Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел длительной прочности определение

Для деталей, работающих при высоких температурах в условиях ползучести и воздействия вибрационных нагрузок, в настоящее время методы расчета на выносливость практически отсутствуют. Поэтому допускаемые напряжения для этих деталей должны выбираться на основании опыта эксплуатации аналогичных конструкций, а если его нет, то эти напряжения должны быть в 2,5ч-3 раза ниже предела длительной прочности, определенного для статической нагрузки.  [c.58]


Если расчетный предел длительной прочности определен по результатам испытания не менее трех плавок, то запас прочности принимают Пд = 1,65, если по двум плавкам, то По = 1,85, по одной плавке По = 2,0.  [c.187]

Хорошо известно, что по пределу длительной прочности, определенной при испытаниях металла элемента энергооборудования в лабораторных условиях по стандартной методике, можно рассчитать конструкционную длительную прочность элементов трубопроводов. Это положение подтверждено рядом теоретических и экспериментальных работ и опытом многолетней эксплуатации. На нем основывается нормативный метод расчета на прочность элементов.  [c.174]

В исходном состоянии предел длительной прочности, определенный экстраполяцией на 10 ч, составил 62 МПа, что неплохо 296  [c.296]

Таким образом, предел длительной прочности для рассматриваемого материала зависит от температуры испытания и отрезка времени до момента разрушения. Последний выбирают равным сроку службы детали. В зависимости от условий эксплуатации деталей представляют интерес пределы длительной прочности, определенные на базе от 100 до 100 ООО ч. Очевидно, что с увеличением температуры и заданного промежутка времени до разрушения величина предела длительной прочности снижается.  [c.257]

Предел длительной прочности Стд показывает напряжение, вызывающее разрушение образца при данной температуре за определенное время.  [c.200]

При определении пределов длительной прочности проводят испытания продолжительностью 100, 200, 500, 1000, 3000, 5000 и 10000 ч.  [c.110]

Пределом длительной прочности называется напряжение, вызывающее разрыв образца после заданного срока его непрерывного действия при определенной температуре.  [c.42]

Жаропрочность — способность металлов выдерживать механические нагрузки без существенной деформации и разрушения при повышенной температуре. Основные критерии оценки жаропрочности (например, на срок 100 тыс. ч) предел длительной. прочности Одп— напряжение, при котором металл разрушается через 100 тыс. ч работы (испытания) при высокой (выше 450 °С) температуре условный предел ползучести % — напряжение, которое при рабочей температуре вызывает скорость ползучести металла Уд = Ю %/ч, что соответствует 1 %-ной суммарной деформации за 100 тыс. ч или Va = Ю мм/ч. Окалиностойкость (жаростойкость) — характеризует способность стали сопротивляться окисляющему воздействию газовой среды или перегретого пара при температуре 500—800 °С и выше без заметного снижения ее механических свойств в течение расчетного срока службы. Критерием окалиностойкости служит удельная потеря массы при окислении металла за определенный период времени, например за 100 тыс. ч.  [c.222]


Определение запаса прочности и жесткости образца в зависимости от предварительно-напряженного состояния, длительности его воздействия, температуры и среды. Испытания проводятся по программе выдержка под напряжением ниже предела длительной прочности при высокой температуре и последующее быстрое деформирование и разрушение образца в фиксированный момент времени окончания выдержки с записью мгновенных характеристик прочности и жесткости.  [c.51]

Оценка остаточного ресурса проводится по запасу прочности как отношению предела длительной прочности стали к эквивалентным напряжениям. Поэтому на точность определения ресурса влияет надежность выбранных характеристик жаропрочности. Методы повышения надежности этих характеристик описаны в гл. 2,3. При низких значениях коэффициента запаса прочности рекомендуется [16, 22] проводить оценку поврежден-ности рассматриваемых деталей.  [c.30]

Задача определения ресурса эксплуатации деталей теплоэнергетического оборудования, работающих в условиях ползучести, может быть решена многими путями, в том числе путем уточнения ресурса расчетными методами на основании статистических данных по пределу длительной прочности стали. Применение структурных методов диагностики, учитывающих влияние исходной структуры и структурных изменений в эксплуатации, в сочетании с расчетными методами оценки ресурса позволяет в значительной степени повысить точность прогнозирования остаточного ресурса длительно работающего оборудования.  [c.59]

Известно [63], что если определение пределов длительной прочности по результатам испытаний гладких образцов сопровождать измерением пластичности при длительном разрыве, то можно значительно повысить оценки работоспособности материалов паросиловых установок.  [c.73]

Одно из возможных решений поставленной задачи базируется на использовании температурно-силовой зависимости сопротивления разрушению. Определение пределов длительной прочности с использованием уравнения (3.2), проводят по результатам испытаний металла промышленных партий разных плавок. В число партий рекомендуется включать металл с содержанием углерода и легирующих элементов на нижнем и верхнем пределах, оговоренных в технических условиях, а также металл изделий после технологических операций.  [c.106]

Определение пределов длительной прочности марки стали с заданной вероятностью разрушения осуществляют в соответствии с рекомендацией отраслевого стандарта [37] по формулам  [c.107]

Экспериментальные точки металла с феррито-карбидной структурой тяготеют к границе 5%-ной вероятности разрушения (линия 5 на рис. 3.28). Определенный по средним значениям предела длительной прочности при 540 С коэффициент запаса превышает 1,5 средне марочное значение =125 МПа, граница 5%-ной вероятности разрушения дает оценку, превы-  [c.111]

Таблица 3.1. Характеристика сплавов и экспериментально определенные значения пределов длительной прочности при Т=913 К Таблица 3.1. <a href="/info/184708">Характеристика сплавов</a> и <a href="/info/461599">экспериментально определенные</a> значения пределов длительной прочности при Т=913 К
В большинстве исследований влияния сложного напряженного состояния на сопротивление разрушению (особенно разрушению в условиях ползучести) опыты проводились в ограниченном объеме при малом количестве испытаний и варьировании вида напряженного состояния в небольших пределах всего трехмерного пространства (испытания тонкостенных трубчатых образцов от чистого сдвига до двухосного растяжения), параллельные опыты на один и тот же режим в большинстве случаев отсутствуют, В связи с этим используются такие методы обработки экспериментальных данных, которые допускают совместный анализ результатов различных исследований, проведенных в разных условиях на материалах разного класса. С этой точки зрения целесообразно использование безразмерных координат, когда все параметры напряженного состояния отнесены к какой-либо характеристике механических свойств материала, например к условному пределу длительной прочности за определенный срок службы или к сопротивлению разрушения при кратковременном разрыве в условиях одноосного растяжения  [c.130]


I. Предварительные замечания. В 2.11 и 2.13 были описаны статические кратковременные испытания гладких образцов из различных материалов на растяжение и сжатие при комнатной температуре. Предыдущие параграфы настоящей главы содержат описание различных упругих и механических свойств материалов и оценку влияния различных факторов на эти свойства. Уже при этом обсуждении приходилось обращаться к результатам динамических испытаний (при определении сопротивляемости ударному воздействию и при оценке влияния скорости деформирования на различные свойства), кратковременных и длительных испытаний при высоких температурах (при определении предела длительной прочности и предела ползучести, а также при оценке влияния температурного фактора на различные свойства), длительных испытаний при переменных по величине и знаку нагрузках, длительных испытаний при комнатной температуре и постоянной нагрузке и при монотонно убывающей нагрузке. Приходилось, наряду с рассмотрением результатов испытания гладких образцов, обращаться и к анализу материалов испытаний образцов с надрезом указывалось, что, кроме непосредственного определения интересующих инженера свойств материала, существуют косвенные пути оценки этих свойств (при помощи определения твердости) отмечалось, что,  [c.298]

Для изучения материала в аналогичных указанным выше условиях и для определения предела ползучести, предела длительной прочности, а также изучения релаксации производятся длительные испытания материала при высоких сходственных температурах. Изучению подвергают сопротивление пластическим деформациям  [c.305]

Рекомендуемый метод все же остается приближенным, а получаемые оценки прочности диска носят относительный характер. В связи с этим большое значение приобретают выбор основной расчетной механической характеристики (предел текучести, предел длительной прочности, предел ползучести) и определение оптимальных коэффициентов запаса. Как обычно в инженерной практике, эти задачи должны решаться с учетом имеющихся данных эксплуатации работающих конструкций рассматриваемого типа, включая анализ случаев разрушения, и результатов специально поставленных экспериментов (испытания на разрушение в условиях, приближающихся к эксплуатационным).  [c.160]

Испытание на длительную прочность отличается от предыдущего тем, что образец доводится до разрушения. В результате испытания определяют предел длительной прочности, т. е. наибольшее напряжение, вызывающее разрушение металла за определенное время.  [c.80]

Испытания на длительную прочность (ГОСТ 10145—62) заключаются в определении постоянного (по времени) напряжения, вызывающего разрушение образца за определенный промежуток времени при постоянной температуре. Это напряжение называют пределом длительной прочности и обозначают буквой а с двумя чис-ловы.ми индексами.  [c.473]

Существуют различные методы определения ползучести, предусматривающие испытания на кручение, изгиб, сжатие или растяжение. Последний вид испытаний является наиболее распространенным. Испытания на ползучесть отличаются от обычных испытаний на растяжение тем, что они предполагают длительное воздействие нагрузки при постоянной температуре и измерение в процессе испытания очень малых деформаций в зависимости от времени. Часто встречается также и другая характеристика оценки жаропрочности материала предел длительной прочности, представляющий собой напряжение, вызывающее разрушение образца при определенной температуре за соответствующий интервал времени.  [c.227]

При статическом длительном нагружении допускаемые напряжения определяются из кривых длительной прочности и полной деформации ползучести. В зависимости от соотнощения пределов ползучести и пределов длительной прочности для определения допускаемых напряжений выбирается меньшая для заданного времени работы величина. При этом запас прочности по напряжениям (для длительной прочности) принимается л = 1,4 ч- 1,6.  [c.485]

Завод-изготовитель гарантирует жаропрочность металла труб. Жаропрочность — это способность материала противостоять механическим нагрузкам при высоких температурах она определяется пределом длительной прочности— напряжением, приводящим металл к разрушению при заданной высокой температуре через определенный промежуток времени.  [c.162]

В результате длительной работы в условиях ползучести металл разрушается. Напряжения, вызывающие разрушения, могут быть существенно меньше временного сопротивления при данной температуре- Способность металла сопротивляться разрушению при воздействии высокой температуры и напряжений характеризуется пределом длительной прочности — напряжением, приводящим металл к разрушению при данной температуре через определенный промежуток времени.  [c.75]

При статическом длительном нагружении запасы прочности определяют из кривых длительной прочности и полной деформации ползучести как отношение предела длительной прочности к рабочему напряжению при расчете по разрушающим нагрузкам или как отношение условного предела ползучести к рабочему напряжению при расчете по предельным деформациям. За условный предел ползучести принимается напряжение, обеспечивающее допустимую скорость деформации или допустимую суммарную деформацию за определенный срок службы при заданной температуре.  [c.539]


В зависимости от соотношения пределов ползучести и пределов длительной прочности для определения допускаемых напряжений выбирается меньшая для заданного времени работы величина. При этом запас прочности по напряжениям (для длительной прочности) принимается п = 1,4-т-1,6.  [c.540]

Принятые значения получены на основе соответствующих запасов прочности к следующим характеристика . арслслу текучести (а ), временному сопротивлению fOg) и условному (разрушение через 100 ООО г) пределу длительной прочности ), определенным испытаниями материала при одноосном растяжении. Приняты следующие запасы прочности == 1,5 = 2,6. Эти значения снижены по сравнению с принятыми в нормах 1956 г. ( г == д.п 65 =3,0) в связи с изме нением формулы для расчета цилиндрических элементов,  [c.302]

Испытания на длительную прочность проводили при температуре 1000° и напряжении 3 кг/мм , которое соответствует пределу длительной прочности, определенному для сплава ЭИ929 при данной температуре для службы в течение 1000 час. Полученные данные приведены в табл. 4.  [c.138]

Испытание на длительную прочность отличается от испытания па ползучесть тем, что испытуемый образец доводят нри данной температуре и напряжении до разрун1ения В результате испытания он )еделяю г предел длительной прочносиш, т. е. наибольшее напряжение, вызывающее разрушение металла за определенное время при постоянной температуре. Предел длительной прочности обозначают а с двумя числовыми индексами, например сгшоо — предел длительной прочности за 1000 ч при 700 °С. В логарифмических координатах зависимость между напряжением и временем до разрушения представляет прямую линию (рис. 154, о).  [c.286]

В отсутствие данных измерения исходных диаметров оценка пригодности труб к дальнейшей эксплуатации проводится по скорости ползучести. При этом скорость ползучести прямых труб из стали 12ХШФ не должна превышать 1,5-10 " %Ы, для остальных сталей 1 10" %1ч, а прямых участков гиба 0,8 10" %/ч. Если скорость ползучести будет превышать указанные значения, через 7000 ч необходимо произвести повторное измерение, и если скорость ползучести превысит установленные пределы, следует произвести вырезку металла для определения предела длительной прочности.  [c.121]

Предел длительной прочности для 540 °С, определенный по номограмме, ПО МПа, что соответвГвует допускаемым напряжениям, а сг 5 =80 МПа, что на 10% ниже допускаемой величины. Удлинение при длительном разрыве р=3,2-г4,5%, //р=20%.  [c.76]

Естественно ожидать, что характеристики субструктуры металла определяют его длительные жаропрочные характеристики. Исследованиями Донтехэнерго установлена линейная зависимость предела длительной прочности сгд от параметра субструктуры [115]. Точность измерения угла разориентировки между блоками составляет 10%, поэтому точность определения сгд новым методом составляет 10% по отношению к сгд.п, определенной испытаниями на длительную прочность.  [c.200]

Изменение свойств материала, длительно работающего при высокой температуре, является следствием диффузионных, дислокационных процессов [25]. Сопоставление кинетики изменения механических свойств с тонкой структурой на разных стадиях ползучести для сплавов на никельхромовой основе — ЖС6КП, ЖС6У и ВЖЛ12У позволило выделить три стадии процесса повреждаемости. За время испытания, равное примерно 30% долговечности, предел кратковременной прочности, определенной при температуре длительного испытания, практически не изменяется, с увеличением времени длительного испытания до 30— 50% достаточно резко понижается предел прочности, через 50— 70% времени дальнейшее его понижение существенно затормаживается. Сохранение прочности на уровне исходного значения означает наличие в тонкой структуре когерентной связи частиц упрочняющей фазы с матрицей, вследствие чего пластическая деформация, происходящая путем перерезания дислокациями этих частиц, приводит к образованию сложных сверхструктур-ных дефектов упаковки вычитания (внедрения). С потерей когерентной связи процесс разупрочнения интенсифицируется, в структуре наблюдается сращивание частиц У-фазы, наличие, большого количества свободных дислокаций. Затухание кривой разупрочнения с увеличением времени испытания в известной 6 83  [c.83]

Пределом длительной прочности называют максимальное напряжение, которое может выдержать материал, не разрушаясь в течение определенного времени. Символически эту характеристику обозначают так о ц, Оздо. юооо нижний индекс указывает продолжительность работы материала в часах.  [c.284]

Исследование ставило задачей изучение кратковременной ползучести и жаропрочности сплава ЭИ437Б в разных условиях быстрого нагружения и нагрева с последующим временем испытания 5—7 мин. В задачу входило снятие кривых ползучести для температур 600 и 800°С и определение предела длительной прочности за время 5—7 мин. Испытания проводились на пятикратных цилиндрических образцах с резьбовыми головками, на гидрав-. лической машине ИМЧ-30. Были проведены три серии экспериментов.  [c.253]

Данные основных испытаний по определению длительной прочности сведены в табл- 5. Предел длительной прочности ау лежит где-то около 60 кГ/мм , но значительный разброс данных не позволяет сделать более оцределенное заключение.  [c.255]

При решении вопроса о выборе материала важной характеристикой является величина длительной прочности, определенная в условиях, воспроизводящих рабочие. При высоких температурах натрия (800° С и более) перспективно применение тугоплавких металлов тантала, молибдена, ниобия, вольфрама и сплавов на их основе, например сплава молибдена с 0,5% титана (предел длительной прочности 27 кПмм при 1000° С и 9 кПмм при 1100° С).  [c.292]

Кроме того, когда необходимо обеспечить повышенную надежность, принимают во внимание предел ползучести при рабочей температуре, определенный по остаточной деформации в 1 %, и предел длительной прочности Fipn температуре на 15° С выше рабочей. В этих двух последних случаях коэффициент запаса прочности принимают равным единице.  [c.367]

Резкое снижение прочности металла, работающего в условиях ползучести, наступает с началом третьего интервала времени. Нелинейный закон накопления остаточной деформадии и невозможность определения распределения вероятности скорости ее изменения не позволяют прогнозировать изменения прочности. Поэтому задача обеспечения надежности и безопасности эксплуатации состоит в том, чтобы не допустить работу котлов при наработках, суммарно превышающих продолжительность первого и второго интервалов. В пределах второго интервала при увеличении наработок времени напряжения, вызывающие разрушения, могут быть ниже временного сопротивления. Поэтому необходимо иметь представление об изменении прочности в условиях ползучести. С этой целью НТД для конкретных марок стали устанавливает показатель - предел длительной прочности, который характеризует значение напряжения, при-  [c.172]


Смотреть страницы где упоминается термин Предел длительной прочности определение : [c.644]    [c.340]    [c.47]    [c.116]    [c.110]    [c.66]    [c.30]    [c.108]   
Парогенераторные установки электростанций (1968) -- [ c.175 ]



ПОИСК



2.254 — Пределы длительной

Предел Определение

Предел длительной прочност

Предел длительной прочности

Предел длительной прочности Определение, понятие

Предел длительной прочности прочности

Предел прочности

Прочность Определение

Прочность длительная



© 2025 Mash-xxl.info Реклама на сайте