очевидно, полностью отразить лшогообразие условий работы конструкций в эксплуатации. Системы труб, сосуды под давлением, турбинные диски, элементы авиационных конструкций работают в условиях высоких температур при сложном напряженном состоянии. При длительной работе изделий критерии эквивалентности устанавливаются по заданной долгозечности (статическая и динамическая усталость) или заданному допуску на остаточную деформацию (ползучесть). Эквивалентным напряженным состояниям должны соответствовать одинаковые значения параметра, на основе которого производится корреляция.  [c.172]

Наряду с условиям достижения критической скорости распространения трещины и наличия достаточно большого напряженного объема материала должно быть выполнено также условие достаточной продолжительности действия высокого напряжения у края трещины для возможности разрушения металла. Так, например, при очень малой продолжительности действия ударной нагрузки, недостаточной для разрушения материала путем отрыва, развитие трещины может не иметь места. Влияние длительности нагружения на величину предельного напряжения рассмотрено в предыдущей главе. Одним из важных факторов, влияющих на длительность нагружения металла до разрушения, является температура испытаний Т. Здесь необходи.мо учитывать различное влияние температуры в двух различных случаях работы деталей 1) при большой длительности нагружения до разрушения и низком максимальном напряжении повышение тедгпературы приводит к уменьшению величины tp такое влияние температуры наблюдается в условиях ползучести, интенсивность которой увеличивается с повышением температуры 2) при кратковременном динамическом нагружении максимальное напряжение значительно выше предельного напряжения (сГд.)(,, еще не вызывающего повреждения материала. Как правило, в этих условиях разрушение материала происходит легче, и для предельного накопления деформаций требуется меньше времени при понижении температуры материала.  [c.276]

Ранее этот метод использовали для сравнительного изучения влияния таких переменных факторов, как состав н структура сплава или добавки ингибиторов к коррозионным средам, а также для исследования комбинированного влияния состава сплава и коррозионной среды на разрушение в тех случаях, когда в лабораторных условиях не удавалось обнаружить растрескивания образцов прн нспытаннн по методу постоянной нагрузки или постоянной деформации. Таким образом, испытания при постоянной скорости деформации — относительно жесткий вид лабораторных испытаний в том смысле, что при нх применении часто облегчается коррозионное растрескивание, в то время как другие способы испытания нагруженных гладких образцов не приводят к разрушению. С этой точки зрения рассматриваемый способ испытания подобен испытаниям образцов с предварительно нанесенной трещиной. В последние годы многие исследователи поняли значение испыта-Н1и"1 с использованием динамической деформации и теперь представляется, что испытания этого типа могут применяться гораздо более широко благодаря своей эффективности, быстроте и более надежной оценке исследуемых вариантов. На первый взгляд, может показаться, что испытания образцов на растяжение при малой скорости деформации до их разрушения в лабораторных условиях имеют небольшое сходство с практикой разрушения изделий прн эксплуатации. При испытаниях по методу постоянной деформации и методу постоянной нагрузки распространение трещины также происходит в условиях слабой динамической деформации, в большей или меньшей степени зависящей от величины первоначально заданных напряжений. Главное заключается во времени испытаний, в течение которого зарождается трещина коррозионного растрескивания, и в структурном состоянии материала, определяющем ползучесть в образце. Кроме того, появляется все  [c.315]

В отличие от сплава ВТ14М кривые замедленного разрушения сплава 0Т4-1 с содержанием кислорода и азота в сумме 0,16% (см. рис. 22, б) состоят из двух прямолинейных участков, точка перегиба которых по оси абсцисс при всех температурах соответствует приблизительно выдержке в течение 1 мин. В области высоких напряжений (слева от точки перегиба) отрезки, выражающие зависимость прочности от времени до разрушения, с уменьшением длительности испытания стремятся к величинам предела текучести сплава при соответствующих температурах, постепенно приближаясь один к другому. Справа от точки перегиба отрезки временной зависимости прочности по мере увеличения длительности испытания также стремятся один к другому, и угол их наклона зависит от температуры испытания. Чем выше температура испытания, тем больше расходятся кривые временной зависимости прочности от экстраполированных в область низких напряжений левых отрезков кривых (см. пунктирные и сплошные линии на рис. 22, б). Это, по-видимому, обусловлено развитием динамического деформационного старения сплава в процессе его ползучести под напряжением. Чем выше температура испытания в исследованных пределах (О—75° С), тем эффективнее идет процесс блокировки дислокаций. Это согласуется сданными исследования процесса деформационного старения сплавов титана технической чистоты, которое показало [75], что максимальный эффект блокировки наблюдается при температуре 232° С.  [c.55]


Смотреть страницы где упоминается термин Испытания динамические ползучесть : [c.210]    [c.248]    [c.22]    [c.46]    [c.361]    [c.327]    [c.89]    [c.17]    [c.361]   
Металловедение и технология металлов (1988) -- [ c.95 ]



ПОИСК



Испытание динамическое

Испытания на ползучесть

Ползучесть динамическая



© 2025 Mash-xxl.info Реклама на сайте