Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость диффузионного массы

На рис. 7-3 и 7-4 представлены результаты численных расчетов концентраций химических компонент и скорости уноса массы в зависимости от температуры поверхности Ту, при кинетическом и переходном к диффузионному режимах разрушения. Расчеты проводились для случая так называемой медленной кинетики реакции горения для сравнения 173  [c.173]

Но есть и принципиальные отличия. Например, при сублимации наблюдается сильная зависимость безразмерной скорости уноса массы от температуры поверхности и давления окружающего потока, чего не было замечено при диффузионном окислении.  [c.175]


Радиационный тепловой поток в отличие от конвективного потока, трения и градиента давления резко увеличивается с ростом размеров тела (рис. 10-11), при этом одновременно возрастает и скорость уноса массы. Начиная с G , 3, можно считать, что конвективный поток тепла и диффузионный поток массы к поверхности теплозащитного покрытия  [c.301]

Диффузионный режим разрушения — режим поверхностного разрушения теплозащитных покрытий, скорость которого определяется скоростью диффузии химически активных компонент набегающего газового потока в пограничном слое. Характерной чертой этого режима разрушения является слабая зависимость безразмерной скорости уноса массы от температуры поверхности (см. гл. 7). 369  [c.369]

При наличии в паре примеси инертного газа у поверхности конденсата образуется диффузионный пограничный слой, существенно влияющий на скорость притока массы конденсирующегося пара к поверхности охлаждения и тем самым уменьшающий скорость конденсации.  [c.291]

При диффузионном переносе массы в газах коэффициент диффузии выражается соотношением (5-25), в котором применительно к сжатым газам значение Л надо заменить Л из формулы (5-33). Скорость переноса массы здесь определяется только тепловой скоростью  [c.181]

D — коэффициент диффузии атомов этого компонента. Суммарная убыль массы Mt за время t в частном случае С] = О (что равносильно условию значительного преобладания скорости испарения над скоростью диффузионного подвода) может быть найдена интегрированием этого уравнения в соответствующих пределах  [c.435]

Здесь Уд., Vу, 1 у,. у,. .у - составляющие вектора скорости, диффузионного потока /-го компонента, тепловых потоков тяжелых частиц (индекс Л) и электронов (индексе) по осям цилиндрической системы координат А , Г, ф р, М - плотность, молекулярная масса Р, Р1,, Р- давления смеси, тяжелых частиц и электронов т т - масса частицы /-го сорта и смеси Т, Г , Т- температуры поступательно-вращательных степеней свободы тяжелых частиц, колебательных степеней свободы молекул О2, N2 и электронов с,. А,, Н, , 2 0 , - относительная массовая концентрация, энтальпия, массовая скорость образования, заряд, характеристическая колебательная температура, колебательная энергия/-го компонента X, , Я, , X", X"), -коэффициенты теплопроводности электронов, поступательно-вращательных, поступательных степеней свободы тяжелых частиц, колебательных и вращательных степеней /-ГО компонента (т = 1 для ламинарного и т = I для турбулентного режимов  [c.157]


Иногда удобно пользоваться скоростями Wi, которые называют диффузионными, представляющими скорости движения составляющих относительно центра масс смеси или среды в целом  [c.14]

Если масса перенесенного диффузией компонента будет больше, чем его может израсходовать химическая реакция, то общая скорость процесса будет определяться скоростью химической реакции кинетический режим). Если химическая реакция за единицу времени может поглотить больше компонента, чем может его поступить путем диффузии, то общая скорость процесса будет определяться скоростью диффузии диффузионный режим).  [c.307]

Из формулы (17.19) по аналогии с формулой для теплопередачи следует, что скорость Ш реакции определяется величиной двух последовательных сопротивлений , которые должен преодолеть газообразный реагент на пути превращения из исходного состояния в конечное диффузионного сопротивления 1 /р, определяемого интенсивностью массо-отдачи между газом и поверхностью, и кинетического сопротивления /к, зависящего от скорости собственно химического взаимодействия. Если реагент доставляется к поверхности раздела значительно легче, чем реагирует с нею, т. е. р э>й, то его концентрации у поверхности и вдали от нее равны с Со и При этом скорость реакции определяется только кинетикой процесса (значением к) и практически не зависит от условий массоотдачи. Такой режим называется кинетическим. В этом режиме интенсивность сгорания можно увеличить за счет увеличения значения к, т. е. прежде всего за счет повышения температуры.  [c.154]

В условиях движения среды, когда образуется динамический пограничный слой и при разности концентраций на внутренней его границе и вне его, можно выделить диффузионный пограничный слой (аналогично тепловому пограничному слою). Толщина пограничного слоя зависит от скорости газов и при скорости, например, 1 лг/сек составляет бд==> = 0,05 мм. Можно положить, что массоперенос через диффузионный пограничный слой в направлении, нормальном к стенке, происходит в пограничном слое только путем молекулярной диффузии (по закону Фика). Подобно тому совместную передачу тепла в движущейся однокомпонентной среде теплопроводностью и конвекцией называют конвективным теплообменом, совместный молекулярный и макроскопический перенос массы называют конвективным массообменом.  [c.178]

Динамическое горячее прессование. Этот процесс, относящийся к категории импульсных методов формирования и называемый за рубежом процессом формования с применением высоких скоростей и энергий, применялся первоначально для прецизионной ковки металлических слитков в изделия сложной формы. Изготовление композиционных материалов этим методом заключается в диффузионной сварке пакета предварительной заготовки, нагретого до необходимой температуры, в результате кратковременного приложения очень больших давлений. Динамическое горячее прессование предварительных заготовок может осуществляться на ковочных молотах и подобных им установках в специальных пресс-формах или в вакуумированных пакетах. Одна из таких установок, применявшаяся для изготовления композиционного материала на основе титанового сплава Ti—6% А —4%V, упрочненного волокном карбида кремния, описана в работе [223]. Эта пневмомеханическая установка динамического прессования, внешне похожая на молот, имеет значительно более высокий уровень энергии падающих частей. Пуансон в ней прикреплен к раме массой 1 т. Рама, выстреливаемая давлением газа, толкает пуансон в закрытую матрицу. Скорость падения пуансона составляет 132  [c.132]

Рис. 32. Схема выделения редких изотопов из вещества, состоящего в основном из другого изотопа этого элемента. Поскольку изотопы одного и того же элемента обладают одинаковыми химическими свойствами, для их разделения необходимо использовать физические методы, основанные на разнице их атомных масс. Так, например, при обогащении урана разделительные секции могут представлять собой диффузионно-конденсационные камеры, которые используют небольшую разницу в скорости диффузии газообразной смеси двух изотопов — урана-235 и урана-238. В установке, где выделяется дейтерий, сепараторами могут служить электролитические ванны, удачно использующие разницу в скоростях электролиза тяжелой и обыкновенной воды Рис. 32. Схема выделения редких изотопов из вещества, состоящего в основном из другого изотопа этого элемента. Поскольку изотопы одного и того же элемента обладают одинаковыми химическими свойствами, для их разделения необходимо использовать <a href="/info/183589">физические методы</a>, основанные на разнице их <a href="/info/383308">атомных масс</a>. Так, например, при обогащении урана разделительные секции могут представлять собой диффузионно-конденсационные камеры, которые используют небольшую разницу в <a href="/info/7195">скорости диффузии</a> газообразной смеси двух изотопов — урана-235 и урана-238. В установке, где выделяется дейтерий, сепараторами могут служить <a href="/info/246740">электролитические ванны</a>, удачно использующие разницу в скоростях электролиза тяжелой и обыкновенной воды

Общие дифференциальные уравнения диффузионного и теплового пограничных слоев известны, но для данного конкретного случая (двухкомпонентная газовая смесь с фазовыми превращениями) они достаточно сложны [32, 51]. Сделанные упрощения дифференциальных уравнений пограничного слоя имеют своей целью усилить роль основного эффекта при расчетах взаимосвязанных процессов тепло- и массообмена между газом и жидкостью и в то же время по возмол<ности в наибольшей мере учесть второстепенные. Как видно из уравнений (1-10), (1-18), основным результатом таких упрощений является возможность представить линейным распределение потенциалов переноса массы и энергии в пограничных слоях за счет осреднения некоторых физических параметров в пределах слоя. Этот результат есть следствие особенностей рассматриваемых процессов, включая невысокие относительные скорости фаз, небольшие разности потенциалов переноса, а также специфическое для двухкомпонентных смесей равенство абсолютных значений градиентов концентраций компонентов, градиентов их парциальных энтальпий (Я , Яг) и парциальных давлений.  [c.30]

Если при небольшой концентрации горючих в слое скорость сгорания в диффузионном режиме определяется диффузией кислорода из плотной фазы к поверхности частицы, то с увеличением массы  [c.136]

Концентрация и размер дефектов зависят от диффузионных процессов, скорость которых на внешних поверхностях раздела больше, чем на внутренних, и существенно больше, чем в объеме (массе) зерен. Поэтому влияние включений, несплошностей и других фаз на физико-механические свойства поверхностного слоя проявляется значительно сильнее, чем на свойства остального объема отливки.  [c.93]

Чтобы роль диффузионного члена уравнения энергии стала яснее, рассмотрим еще раз перенос вещества через нижнюю плоскость контрольного объема, показанного на рис. 4-7. Следует иметь в виду, что рассматривается не однокомпонентное вещество, а смесь. Поэтому, когда говорят о скорости смеси, термин скорость не вполне определен. Не существует какой-то одной скорости всех компонентов. Под скоростью смеси подразумевается обычно средневзвешенное значение (по массам) из скоростей отдельных компонентов. Поэтому фактическая скорость различных компонентов может быть как больше, так и меньше средней.  [c.53]

Исходные дифференциальные уравнения (5-4-1)— (5-4-2) в процессе преобразования приобретают в некотором роде сходство с уравнениями, выражающими два связанных колебания поэтому по Генри физическая интерпретация их решений (5-4-15) заключается в том, что каждая температурная волна сопровождается диффузионной (массовой) волной , идущей с той же скоростью, величина которой пропорциональна температурной волне. Зависимость между этими волнами определяется только свойствами среды. Подобным же образом диффузионная волна сопровождается дополнительной температурной волной . Если даже одно из внешних условий, например потенциал массо-переноса, изменяется, тем не менее будет налицо законченная характеристика из двух массовых и двух температурных волн, хотя некоторые 3 них могут быть незначительными, если взаимодействие слабое.  [c.182]

Согласно теории зернограничного скольжения, границу зерна уподобляют некоторой плоскости, которая имеет вполне определенные кристаллографические направления, отвечающие векторам Бюргерса в зернах. В этих плоскостях лежат дислокации, которые, перемещаясь, приводят к деформации металла. Если на границе присутствуют различные нерегулярности в виде ступенек, пор, тройных стыков и т. п., которые препятствуют скольжению, то в этом случае требуются дополнительные аккомодационные механизмы переноса массы диффузией или диффузионным скользящим движением дислокаций. Называют обычно три дополнительных механизма, контролирующих скорость скольжения по границам движение атомов, переползание и скольжение дислокаций вблизи границы, переползание и скольжение зернограничных дислокаций.  [c.245]

Длина свободного пробега молекулы. Почему же при столь больших скоростях движения процессы свободного диффузионного перемешивания газов (перенос массы) в действительности проходят очень медленно Это объясняется тем, что свободному тепловому движению молекул и атомов препятствуют столкновения между ними, что приводит к многократным изменениям направления движения молекул в газе. Чем плотнее газ, т. е. чем больше его давление, чем больше содержится в единице объема молекул газа и больше упругих столкновений в единицу времени будет испытывать каждая молекула. И наоборот, чем разреженнее газ, тем меньше происходит соударений между его молекулами в единицу времени. При данных установившихся условиях (плотности газа или его давлении и температуре) процесс движения и столкновений молекул газа характеризуется средней длиной свободного пробега молекулы X, т. е. расстоянием, которое проходит молекула между двумя последовательными соударениями.  [c.260]

Совместное воздействие газовой среды, состоящей из оксидов серы, воздуха и водяного пара, вызывает более интенсивную коррозию металлов, чем каждого из указанных газов в отдельности. Увеличение содержания серы в топливе, дающем газообразные продукты сгорания (например, легкое дистиллятное топливо), приводит к увеличению скорости коррозии сталей, но далеко не во всех случаях. Влияние содержания серы в топливе возрастает при повышении температуры и повышении концентрации никеля в сплаве. О роли указанного фактора можно судить по данным о коррозии аустенитных сталей 08X18HI0T и Х23Н18 в продуктах сгорания дистиллятных топлив с различным содержанием серы. Опыты продолжительностью 100 ч при 800 °С показали, что удельная потеря массы указанных сталей при содержании в топливе 0,31 0,41 и 0,96 % серы равняется соответственно 0,79 0,87 и 1,04 мг/см и 0,49 0,61 и 0,70 мг/см [1]. Увеличение скорости коррозии сталей в продуктах сгорания топлива с повышенным содержанием оксидов серы вызвано образованием сульфидов металлов (FeS, NigSa и др.) на их поверхности. Присутствие же сульфидов в поверхностной пленке продуктов коррозии приводит к увеличению скорости диффузионных процессов, происходящих в ней.  [c.221]


Рассмотрим другой предельный вариант — смесь углерода с небольшими добавками SiOa. В диффузионном режиме окисления скорость уноса массы такой композиции должна определяться соотношением  [c.243]

Критерий Соре характеризует термодиффузионный эффект он равен гермодиффузионной постоянной, которая зависит.от условий и механизма взаимодействия между молекулами. Критерий Дюфо равен от-нощению теплоты изотермического массопереноса Q к энтальпии смеси единицы массы ее. Следовательно, критерий Du характеризует величину диффузионной теплопроводности по отнощению к конвективному переносу тепла при условии равенства линейных скоростей диффузионного и конвективного переносов.  [c.112]

Рассмотрим модель диффузионного процесса (рис. 6.18). При скольжении стружки по инструменту со скоростью примем, что диффузия в стружку происходит со скоростью V. Длина контакта стружки с инструментом равна I. Примем, что коэффициент D — постоянная величина и диффузия в направлении у пренебрежимо мала по сравнению с диффузией в направлении х. На рис. 6.18, б показана схема переноса массы в элемент dxdydz. Скорость изменения концентрации равна скорости переноса массы на единицу объема, т. е.  [c.120]

Однако при высоких температурах он гораздо активнее вступает в реакцию, поскольку образующиеся продукты окисления не обеспечивают защиту поверхности из-за своей летучести. Для графита принято понятие критической температуры окисления , т. е. температуры, при которой испытуемый образец теряет примерно 10% массы в течение 24 ч. Для чистого графита крити.ческая температура окисления равна 520—560° С. Ряд исследователей считают, что критическая температура окисления не имеет большого значения для графита, который используется в качестве твердой смазки. Е. Р. Брейтуэйт предлагает для этого случая считать критической температуру, при которой скорость окисления графита быстро повышается. Установлено, что температура окисления графита зависит от ряда факторов и прежде всего от формы и размера кристаллов, наличия примесей, которые в некоторых случаях могут играть роль катализаторов. Так, добавление 20—40 частей К, Na, Си на 1 млн частей графита повышает скорость его окисления при температуре 550° С в шесть-семь раз. а при температуре выше 800° С процесс окисления имеет диффузионный характер. На рис. 29 показаны кривые термогравиметрического анализа графита различной дисперсности в кислороде [7], а на рис. 30 — влияние продолжительности и температуры нагрева на скорость окисления графита. Результаты исследований, проведенных Эр-пом и Хиллом [7], представленные на рис. 30, показывают, что скорость потери массы (которую считают пропорциональной скорости окисления) у различных графитов постоянна. В Советском Союзе стандартизовано несколько типов графита, которые применяются в качестве твердых смазок (ГОСТ 5262—50, ГОСТ 5279—74).  [c.53]

В обычных сварочных дугах при атмосферном давлении наибольшее влияние продольное магнитное поле оказывает на диффузионную составляющую скорости ионов и электронов. Скорость диффузии их направлена по радиусу от центра дуги к периферии, где температура и концентрация меньше (рис. 2,39). В связи с тем что скорости диффузии в квазинейтральном столбе дуги равны Ve Vi, а масса те< .гт, импульсы, передаваемые нейтральным частицам от ионов, будут в тысячи раз больше, чем от электронов. Поэтому плазма столба дуги придет во вращательное движение, соответствующее движению в магнитном поле ионов. Столб дуги будет вращаться против часовой стрелки.  [c.84]

Различие в скоростях движения компонентов описывается либо коэффициентом скольжения, равным отношению скорости -го компонента к скорости /-го компонента, тц = ы1 1т , либо диффузионной скоростью, определяющей скорость двяжения -го компонента относительно центра масс смеси в целом  [c.238]

Уравнение (11.104) составлено для бинарной диффузии, где Djj —коэффициент бинарной диффузии С /=р /р —относительная концентрация i-ro компонента ш,-—скорость массообмена i-ro компонента на единицу объема, или скорость возникновения () быва-ния) i-ro компонента. В правой части (11.104) величина в скобках представляет собой диффузионный поток массы 1-го комнонента  [c.230]

Таким образом, в общем случае течений излучающего многокомпонентного химически реагирующего газа необходимо решать одно скалярное уравнение неразрывное и для всей смеси в целом, ц — v — 1 скалярных уравнен т сохранения массы компонентов, v уравнений для концентраций химических элементов, одно векторное уравнение (или три скалярных) для определения компонент скорости, одно скалярное уравнение сохранения энергии, интегродиффе-ренциальное уравнение для определения спектргльной плотности энергетической яркости, р, — 1 векторных уравнений (или Зр — 3 скалярных) для определения плот ности диффузионного потока компонентов с учетом двух алгебраических соотношений для с и Ja, уравнение состояния  [c.186]

Примером может служить испарение жидкости с увлажненной пористой поверхности в парогазовую смесь (рис. 1.23). Плотность поперечного потока массы на стенке и нормальная составляющая скорости связаны соотношением 1(Ууо=/1пов/Рсм. в общих чертах воздействие сводится к изменению толщины пограничных слоев (динамического, теплового, диффузионного). Если поперечная составляющая направлена к стенке (конденсация, отсос), то толщины пограничных слоев уменьшаются и коэффи-  [c.54]

Фотоумножители, применяющиеся в томографии, имеют темновой ток не свыше 10 А, обеспечивают линейность фототока до десятков и сотен микроампер, отличаются повышенной стабильностью и сохранением чувствительности с погрешностью не свыше 0,2 % в течение нескольких секунд. Они имеют относительно большие габариты, что приводит к повышению размеров и массы матрицы. Сцинтил-ляциоиные детекторы с ФЭУ используются в томографах I и И-го поколений, когда количество каналов небольшое (8—32) или в томографах IV-ro поколения, когда матрица неподвижна или процессирует с медленной скоростью. С целью существенного сокращения габаритов, расширения (в 100 и более раз) динамического диапазона линейности и повышения стабильности применяют вместо ФЭУ полупроводниковые фотоприемники (ФП). В качестве последнего используют кремниевые фотоэлементы с диффузионным или поверхностно барьерным р—п переходом.  [c.468]

В результате продолжительных коррозионных испытаний, проведенных на острове Наос, было установлено, что в этом месте на металле в результате обрастания возникает препятствующее диффузии кислорода самоизлечивающееся покрытие и что сульфатвосстанавливающие бактерии активны на всей поверхности металлической пластины. Однако при этом не было выяснено, в каких условиях диффузионный барьер эффективен, в каком случае анаэробные бактерии начинают контролировать процесс коррозии и каким образом эти факторы связаны с конечной линейной зависимостью потерь массы от времени. Кроме того, все данные были получены в одном месте, где. основным морским организмом, участвовавшим в обрастании, была корковая мшанка. Было неизвестно, как протекает коррозия в других местах и могут ли анаэробные бактерии адаптироваться и играть определяющую роль при других формах обрастания в морской воде с другой температурой и соленостью. Представляло интерес также установить, как другие формы обрастания влияют на скорости коррозии.  [c.446]

В неизотермическом потоке диссоциирующей четы-рехокиси азота образуются поля концентраций компонентов системы наряду с полями скоростей и температур. При течении в обогреваемом канале у стенки повышается содержание компонентов с меньшим молекулярным весом (в соответствии с реакциями диссоциации), а в ядре потока — более тяжелых компонентов. В случае охлаждения у стенки повышается концентрация тяжелых компонентов. Различие концентраций компонентов у стенки и в ядре потока приводит к переносу массы путем концентрационной диффузии. Одновременно с диффузионным происходит и турбулентный перенос массы, зависящий от характеристик течения. Так как массоперенос осуществляется в неизотермическом потоке, процесс сопровождается протеканием экзо- и эндотермических реакций. Так, например, в условиях нагрева молекулы с большим молекулярным весом переносятся к стенке, где диссоциируют с поглощением теплоты реакции на более легкие компоненты, которые, перемещаясь в ядро потока, рекомбинируют с выделением теплоты реакции. В связи с высокими значениями теплоты реакций реакционная составляющая суммарного коэффициента теплообмена в системе N2O4 может в несколько раз превышать уровень теплообмена в химически инертной смеси данных компонентов.  [c.49]


Что касается остальных составляющих композиционного теплозащитного материала, то их функция в процессе разрушения, конечно, не сводится к роли некоего теплоемкого балласта. Благодаря химическому и физическому взаимодействию с определяющей компонентой они влияют на унос массы последней. Важно отметить, что скорости разрушения всех неопределяющих компонент в композиции могут оказаться меньше индивидуальных скоростей разрушения при данных условиях обтекания. Это снижение обусловлено наличием теплового, гидродинамического и диффузионного сопротивлений пористого каркаса из определяющей компоненты, внутри которого происходит разрушение всех остальных компонент.  [c.118]

Хлориды увеличивают скорость коррозии, а при соотношении молярных масс ионов С1 и ионов S0 -4 более 1/5 скорость коррозии становится катастрофической. При наличии хлоридов в отложениях на поверхности аустенитных сталей скорость их окисления при температуре более 570 С может быть равной скорости окисления перлитных сталей. При этом окислы хрома взаимодействуют с расплавом хлоридов и улетучиваются. При наличии хлоридов процесс коррозии ускоряется в различной степени, в зависимости от того, с какими щелочными или щелочноземельными элементами они связаны. Активность хлоридов увеличивается в следующей последовательности a lj, КС1, Na l и Li l. При наличии значительного количества хлоридов на поверхности аустенитной стали происходит отслоение окалины, она перестает выполнять защитные функции и утонение стенки протекает во времени по линейному закону. Присадки к аустенитной стали кобальта, молибдена, ниобия, кремния, меди и титана не дают возможности существенно повысить коррозионную стойкость стали. То же можно сказать о повышении содержания хрома в аустенитной стали, диффузионном хромировании и алитиро-вании поверхности труб.  [c.58]


Смотреть страницы где упоминается термин Скорость диффузионного массы : [c.158]    [c.185]    [c.101]    [c.13]    [c.404]    [c.35]    [c.196]    [c.591]    [c.267]    [c.142]    [c.200]    [c.142]    [c.337]   
Тепломассообмен (1972) -- [ c.527 ]



ПОИСК



Скорость диффузионная

Скорость массы



© 2025 Mash-xxl.info Реклама на сайте