Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полуавтоматы Режимы

Испытание станков на холостом ходу производится на различных ступенях чисел оборотов шпинделя и на различных возможных на автомате или полуавтомате режимах, но без нагрузки. Наряду с этим производят включение всех механизмов станка, промеряют фактические скорости вращения шпинделей и величины перемещения всех узлов (наименьшие и наибольшие), устанавливая таким образом соответствие технической характеристики станка его паспортным данным. Испытание станка на холостом ходу определяет исправность и работоспособность всех его механизмов при работе без нагрузки. При этом испытывают все включения, переключения и передачи органов управления на правильность их действия, взаимную блокировку, надежную фиксацию и отсутствие самопроизвольных выключений, смещений и заеданий.  [c.462]


При сварке плавящимся электродом используется металлическая проволока того же состава, что и свариваемый металл. Сварка в основном ведется на постоянном токе обратной полярности специальными полуавтоматами. Режимы и способы сварки выбираются в зависимости от состава и толщины свариваемого металла.  [c.76]

Приведем порядок и метод определения режима резания при многоинструментной обработке на одношпиндельных токарных полуавтоматах и на многошпиндельных полуавтоматах последовательного действия. К числу первых из названных станков относится, например, токарный многорезцовый полуавтомат модели 1721, к числу вторых — токарный шестишпиндельный полуавтомат завода Красный пролетарий модели 1272.  [c.141]

Пример применения метода регулярного поиска для определения оптимальных режимов резания при обработке ступенчатых валов на токарном гидрокопировальном полуавтомате (рис, 3.55). Задаются исходные данные (размеры и материалы детали, режущий инструмент, глубина резания, жесткость узлов станка, цикловые и внецикловые потери времени работы оборудования) требуется найти режим обработки (sj, п,), удовлетворяющий условиям по точности обработки шероховатости поверхности  [c.136]

Рис. 3.28. Множества Кь Ка, Rз, соответствующие областям допустимых режимов резания я,-, на трех рабочих позициях полуавтомата. Рис. 3.28. Множества Кь Ка, Rз, соответствующие <a href="/info/100577">областям допустимых</a> режимов резания я,-, на трех <a href="/info/216335">рабочих позициях</a> полуавтомата.
В большинстве случаев регулирование в гидросистемах производственных автоматов и полуавтоматов сводится к стабилизации режимов. В качестве примеров простых регулирующих устройств для поддержания в системе определенного давления могут служить предохранительные, редукционные и обратные клапаны.  [c.199]

Необходимо оценить возможности повышения производительности полуавтомата при интенсификации режимов обработки в х раз (новая скорость tij = vx) и найти режим (J max). обеспечивающий максимальный рост производительности полуавтомата в данных конкретных условиях.  [c.98]

На многих типах металлорежущих станков в подшипниковой промышленности до недавнего времени применялись для опор шпинделей подшипники скольжения с баббитовой заливкой вкладышей. Эти подшипники не выдерживали температурного режима, обусловленного интенсификацией скоростей резания и подач. Эта проблема теперь решена путем замены подшипников скольжения подшипниками качения. Группа экспериментальных станков прошла длительные испытания, которые показали целесообразность и эффективность такой модернизации. Изготовление необходимых узлов было организовано силами самих заводов, а модернизация станков осуществлялась при их капитальном ремонте. Опыт подшипниковой промышленности позволил конструкторам станкостроения отказаться от применения подшипников скольжения на токарных автоматах и полуавтоматах серийного выпуска.  [c.79]


Московский станкозавод им. С. Орджоникидзе создал в свое время хороший, мощный одношпиндельный токарный полуавтомат типа 505, отличавшийся жесткостью шпинделей и суппортов, высокой производительностью, возможностью применения скоростных режимов резания. Станки эти в основном удовлетв ри-тельно зарекомендовали себя в практике работы подшипниковых заводов. Но вместе с этим они имели существенные дефекты, сильно снижавшие эффективность их использования. Станок имел устройство, отводящее резец от детали по окончании цикла обработки. Назначение этого устройства — избежать появления глубокой риски на обработанной поверхности при отходе резца. Отвод осуществлялся с помощью копирного клина, установленного на станине под продольным суппортом.  [c.80]

С переходом на новые режимы резания со скоростью резания свыше 100 м/мин применение сульфофрезола в качестве охлаждающей жидкости как на одношпиндельных, так и на многошпиндельных автоматах и полуавтоматах оказалось практически невозможным. Густая и вязкая жидкость не обеспечивает отвод тепла, образующегося в процессе резания, а перегрев жидкости вызывает интенсивное выделение из нее газа и дыма, что существенно ухудшает условия труда рабочих.  [c.89]

Особенно рационально применение взаимозаменяемых наладок на одношпиндельных полуавтоматах, где работает сравнительно небольшое число резцов (пять-восемь). Стремясь к максимальному увеличению съема со станка, производственники интенсивно повышают режимы резания и при этом охотно идут на сокращение периода стойкости инструмента и увеличение числа подналадок, перекрывая эти потери значительным выигрышем в производительности труда и увеличении выпуска продукции.  [c.154]

В условиях мелкосерийного и единичного производства высокопроизводительные станки-автоматы и полуавтоматы малоэффективны, поскольку требуют больших затрат времени и средств на наладку. Создание станков с ЧПУ открыло период автоматизации металлообработки в мелкосерийном производстве. Необходимость автоматизации металлообработки с технологической и организационной точки зрения на основе применения оборудования с программным управлением можно обосновать следующими факто-pa И. высокой производительностью при обработке деталей сложной формы в результате автоматизации цикла обработки возможностью быстрой переналадки станков в условиях частой смены обрабатываемых деталей возможностью обработки деталей без изготовления дорогостоящей оснастки с обеспечением высокой точности формы и размеров повышением качества обрабатываемых деталей и сокращением брака примерно до 1% применением при обработке деталей оптимальных режимов резания сокращением сроков подготовки и освоения выпуска новых изделий в 5—10 раз повышением стабильности и точности обработки в 2—3 раза при одновременном сокращении числа и стоимости слесарно-доводочных и сборочных операций возможностью организации многостаночного обслуживания высвобождением высококвалифицированных рабочих-станочников возможностью повышения коэффициента технического использования и лучшего использования по времени возможностью автоматизации металлообработки в единичном и мелкосерийном производстве возможностью создания автоматизированных участков группового управления с помощью ЭВМ и интегральных автоматических систем управления технологическими процессами.  [c.306]

Для проверки предложенной модели станочной операции были разработаны алгоритм и программа решения на ЭВМ задачи оптимизации режимов обработки ступенчатых валов. Анализ результатов расчетов подтвердил правильность предложенной методики назначения режимов обработки и выявил возможность дальнейшего повышения производительности токарных гидрокопировальных полуавтоматов.  [c.114]

Параллельно с исследованием жесткости проводились записи ускорений, скоростей и малых перемещений для оценки плавности движения, динамических нагрузок на привод суппортов и шпиндельного блока, а также точности конечных положений (табл. I). При этом отрабатывалась методика проведения динамических исследований в условиях ремонтного цеха, проводилось сравнение длительности холостых ходов у различных моделей полуавтоматов и проверялась возможность оценки технического состояния и регулировки станков по осциллограммам скоростей и ускорений. Примерно по той же методике проводилось исследование жесткости и динамических характеристик многопозиционных агрегатных полуавтоматов [30]. Здесь также проведению исследований предшествовало изучение наладок, режимов резания, стойкости инструмента,  [c.11]


Режимы резания 391 Зубопритирочные полуавтоматы — Технические характеристики 523  [c.771]

Режимы сварки применяются обычные, примерно те же, что и для плавленых флюсов, за исключением напряжения дуги — оно всегда ниже для керамических флюсов. Это объясняется повышенной устойчивостью дуги под керамическими флюсами по сравнению с обычными плавлеными флюсами ОСЦ-45 и АН-348. Высокая устойчивость дуги позволяет работать на малых токах в необходимых случаях и варить стали толщиной 2—3 мм шланговыми полуавтоматами на переменном токе.  [c.72]

Используют также различные методы поиска, исключающие полный перебор (например, регулярного поиска для определения оптимальных режимов резания при обработке ступенчатых валов на токарном гидрокопировальном полуавтомате). Задают исходные данные (размеры и материал детали, режущий инструмент, глубину резания, жесткость узлов станка, цикловые и внецикловые потери времени работы оборудования). Требуется найти режим обработки удовлетворяющий условиям по точности обработки, шероховатости поверхности, мощности, расходуемой на резание, кинематике станка и приводящий целевую функцию к максимуму.  [c.221]

ЧИСЛО резцов, так как большинство многорезцовых полуавтоматов не обладает большой жесткостью и при работе на высоких скоростях резания возникают интенсивные вибрации, вызывающие выкрашивание твердосплавных резцов, особенно в момент врезания. Часто мощность многорезцовых полуавтоматов оказывается недостаточной для работы на высоких скоростях резания, что также требует сокращения числа одновременно работающих резцов в наладках. С целью более полного использования многорезцовых полуавтоматов при работе на скоростных режимах резания выгодно вместо многоинструментных применять наладки с одним или двумя резцами, работающими по копиру. При этом достигается повышение производительности на 25% в результате увеличения скорости резания и подачи, а также сокращения времени на наладку и подналадку станка кроме того, сокращается расход инструмента.  [c.273]

В некоторых случаях при работе на высоких режимах резания копировальные и фронтальные полуавтоматы целесообразно использовать вместо вертикальных многошпиндельных токарных полуавтоматов непрерывного и последовательного действия без снижения производительности. Простота наладки этих станков позволяет применять их в серийном производстве.  [c.273]

На позициях II окончательно обрабатываются поверхности 1, 2, 4 и 5. Однако обработка таких кулаков на многорезцовых копировальных полуавтоматах типа 1732, 1722 более производительна, так как полуавтомат оснащен меньшим числом резцов и требуется значительно меньшее время на наладку и подналадку. Кроме того, на полуавтомате можно применить значительно более высокие режимы резания.  [c.306]

Система управления автоматами построена так, что они могут работать в режиме автомата, полуавтомата и наладки.  [c.443]

В режиме автомата происходит непрерывное чередование циклов. В режиме полуавтомата для начала каждого цикла требуется нажать кнопку управления. В режиме наладки цикл выполняется по частям и для выполнения каждой части цикла требуется нажать кнопку управления.  [c.443]

Полуавтоматы для дуговой сварки имеют высокие эксплуата-Х ошп.ге свойства за счет применения тонкой сварочной проволоки (диаметром до 2,5 мм) при высоких, до 200 А/мм , плотностях тока. Процесс саморегулирования режима горения дуги происходит достаточно интенсивно и помволиет компенсировать все колебания длины дугового ироме>кутка, возникающие при ручном ведении сварочной головки вдоль стыка. В этих условиях скорость подачи электрода устанавливается в соответствии с необходимым режимом сварки и остается неизменной в 1 ечение всего времени выполнения uiaa.  [c.142]

Заварка дефектов производилась в различных пространственных положениях сварочной проволокой марки Св-08Г2С диаметром 1,2 мм сварочным полуавтоматом ПДГ-515У с источником питания ВДУ-506У при следующих изменяющихся параметрах режима сварки сила сварочного тока изменялась в пределах 90... 130 А напряжение дуги - 19...23 В расход углекислого газа - 10 л/мин вылет электрода -  [c.304]

Многорезцовый копировальный полуавтомат с программированным режимом реаания (60-е годы)  [c.85]

В конце 40-х годов, одновременно с завершением начатой еще в довоенные годы механизации ручных операций, на предприятиях пищевой промышленности была начата автоматизация производственных процессов. В большом количестве стали применяться различные автоматы и полуавтоматы для расфасовки, дозировки и упаковки пищевых продуктов (кондитерских изделий, сахара, чая, мороженого, пельменей, маргарина), что позволило высвободить значительное число рабочих, занятых на малопроизводительных ручных операциях. Было внедрено автоматическое регулирование тепловых процессов, обеспечивающее получение продукции высокого качества в хлебопекарной, консервной, спиртовой и сахарной промышленности. Были переведены на автоматическое управление режимом выпечки хлеба многие заводы хлебопекарной промышленности. В ликеро-водочной, пивоваренной и молочной промышленности были внедрены автоматические поточные линии мойки посуды, разлива продукции и укупорки посуды. Было увеличено количество автоматических поточных линий по производству жестяных банок в пищевой, мясо-молочной и рыбной промышленности. Благодаря широкому внедрению автоматически действующих шнековых прессов жировая промышленность выпустила дополнительно десятки тысяч тонн растительного масла.  [c.254]

Но если говорить образно, то токарная обработка была его нестареющей любовью всю жизнь. Еще молодым инженером исследовал он работоспособность токарных автоматов, закупленных в годы первой пятилетки за рубежом, систематизировал конструкции и пытался прогнозировать развитие принимал участие в проектировании первых оригинальных отечественных одношпиндельных токарных автоматов. Именно применительно к токарным автоматам Шаумян создавал и свою теорию максимальных по производительности и оптимальных по 9К0Н0МИЧН0СТИ режимов обработки. Ученый поддерживал связи с рабочими-новаторами, разрабатывавшими и внедрявшими высокопроизводительные методы скоростного и силового течения, неоднократно приглашал их для выступлений на кафедре. Именно в токарных автоматах применил он свое изобретение — шариковый передаточный механизм, создав ряд конструкций станков. Его лекции по диалектике развития конструктивно-компоновочных решений токарных автоматов и полуавтоматов,  [c.83]


Например, в многооперационных станках-полуавтоматах рабочий цикл начинается с ручной установки и закрепления заготовки. Далее в автоматическом режиме следует чередование рабочих и холостых ходов, выполняемых по заданной программе, после чего снова следует впомогательное время разжима и съема изделия. Несовмещенное вспомогательное время характерно для однопозиционных полуавтоматов. В многопозиционных полуавтоматах и автоматических линиях с ручной загрузкой заготовок на первую позицию оно полностью совмещено с обработкой.  [c.68]

Рассмотрим конкретный пример. Токарный многошпипдельный полуавтомат при принятых режимах обработки Vq имеет производительность Qj = 1,34 шт/мин, при этом элементы затрат времени, согласно эксплуатационным исследованиям, имеют следующие численные значения время рабочих ходов цикла /р = 0,5 мин, время холостых ходов цикла /х = 0,05 мин, собственные внецикловые потери S = = 0,08 мин, из них потери по инструменту = 0,06, потери по оборудованию tod = 0,02 мин, потери по организационным причинам Ц орг = 0.08 мин. Полуавтомат работает в условиях массового производства (Е пер = 0), ручная загрузка и съем изделий в загрузочной позиции полностью совмещены с обработкой ( всп = = 0). Выход годной продукции V = 0,95, следовательно, потери по браку  [c.98]

Наряду со стационарными установившимися режимами в инженерной практике встречаются иногда и нестационарные рабочие режимы, при которых технологический процесс осуществляется при переменной угловой скорости ведущего звена, изменяющейся от цикла к циклу. В таком режиме, например, работают некоторые швейные машины, обувные машины и другие полуавтоматы легкой промышленности, у которых рабочая скорость изменяется оператором на ходу машины в зависимости от специфических особенностей технологической операции. Расчеты по формуле (3.65) показывают, что при реальных соотношениях параметров установление колебательного режима обычно осуществляется при сравнительно малом числе циклов. Поэтому практически можно считать, что нестационарный режим следует за некоторым установившимся режимом. Пусть в момент t = tt оператор приступил к изменению угловой скорости ведущего звена. Тогда начальные условия q (ti) и q (ti) могут быть определены из зависимостей (3.37) и (3.51) для установившегося режима. При этом на рассматриваемом участке (оз =f= onst) колебания могут быть описаны расчетной зависимостью  [c.107]

Участок состоит из фрезёрно-цеНтровального станка, двух токарных полуавтоматов, автоматического манипулятора и вспомогательных устройств. Фрезерно-и ентровальный станок обеспечивает обработку торцов и центральных отверстий. Токарный полуавтомат с системой ЧПУ Н22-1М обеспечивает обработку цилиндрических, конических и сферических поверхностей, прорезку канавок и нарезание резьбы. Автоматический манипулятор обеспечивает установку—снятие деталей и их межстаночное транспортирование при линейном расположении станков па участке. Грузоподъемность манипулятора — 160 кг, погрешность позиционирования не более 1мм при максимальной скорости перемещения отдельных звеньев 0,8—1,8 м/с. Манипулятор оснащен датчиками внешней информации и выполняет в адаптивном режиме широкий круг операций, включая поиск деталей в накопителе, измерения диаметра и длины заготовки, отбраковки заготовок с недопустимыми отклонениями размеров, перебазирование деталей, их промежуточное складирование и укладку в выходной таре. Программирование автоматического манипулятора осуществляется методом обучения.  [c.31]

Хотя работы в области адаптивного управления ведутся уже в течение ряда лет, проблема оптимального управления режимами резания решена частично. Тем не менее уже имеются промышленные образцы систем управления отдельными параметрами, а станкозавод им. С. Орджоникидзе освоил серийный выпуск токарного многорезцового полуавтомата мод. 1Б732.  [c.158]

Для улучшения использования станков заготовки закрепляют в быстро переналаживаемых (УНП) или универсальносбор-Бых (УСП) приспособлениях. Система управления с программированием цикла и режимов обработки применяется на многих станках токарной группы, например, на многорезцовом гидро-фицированном полуавтомате мод. АТ250П Савеловского машиностроительного завода (г. Кимры). Полуавтомат предназначен для обработки деталей диаметром до 250 мм типа дисков, фланцев, шестерен, муфт и т. п. по 2—3-му классам точности. Станок оснащен двумя суппортами, каждый из которых имеет независимую продольную и поперечную подачи. Величина перемещений устанавливается по линейкам и упорам при наладке станка на обработку очередной партии деталей. Последовательность  [c.141]

Для определения периода стойкости используется формула экономической стойкости Гэк. Но, с одной стороны, эта формула дает очень большой разброс расчетных значений Тэк- Так, например, при резании стали Ст. 45 с S = 0,2 мм1об и t — 2 мм для проходного резца Т15К6 расчетная величина Тж колеблется от 17,4 до 45,2 мин, т. е. примерно в 2,6 раза. С другой стороны, если работа ведется со стойкостями, отличными от Тэк, себестоимость выполнения технологической операции возрастает очень незначительно. Так, для приведенных выше условий при 0,5 Тэк Т < 2Гэк себестоимость операции повышается не более чем на 2,5—3,5%. Следует также,учесть, что точность расчета значений технологической себестоимости операции может колебаться до 20% от номинальной себестоимости при Т = 7"эк. Поэтому использование технологической себестоимости операции как общего критерия качества режимов обработки ступенчатых валов на гидрокопировальных токарных полуавтоматах [31 не даст желаемых результатов.  [c.110]

В лаборатории Станки и автоматы МВТУ были проведены исследования обработки подшипниковых колец на полуавтомате попутного точения. Партия внутренних колец шарикоподшипника 310/02 обрабатывалась при режимах и= Ъ0- 1Ъ м мин 5 — мм1об материал кольца — сталь ШХ15.  [c.181]

Станки широкого или общего назначения — универсальные — применяются в единичном и мелкосерийном производстве для выполнения разнообразной обработки. Станки высокой производительности лучше всего подходят для крупносерийного и массового производства. Эти станки имеют достаточную мощность для обработки деталей на более высоких режимах резания. К станкам этого вида относятся токарно-многорезцовые, круглошли-фовальные, работающие по методу поперечной подачи, бесцентрово-шлифовальные, некоторые продольно-фре-sepHbie, токарные автоматы и полуавтоматы.  [c.137]

Квант-11 . Полуавтомат с ИАГ-лазером предназначен для сквозной резки на дискретные элементы полупроводниковых пластин с готовыми структурами. Скорость резания при глубине реза 0,25 мм составляет 120 мм/мин. Максимальная глубина реза 0,4 мм при ширине дефектной зоны до 0,2 мм. Средняя мощность излучения 20 Вт. Диаметр пятна в фокусе можно изменять от 30 до 300 мкм. Лазер работает в импульсном режиме с длительностью импульса 0,2 мс и частотой следования до 100 Гц. Напряжение питания 220/380 В, 50 Гц. Габаритные размеры станка 1500x700x1200 мм, стойки питания — 700x700 X1700 мм. Масса 50 кг.  [c.306]

Нагрузку на отдельные суппорты и режимы резания на миогошиин-дсльных полуавтоматах надо подбирать так, чтобы продолжительность работы всех суппортов была приблизительно одинакова. Это дает возможность повысить стойкость инструмента на нелимитирующих позициях.  [c.68]


При проектировании обработки на любых многопозиционных станках проводят аналогичные расчеты. Для агрегатных станков с многопозиционными делительными столами и барабанами и для вертикальных многошпиндельных полуавтоматов при одно-и двухцикловой наладке рассчитывают режимы резания для каждой позиции и, определив время лимитирующего перехода, определяют штучное время с учетом вспомогательного времени. За этим следует корректировка режимов на нелимитирующих позициях и переходах.  [c.208]

Во многих технологических задачах зависимости между параметрами приводят к функциям типа позиномов. Так, при построении операций при врезном шлифовании на одно-и многокруговых шлифовальных полуавтоматах ставилась задача выбора режимов обработки, которые обеспечивают минимальное время обработки при достижении заданной точности. С учетом ограничений по суммарным значениям радиальных сил, по суммарной мощности, необходимой для резания, и ограничения, обеспечивающего размерную стойкость круга при черновой обработке, формулируется следующая задача геометрического программирования  [c.220]

Эта закономерность полностью сохраняется, если позиции машины параллельного действия располагать не в линию, а по окружности (рис. 3, в), для удобства обслуживания и равномерного расхода энергии смещать по фазе рабочий цикл иа позициях (рис. 3, г). Схема (рис. 3, г) неудобна тем, что место загрузки все время меняется, перемещаясь по окружности со скоростью, задаваемой числом оборота распределительного вала относительно неподвижного стола. При ручной загрузке рабочий вынужден все время двигаться вокруг машины, а при автоматической — необходимо иметь р загрузочных механизмов, поэтому компоновка из таких машин автоматических линий практически невозможна. Для устранения этого противоречия недостаточно, не изменяя относительных дщтжений рабочих органов в машине, остановить распределительный вал и дать столу вращение в обратную сторону (рис. 3, д). Такая схема, по которой еще в 20-е годы были построены токарные полуавтоматы типа Буллард , зубофрезерные многопозиционные станки, многочисленные автоматы пищевой промышленности и т. д., получила название роторной. Сравнение этой схемы с другими конструктивными вариантами машин параллельного агрегатирования (рис. 3, б—г) показывает, что роторный принцип сам по себе не дает никакого выигрыша в производительности, так как технологический процесс (последовательность и режимы обработки) полностью сохраняется, остаются неизменными рабочие и холостые хода, а также технологические механизмы, которые не становятся надежнее в работе. Поэтому производительность роторных машин подчиняется общим закопал агрегатирования рабочих машин. Это общее свойство всех машин параллельного действия, как стационарных (рис. 3, б—г), так и роторных (рис. 3, д). В обоих случаях производительность может быть повышена путем увеличения числа позиций р, однако, как показывает формула (6), рост производительности непропорционален увеличеиик> числа позиций р, так как с ростом числа позиций растут и внецик-ловые потери р Q + 4), а коэффициент использования снижается. В результате производительность машин параллельного агрегатирования, в том числе и роторных машин, повышается не беспредельно, как некоторые считают, а стремится к некоторому пределу, который целиком определяется надежностью механизмов машины. Если же роторные машины сблокированы в линию, то  [c.10]

Восстановление внутренней поверхности ступицы производится на токарном станке специальным держателем с помощью того же полуавтомата ПШ-5, на режимах, описанных выше флюс АН-348ш, проволока Св-08 диаметром 1,6 жл.  [c.191]

Наплавка наружных бортов катка протаводится на кантователе, при этом деталь крепится в трехкулачковом патроне. Наплавка производится полуавтоматом ПШ-5. Режимы аналогичны приведенным выше, флюс АН-348ш, проволока ЗОХГСА диаметром 2 мж. Угол наклона детали 15°.  [c.192]


Смотреть страницы где упоминается термин Полуавтоматы Режимы : [c.144]    [c.145]    [c.241]    [c.89]    [c.107]    [c.209]    [c.296]    [c.74]   
Ковка и объемная штамповка стали Том 2 издание 2 (1968) -- [ c.76 ]



ПОИСК



Прогрессивные режимы резания при работе на автоматах и полуавтоматах и условия, необходимые для их внедрения

Режимы резания круглошлифовальные полуавтоматы

СТАНКИ С ПРОГРАММИРОВАНИЕМ ЦИКЛА И РЕЖИМОВ РЕЗАНИЯ Токарные станки Токарный многорезцовый полуавтомат с цикловым программным управлением модели АТ



© 2025 Mash-xxl.info Реклама на сайте