Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линеаризация системы для численного

Линеаризация системы для численного Модель двухслойного турбулентного  [c.312]

Численное решение системы (3) не позволяет судить о степени влияния различных параметров на устойчивость равновесия номинальной точки БП в малом (в смысле Ляпунова). Для анализа устойчивости номинальной точки используем первую теорему Ляпунова [3]. Линеаризуем функции (4), входящие в правые части уравнений (3), в окрестности исследуемой равновесной точки Хах) разложением в ряд Тейлора с удержанием первого члена. После линеаризации система уравнений (3) приобретает вид  [c.77]


В данном случае существуют два положения равновесия. Линеаризация системы (5.2) в окрестности каждого из них и последующее составление характеристических уравнений дают (0,0) - седло Р к к , к /к -центр. Точка Р. определяет положение равновесия, которое характеризуется полным истреблением жертв = 0) и вымиранием хищников = = 0). Точка Р отображает стационарный режим сосуществования хищников и их жертв с некоторыми ненулевыми численностями.  [c.129]

Таким образом, при рассмотренных выше методе аппроксимирования приведенного момента и линеаризации уравнения движения машинного агрегата задача численного интегрирования системы дифференциальных уравнений сводится к вычислению интегралов с переменным верхним пределом. Заметим, что функции Мс (ф, ф) и J (ф) часто задаются в табличной форме. При этом значение кинетической энергии оказывается необходимо вычислять только для определенных (базовых) точек.  [c.319]

Решение уравнений движения этой системы методом гармонической линеаризации в сочетании с полученными из эксперимента данными на резонансе величины амплитуд ускорения, скорости и перемещений, амплитуды вынуждающей силы и фазовых соотношений по осциллограммам — позволило определить численное значение величины жесткости масляного слоя в радиальном направлении и коэффициента демпфирования.  [c.78]

Нелинейные уравнения такой системы можно решить с помощью численных методов, либо приходится упрощать основные уравнения путем их линеаризации и получать приближенные аналитические решения. Такие приближенные решения могут дать весьма ценную информацию по анализу изменения основных параметров в нестационарном процессе. В [В-46] дано численное  [c.9]

Выражение (4.15) представляет собой систему алгебраических уравнений, для решения которой можно применить известный численный метод, называемый методом Ньютона. Корень системы (4.15) есть стационарная точка, т. е. возможное решение экстремальной задачи. Метод Ньютона является итерационным, он основан на линеаризации (4.15) в окрестности текущей точки поиска Х  [c.164]

Метод марковских процессов позволяет (теоретически) получать точные законы распределения компонент вектора состояния нелинейной динамической системы любой размерности и точные значения вероятностных характеристик компонент вектора состояния в любой момент времени. На практике, к сожалению, это далеко не так. Получить точное решение уравнения Колмогорова, особенно когда надо учитывать реальные случайные возмущения (а не белый шум), для реальной нелинейной механической системы с несколькими степенями свободы практически невозможно. Поэтому опять остаются только приближенные методы решения уравнения Колмогорова, требующие введения в алгоритм решения упрощений и предположений, что приводит, как и в методе статистической линеаризации, к несоответствию приближенного и точного решения. Оценить это несоответствие нельзя, так как нет точного решения. Свободным от этих недостатков является метод статистических испытаний (метод Монте-Карло). Метод основан на численном решении исходных нелинейных уравнений без их упрощения.  [c.231]


Гидродинамика вязкой жидкости развивалась в XX в. по нескольким в значительной степени независимым направлениям. С одной стороны, изучалась полная система уравнений Навье Стокса и ее свойства, был найден ряд точных решений и получены некоторые общие теоремы. С другой стороны, в целях изучения прикладных задач развивались методы решения различным образом усеченных и, в первую очередь, линеаризованных уравнений Навье — Стокса, приспособленных для специфических задач (в частности, приближение гидродинамической теории смазки, линеаризация В. Озеена), также методы численного решения полной системы уравнений. Наконец, в XX в. был заложен новый раздел гидродинамики вязкой жидкости — теория пограничного слоя — и продолжала развиваться обособленная область -гидродинамики — теория турбулентности.  [c.294]

Наличие в потоке газа составов делает тем не менее задачу о движении в системах контейнерного пневмотранспорта нелинейной даже в том случае, если система газодинамических уравнений подверглась линеаризации. Кроме того, сложный характер профиля трассы, нелинейность краевых условий, а также необходимость следить за движением большого числа составов, одновременно находящихся в транспортном трубопроводе, заставляет ориентироваться на численные методы решения задач и применение вычислительной техники.  [c.97]

Метод расчета. Примененный расчетный алгоритм основан на обобщенной процедуре глобальных итераций, предназначенной для решения конечно-объемным факторизованным методом уравнений переноса на многоблочных пересекающихся сетках О- и Н-типа. Система исходных уравнений записьшается в дельта-форме в криволинейных, согласованных с границами расчетной области координатах относительно приращений зависимых переменных, включающих декартовые составляющие скорости. После линеаризации система исходных уравнений решается с помощью согласованной неявной конечно-объемной процедуры коррекции давления [1], основанной на концепции расщепления по физическим процессам и записанной в -факторной формулировке. При этом для дискретизации временных производных используется схема второго порядка аппроксимации [10]. Для уменьшения влияния численной диффузии в расчетах течений с организованным отрывом потока, весьма чувствительных к ошибкам аппроксимации конвективных членов, в явной части уравнений переноса используется одномерный аналог противопоточной схемы с квадратичной интерполяцией [11]. Одновременно, чтобы избежать ложных осцилляций при воспроизводстве течений с тонкими сдвиговыми слоями, в неявной части уравнений использован механизм искусственной диффузии в сочетании с применением односторонних противопоточных схем для представления конвективных членов. В свою очередь, для устранения немонотонностей в распределении давления при дискретизации градиента давления по схеме с центральными разностями на согласованном (с совмещенными узлами для скалярных переменных и декартовых составляющих скорости) шаблоне в блок коррекции давления введен монотонизатор с эмпирическим сомножителем. Его величина 0.1 определена в ходе численных экспериментов на задаче обтекания цилиндра и шара потоком вязкой несжимаемой жидкости. Высокая эффективность вычислительной процедуры для решения дискретных алгебраических уравнений обеспечена применением метода неполной матричной факторизации. Более подробно детали описанной процедуры расчета течения на моноблочных сетках изложены в [11].  [c.46]

Парогенератор рассдтатривается как взаимосвязанная система, в которой параметры на выходе из каждого теплообменника определяют граничные условия на входе в последующие. Непосредственное численное решение такой системы дифференциальных уравнений для всего парогенератора на современных ЭВМ затруднительно. Для получения инженерного решения прибегают к методам линеаризации, сводя решение системы (4-4) к итеративному решению системы линейных дифференциальных уравнений  [c.42]


Система уравнений (7.7) —(7.10) и граничные условия в перемещениях на внешлих контурах оболочек дают замкнутую систему. нелинейных уравнений, которая решается методом последовательных приближений. Каждое приближение основано на решении системы линейных уравнений, полученной при линеаризации (7.9)— (7.10) путем определения коэффициентов, зависящих от неизвестных перемещений, с помощью значений перемещений предыдущего приближения. Процесс продолжается до получения заданной малой разности между соседними приближениями. Зависимость Oi(ei) задается таблично, параметры h определяются численным интегрированием. В рассмотренном решении о отличие от некоторых аналитических решений подобных задач [65] принято, что кольцо может деформироваться в упругой области и учтена сжимаемость материала в пластической области. Отметим, что аналогичные задачи на основе метода дополнительных [Нагрузок рассмотрены в работе [45].  [c.225]

Трактат об устойчивости заданного состояния движения... Э. Рауса появился в 1877 г. В нем изложено в общем виде составление дифференциальных уравнений возмущенного движения, т. е. уравнений для отклонений координат системы от их значений, соответствующих заданному состоянию движения. Эти отклонения, в трактовке Рауса, вызываются мгновенными возмущениями (по сути это возмущения начальных данных). В первую очередь, как орудие исследования возмущенного движения, рассматривается метод линеаризации (теория малых колебаний). Раус переоткрывает результаты Вейерштрасса и Сомова и дает критерий для суждения о знаках вещественных частей корней характеристического уравнения. Определение устойчивости у Рауса остается в достаточной мере расплывчатым. Оно связано с понятием малости возмущений, а малы те величины, для которых возможно найти такое число, численно большее, чем каждая из них, и такое, что квадратом его можно пренебречь . Как выражается Раус, это число есть стан-  [c.121]

Исследуется поведение во времени двумерных течений невязкого газа с отличными от нуля нормальной к плоскости независимых переменных компонентной скорости и параллельными этой плоскости компонентами вихря. Уравнения таких течений образуют две подсистемы. Первая описывает плоскопараллельное ( первичное") течение без третьей комноненты скорости и не зависит от второй, состоящей из одного уравнения для третьей комноненты скорости и определяющей вторичный"поток. Достаточно полный анализ течений удается провести без численного интегрирования, вносящего неизбежные погрешности, и линеаризации, которые в той или иной степени привлекаются при изучении эволюции вихревых структур [1-6]. В то же время простота исследуемых течений позволяет легко демонстрировать, но-видимому, весьма общие, хотя и не очевидные свойства такой детерминированной"системы, как система уравнений Эйлера. К подобным свойствам относятся неограниченный рост завихренности и плохая прогнозируемость "[4]. Перечисленные свойства, проявляющиеся при сколь угодно гладких начальных распределениях, связаны с кинематикой жидких линий.  [c.710]

Дифференциальные уравнения системы (9) в общем случае нелинейны. Однако при удачно выбранной замене переменных они, вероятно, могут быть сведены к системе обобщенных уравнений Хилла. Указанное требует специального мате1матического исследования, что не входит в задачу настоящей работы. Очевидно, что система (9) неразрешима в элементарных функциях стандартными способами. Между тем, необходимое рещение может быть получено с помощью ЭЦВМ численными методами. Другой путь — линеаризация (9).  [c.325]

Решение системы нелинейных дифференциальных уравнений в частных производных классическими способами, т. е. интегрированием с соответствующими граничными условиями, для большинства основных задач невозможно. Поэтому для приведения непрерывной задачи к дискретному виду и ее решения требуются методы численного анализа. Значения неизвестных определяются на большом, но конечном числе узлов как в пространстве, так и по времени, чтобы получалось по возможности точное решение уравнений. В программе FIELDAY используются метод конечных элементов для уравнения Пуассона комбинированный метод (конечно-разностный/ко-нечных элементов) для уравнений непрерывности [16.10]. Скорость изменения плотности подвижных носителей во времени аппроксимируется по методу Эйлера. Полученные уравнения линеаризуются затем одним из двух методов. Первый предусматривает разделение системы трех дискретных уравнений уравнения решаются последовательно [16.11]. Применение второго, более сложного метода подразумевает одновременное решение всех уравнений с линеаризацией по методу Ньютона [16.12, 16.13]. Оба метода приводят к матричным уравнениям большой размерности с сильно разреженными матрицами для получения окончательного результата эти уравнения необходимо решать многократно.  [c.464]

Расчеты периодических колебаний в существенно нелинейных неконсервативных системах можно проводить 1) методом гармонической линеаризации (гл. 12), если есть основание полагать, что искомые колебания близки к синусоидальным х(/) у4р+у48тш/ 2) на основе теории бифуркации рождения предельного цикла, если в пространстве параметров системы рабочие значения параметров располагаются вблизи границы области устойчивости (гл. 11) >. В остальных случаях приходится прибегать либо к обобщению метода гармонической линеаризации, представляя искомое решение отрезком ряда Фурье из П слагаемых, либо к непосредственному использованию численных методов.  [c.147]


Смотреть страницы где упоминается термин Линеаризация системы для численного : [c.215]    [c.309]    [c.504]    [c.154]   
Методы и задачи тепломассообмена (1987) -- [ c.0 ]



ПОИСК



Линеаризация

Линеаризация системы

Линеаризация системы для численного счета



© 2025 Mash-xxl.info Реклама на сайте