Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дислокации скольжения

Различают два вида движений дислокаций скольжение, или консервативное движение, и переползание, или неконсервативное движение. При консервативном движении перемещение дислокации происходит в плоскости, в которой находится сама дислокация и ее вектор Бюргерса, который характеризует энергию искажения кристаллической решетки. Эту плоскость называют плоскостью скольжения. В случае скольжения экстраплоскость посредством незначительного смещения перейдет в полную плоскость кристалла, а Б соседнем месте возникнет новая экстраплоскость (рис. 34). Дислокации одинакового знака отталкиваются, а разного знака взаимно притягиваются. Сближение дислокаций разного знака приводит к их взаимному уничтожению.  [c.52]


Известную роль могут играть и барьеры Пайерлса— Набарро. Чем они выше, тем труднее перераспределение дислокаций скольжением и, следовательно, труднее формирование центров рекристаллизации.  [c.344]

Если нагромождение дислокаций возникло при температуре Т Тд (когда двойникование не имеет места), то будет наблюдаться только скольжение, если же температура испытания приближается к Гд, то концентрация напряжений в точке А может релаксировать как путем скольжения, так и с помощью двойникования. Учитывая существенное различие в скорости движения полных дислокаций скольжения и скорости двойникования, можно ожидать, что вблизи  [c.59]

Состояние упрочненного (наклепанного) металла термодинамически неустойчиво и при нагреве в металле наблюдается уменьшение концентрации точечных дефектов, перераспределение дислокаций скольжением и переползанием, формирование и миграция малоугловых и межзеренных границ, а также укрупнение зерен.  [c.8]

Рис. 1.5. Движение дислокаций скольжением Рис. 1.5. <a href="/info/129853">Движение дислокаций</a> скольжением
Виды движения дислокаций. Скольжение поперечное скольжение переползание.  [c.21]

Существуют два способа перемещения дислокаций — скольжение и переползание [109].  [c.12]

Полигонизацией называют процесс формирования субзерен, разделенных малоугловыми границами. Каждое субзерно представляет собой многогранник, практически не содержащий дислокаций. Полигонизация является результатом нескольких элементарных процессов перемещения дислокаций скольжения и переползания краевых дислокаций, поперечного скольжения винтовых. Во время полигонизации несколько уменьшается плотность дислокаций благодаря взаимодействию и аннигиляции дислокаций противоположных знаков. Для начала полигонизации в наклепанных металлах технической чистоты необходим нагрев до 0,3...0,35 Гпл, а в наклепанных сплавах — до более высоких температур.  [c.133]

В некоторых структурах ядра винтовых дислокаций могут быть размазаны одновременно по нескольким плоскостям. Такие дислокации являются прямолинейными, и их скольжению в какой-либо одной плоскости препятствует размазывание их ядер по другим плоскостям (это так называемые сидячие дислокации). Скольжение становится возможным только в том случае, если под действием приложенного напряжения и при помощи тепловых флуктуаций, способствующих этому процессу, ядро концентрируется только в одной плоскости (это явление характерно для о. ц. к. металлов при низких температурах).  [c.72]


Скольжение дислокаций. Скольжением дислокации называется ее движение по поверхности скольжения, т. е. по поверхности, параллельной вектору Бюргерса. Дислокация в кристалле называется скользящей, если ее линия и вектор Бюргерса лежат в одной кристаллографической плоскости, которая является плоскостью скольжения данной дислокации. Из определения дислокации как границы зоны сдвига следует, что движение дислокации вызывает пластическую деформацию кристалла.  [c.428]

При напряжениях выше предела текучести генерируется множество дислокаций, скольжение которых приводит к очень быстрой пластической деформации. Можно считать, что степень разрядки остаточных напряжений по такому механизму определяется температурой отжига, а с его продолжительностью.  [c.115]

Сдвиг осуществляется вдоль направления ИГ во многих плоскостях. При этом первоначальные полосы, относящиеся к определенной плоскости скольжения, в которых скольжение происходит относительно свободно, задерживают сдвиг в других пересекающихся плоскостях. Причина этого в следующем. Если направления векторов Бюргерса дислокаций, расположенных в разных плоскостях, совпадают (как при карандашном скольжении) и дислокации двигаются в противоположные стороны, то они должны пересекаться и образовывать относительно слабые соединения отталкивания (рис. 149) (такие пересечения описаны Ридом [492] как -дислокации). Скольжение в этом случае осуществляется сравнительно свободно, сопровождается образованием полос и облегчает перелет, тогда как в других системах, пересекающих эти полосы, оно затруднено возникающими в самих полосах более прочными притягивающимися соединениями (хотя в самих полосах происходит опять-таки свободно).  [c.213]

К таким механизмам относятся поперечное скольжение, пересечение дислокаций, скольжение, описываемое моделью Пайерлса, и движение ступенек в винтовых дислокациях. Последний из 262  [c.262]

Перемещение дислокаций. При изменении напряженного состояния кристалла дислокации могут сравнительно легко перемещаться по его объему. При этом возможны два случая перемещения дислокаций скольжение и диффузионное перемещение.  [c.37]

Акустической эмиссией принято называть излучение акустических волн, сопровождающее некоторые виды необратимых превращений в твердом теле. Различают три основных типа механизмов этой эмиссии 1) механизмы, связанные с пластической деформацией (движение дислокаций, скольжение границ доменов в ферромагнетиках и сегнетоэлектриках и т. п.) 2) фазовые переходы, в частности мартенситные превращения в стали 3) образование и развитие трещин.  [c.271]

Вследствие искажения решетки в районе дислокаций (рис. 9,а) последняя легко смещается от нейтрального положения, а соседняя плоскость, перейдя в промежуточное положение (рис. 9,6), превратиться в экстраплоскость (рис. 9,в), образуя дислокацию вдоль краевых атомов. Мы видим, таким образом, что дислокация может перемещаться (вернее, передаваться, как эстафета) вдоль некоторой плоскости (плоскости скольжения), расположенной перпендикулярно к экстраплоскости.  [c.30]

Линейные дефекты не двигаются самопроизвольно и хаотически, как вакансии. Однако достаточно небольшого напряжения, чтобы дислокация начала двигаться, образуя плоскость, а в разрезе — линию скольжения С (рис. 11).  [c.30]

Холодная деформация характеризуется изменением формы зерен, которые вытягиваются в направлении наиболее интенсивного течения металла (рис. 3.2, а). При холодной деформации формоизменение сопровождается изменением механических и физико-химических свойств металла. Это явление называют упрочнением (наклепом). Изменение механических свойств состоит в том, что при холодной пластической деформации по мере ее увеличения возрастают характеристики прочности, в то время как характеристики пластичности снижаются. Металл становится более твердым, но менее пластичным. Упрочнение возникает вследствие поворота плоскостей скольжения, увеличения искажений кристаллической решетки в процессе холодного деформирования (накопления дислокаций у границ зерен).  [c.56]


Такая формулировка связана со следующими обстоятельствами. Известные дислокационные модели зарождения микротрещин [4, 25, 170, 247] показывают, что они возникают при некотором критическом значении локальных напряжений в голове дислокационного скопления. Это соответствует критическому значению эффективного напряжения = Эффективное напряжение здесь определяется равенством a ff = ai — оо, в котором величина Оо есть так называемое напряжение трения, являющееся суммой напряжений Пайерлса—Набарро и сопротивления скольжению, обусловленного взаимодействием дислокаций с примесными атомами, точечными дефектами и исходными дислокациями [170]. Иными словами, оо есть напряжение, соответствующее началу пластического течения в зерне. С другой стороны, как известно, при температуре нулевой пластичности Т = = Tq условие наступления пластического течения (2.3) есть одновременно и условие разрушения сг/ = От(7 о) [170, 222]. Очевидно, что в данном случае выполнено условие зарождения микротрещины, и, следовательно, справедливо равенство  [c.67]

Отметим, что зависимость (2.39) строго можно использовать только при X хо, т. е. после образования деформационной субструктуры. При я С ио уменьшение длины линий скольжения связано в основном с вытяжкой зерна, а также с наличием леса дислокаций. Предполагая, что характер влияния пластической деформации на уменьшение длины линий скольжения при X < хо такой же, как и при х хо, зависимость (2.39) будем  [c.96]

Размер частиц может оказывать влияние на возникновение пор. Дислокациям, скользящим в матрице, легче обогнуть область влияния частиц, если они малы, путем поперечного скольжения, чем скапливаться вокруг них [170]. Следовательно, для зарождения пор у частиц меньшего размера требуется большая пластическая деформация. Эффект этот усиливается, если частицы малого размера прочнее связаны с матрицей.  [c.111]

Сопротивление движению двойникующих дислокаций то при абсолютном нуле меньше, чем сопротивление движению полных дислокаций скольжения по причинам, которые уже проанализированы в работах [117, 122]. Поскольку нет оснований предполагать существенных различий в механизме движения полных и частичных дислокаций, для описания температурной зависимости Tq можно применить представления о термически активируемом движении дислокаций в поле  [c.62]

Возможно дополнительное упрочнение, обусловленное взаимодействием дислокаций скольжения с дислокационными сетками на полукогерентных границах. Как указывалось выше, эти дислокации на поверхности раздела снимают упругие напрях ения, связанные с несоответствием параметров решеток двух фаз. Определив расстояние между дислокациями на поверхности раздела S из выражений (2) и (3)  [c.374]

Показано, что несколько возможных механизмов определяют прочностные свойства звтектик. Два из них непосредственно связаны с особым состоянием поверхности раздела в направленно закристаллизованных эвтектиках — это взаимодействие дислокаций скольжения с дислокациями на полукогерентных поверхностях раздела и ограничение механиЗ Мов деформации соседних фаз за счет ориентационных эффектов.  [c.384]

По измерениям микротвердости определяли показатель Мейера п, который связывает размер отпечатка индикатора твердомера с прикладываемой нагрузкой. Значение п определяли по углу наклона кривой, выражающей зарисимость микротвердости от нагрузки в координатах log d —log Р. Показатель п является мерой легкости микродеформирования, завис щей от процессов блокировки дислокаций скольжения. От этих процессов зависит внутреннее трение металла, Поэтому путем совместного анализа характеристик микротвердости Яц и /г, внутреннего трения рф и прочностных свойств можно определить основные закономерности при НТЦО чугуна.  [c.133]

Прямое измерение плотности движущихся дислокаций (так же, как скорости скольжения и переползания) при ползучести методом высоковольтной электронной микроскопии очень сложно в методическом отношении. Едва ли можно себе представить, что в ближайшем будущем возрастут возможности повышения точности испытаний на ползучесть в смысле измерения напряжений, а TEKxfe разделения двух способов движения дислокаций скольжения и, переползания. Кроме того, характер движения дислокаций в фольгах далеко не соответствует движению дислокаций в массивных образцах. При ускоряющем напряжении 1 Мв толщина фольги, как правило, значительно меньше среднего размера субзерен, и роль свободной поверхности может быть определяющей. Тем не менее прямое наблюдение движения дислокаций в условиях высокотемпературной ползучести может дать чрезвычайно важные результаты. Однако в ближайшем будущем необходимо считаться с тем, что плотность движущихся длслокаций необходимо будет выводить из модельных представлений или определять на основании ка1Кого-либо предположения о соотношении между движущимися и свободными дислокациями.  [c.32]

Модель [350] исходит из предположения о том, что дислокации, образованные внутри зерна, перемещаются в граничную зону скольжением [367]. Вдоль границы эти дислокации движутся, комбинируя скольжение и переползание. Скорость проскальзывания пропорциональна составляющей вектора Бюргерса, пЕфаллельной плоскости границы, и определяется переползанием, зависящим от объемной диффузии. Поскольку проскальзывания вызываются движением тех же дислокаций, скольжение которых ведет к деформации зерна, естественно ожидать линейной зависимости между деформацией, обусловленной проскальзыванием, и общей деформацией ползучести е. Такая зависимость, действительно, часто наблюдалась [341-344]. В работе [350] предполагалось также, что либо расстояние от дислокащи до границы- (рис. 14.11) очень мало, либо дислокация перемещается в плоскости границы. Расстояние между дислокациями а рис. 14.11) определяется условием равновесия поля напряжения дислокации и приложенного скалывающего напряжения а 1/т. Скорость неконсервативного движения дислокаций зависит от испускания и поглощения вакансий [368]. Внешнее напряжение определяет только равновесную концентрацию вакансий вблизи ядра дислокации. Путем использования уравнения для скорости переползания изолированной дислокации в бесконечном кристалле разд. 2.1.2) получено уравнение [350] для скорости деформации, вызываемой проскальзыванием  [c.218]


Атомы примесей тормозят полигонизацию из-за образования атмосфер Коттрелла, затрудняющих перераспределение дислокаций скольжением и переползанием, и из-за образования атмосфер Сузу-ки, снижающих энергию дефектов упаковки и также затрудняющих перераспределение дислокаций. При одинаковой температуре отжига более чистый металл полигонизируется за более короткое время.  [c.52]

Предположим, что в первом варианте микротрещина зародилась в плоскости скольжения (например, по механизму Гилмана—Рожанского [25, 247]) и ориентирована параллельно сдвиговым напряжениям, т. е. подвергается только П моде деформирования. В этом случае распределение напряжений у ее вершины согласно работе [199] таково, что т (/Ос(= 1,03, где т г и Ос1 — сдвиговое и растягивающее напряжения у вершины трещины, действующие в плоскостях скольжения и спайности соответственно (Tsi = Tre e=o Ос( = (fee 10 450 где г, 6 — полярные координаты, отсчитываемые от вершины микротрещины). Поскольку в данной ситуации для ОЦК металлов Тзг/сГсг Тт.п/сГт.п = = 0,24 0,28 (тт. п и От.п — теоретическая прочность на сдвиг и на отрыв соответственно), зародившаяся микротрещина не является устойчивой к сдвиговым процессам в ее вершине [230]. С возникновением микротрещины начинается эмиссия дислокации из ее вершины и, следовательно, рост такой микротрещины в процессе деформирования будет пластический, стабильный, контролируемый деформацией. Таким образом, зародышевая микротрещина, ориентированная параллельно сдвиговым напряжениям, растет по пластическому механизму и, следовательно, притупляется, становясь трещиной, не способной инициировать хрупкое разрушение.  [c.68]

Значения параметров aнекоторые выводы. Во-первых, с увеличением температуры ко- эффициенты гпт и Ште уменьшаются, причем в области низких температур (Г С—140°С) очень резко при увеличении температуры от —196 до —140 0 величина гпт падает более чем в три раза, однако при Г — 100°С она практически не изменяется. Параметр гптг, как отмечалось ранее, можно интерпретировать как коэффициент концентрации напряжений в голове дислокационного скопления. Уменьшение шт с увеличением температуры деформирования можно рассматривать как следствие затупления дислокационного скопления (увеличения б ск) При увеличении Т, обусловленное процессами поперечного скольжения и переползания дислокаций.,При таком изменении геомет-  [c.106]

Предварительная пластическая деформация приводит к довольно существенному уменьшению величины а<г и слабее влияет на коэффициент т . Слабая зависимость гпт от ев достаточно легко объяснима. Дело в том, что переползание дислокаций и поперечное скольжение, определяющие б ск, являются существенно термоактивированными процессами и в гораздо меньшей степени чувствительны к дислокационной структуре материала, возникающей при его пластическом деформировании. Что касается влияния предварительной деформации на Od, то здесь необходимо дать некоторые пояснения. Полученный результат по снижению величины оа от предварительной деформации сначала кажется противоречивым, так как параметр Од имеет смысл прочности матрицы или границы соединения матрицы с включением, которая не должна меняться при деформировании. Указанный вывод действительно имел бы место, если бы мы рассматривали локальную прочность материала в масштабе порядка длины зародышевой трещины. В зависимости же (2.7) под Od понимается некоторая осредненная не меньше, чем в масштабе зерна, интегральная характеристика, отражающая сопротивление материала зарождению микротрещины. Поэтому при наличии предварительного деформирования материала необходимо учитывать возникающие остаточные микронапряжения. В этом случае в первом приближении параметр а<г можно определить по зависимости  [c.107]

Наиболее простой и наглядный способ образования дислокаций в кристалле — сдвиг (рис. 9, а). Если верхнюю часть кристалла сдвинуть относительно нижней на одно межатомное расстояние, причем зафиксировать положение, когда сдвиг охватил не всю плоскость скольжения, а только часть ее AB D, то граница А В между участком, где скольжение уже нроизоп1ло, и участком в плоскости скольжения, в котором скольжение еще не произошло, и будет дислокация фис. 9, а).  [c.21]

Край экстраплоскости АВ представляет собой линию краевой дислокации, кот( ра л простирается вдоль плоскости скольжения (нернендикулярно вектору сдвига т) через всю толщу кристалла (рис. 9, б). В поперечном сечении, где имеет место су1цественное нарушение в периодичности и расположении атомов, размер), де-( )екта не ве п1ки и не превышают 3—5 и (а период реш.тки).  [c.21]

Скольжение осуществляется в результате перемещения в крнс-сталле дислокаций (рис. 28). При действии вдоль плоскости скольжения касательных напряжений в направлении, указанном стрелкой, атомы вблизи ядра дислокации перемещаются справа налево на расстояния (1 2 3 -> 4 5 -> 6 7 8 9 -> 10 11 12 13 -> -> 14 15 16 17 18), значительно меньше межатомных. Атомы смещаются не только в плоскости чертежа, но и во всех атомных слоях, параллельных этой плоскости  [c.44]

Перемещение дислокации в плоскости скольжения М.М через весь кристалл приводит к смещению (сдвигу) соответствуюигей части  [c.45]


Смотреть страницы где упоминается термин Дислокации скольжения : [c.62]    [c.382]    [c.13]    [c.55]    [c.219]    [c.199]    [c.94]    [c.337]    [c.36]    [c.54]    [c.164]    [c.10]    [c.23]   
Сплавы с эффектом памяти формы (1990) -- [ c.55 ]



ПОИСК



Влияние давления на ползучесть, контролируемую возвратом и скольжением дислокаций

Дислокациии и скольжение

Дислокациии и скольжение

Дислокаций поперечное скольжение

Дислокация

Заключительные замечания к моделям ползучести, определеляемой скольжением дислокаций

Плоскость скольжения дислокации

Ползучесть, контролируемая скольжением дислокаций

Скольжение винтовой дислокации

Скольжение краевой дислокации



© 2025 Mash-xxl.info Реклама на сайте