Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кручение балок чистое

Чисто изгибные и чисто крутильные колебания балки имеют место только в том случае, если в балке совмещены оси центров тяжести и центров жесткости. Если же такого совмещения нет, то колебания будут обязательно совместными, т. е. изгибные колеба ния вызовут кручение балки, а крутильные колебания, в свою очередь, вызовут изгиб балки. В этом случае дифференциальные уравнения собственных колебаний в пустоте балки переменного сечения имеют следующий вид  [c.206]


У верхней грани бетон находится в условиях сложного напряженного состояния, так как кроме нормальных сжимающих напряжений от изгиба здесь действуют еще и касательные напряжения от кручения. Исследования железобетонных элементов при изгибе с кручением и чистом кручении [22], [78] показали, что в предельном состоянии напряженное состояние сжатой части сечения довольно однородно вследствие пластических деформаций бетона и перераспределения напряжений. Поэтому сжатая зона бетона располагается в вертикальной плоскости, наклоненной под некоторым углом к продольной оси балки. Величина этого угла зависит от многих факторов отношения крутящего и изгибающего моментов г]) = = MJM , формы и размеров поперечного сечения, величины и характера предварительного напряжения продольной арматуры,  [c.204]

Центр сдвига. При рассмотрении чистого изгиба (см. стр. Ш5) было показано, что плоскость изогнутой оси совпадает с плоскостью изгибающих пар при условии, что эти пары действуют в одной из двух главных плоскостей изгиба. В случае изгиба балки копланарной системой поперечных сил задача становится более сложной. Если главная плоскость, в которой действуют силы, не является плоскостью симметрии балки, то такой изгиб обычно сопровождается кручением балки. В последующем изложении будет показано, как можно исключить это кручение и получить простой изгиб надлеЖа щим перемещением плоскости действующих сил параллельно самой себе.  [c.200]

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки. Следовательно, при чистом изгибе, как и при растяжении (сжатии) и кручении круглых стержней, будет справедлива гипотеза плоских сечений.  [c.241]

Двутавровая балка, шарнирно-опертая на концах, нагружена равномерно распределенными крутящими моментами т = = 1 кН-м/м и равномерно распределенной нагрузкой = 50 кН/м, которая расположена в главной плоскости балки zOy (рис. а). Вычислить наибольшие напряжения а , Тщ и Тц и определить наибольшие нормальные и касательные напряжения и х у, возникающие при поперечном изгибе построить эпюры О ш) Тщ, СТ И а = + а . Заданы наибольшие главные секториальные координаты в точках / и 3 профиля соо = 137,9 см и в точках 2 и 4 — о)о = —137,9 см (см. рис. а) секториальный момент инерции Jo> = 247 210 см геометрическая характеристика сечения при чистом кручении = = 96,55 см изгибно-крутильная характеристика k = 0,0122 m момент инерции = 23 850 см статический момент полусечения относительно нейтральной оси = 718,4 см . Размеры сечения на рис. а даны в сантиметрах.  [c.234]


Пример 12.2. Для тонкостенного стержня, изображенного на рис. 12.3, написать уравнения угла закручивания, момента чистого кручения, бимомента и изгибно-крутильного момента. Построить эпюры М , М , УИ ., В и эпюры поперечных сил и изгибающих моментов. Построить эпюры напряжений и а для опасного сечения балки. Р = 10 т <7 = 10 т/м = 10 т м е = = 0,1 лс, / = 6 л.  [c.343]

Определение главных напряжений. Наиболее просто определить главные напряжения у нейтрального слоя балки. В нейтральном слое нормальные напряжения в поперечном сечении балки равны нулю, и стенка балки здесь находится в состоянии чистого сдвига, которое рассмотрено нами при исследовании кручения в работе 11.  [c.83]

Примечание. С — жесткость при чистом кручении D — жесткость при стеснен-но.м кручении / — длина балки.  [c.329]

Так, более подробно разобраны понятия тензоров напряжений и деформаций и их разложение на шаровой тензор и девиатор, добавлен закон Гука в тензорной форме. В новой, V главе рассматриваются простейшие задачи теории упругости чистый изгиб прямого призматического стержня и кручение круглого стержня постоянного сечения. В главе VI добавлен расчет балки-стенки. Далее добавлены следую-ш,ие параграфы Понятие о действии сосредоточенной силы на упругое полупространство , Понятие о расчете гибких пластинок , Понятие о расчете гибких пологих оболочек . Переработан раздел о математическом аппарате теории пластичности, добавлено понятие о теории пластического течения, дано понятие о несущей способности балок и плит на основе модели жесткопластического материала. Вновь написаны главы ХП1 и XIV об основных- зависимостях теории ползучести и даны простейшие задачи теории ползучести.  [c.3]

Константы Вз и Вз отвечают поперечному изгибу оболочки-балки силами, направленными по осям t/ и z соответственно, а константы Вг и Вз — чистому изгибу оболочки-балки краевыми моментами с векторами, направленными по осям Z VI у соответственно. Таким образом, из всех элементарных напряженных состояний оболочки-балки отсутствуют напряженные состояния, соответствующие растяжению и кручению. Первому из них отвечает интеграл вида  [c.357]

В задаче об изгибе балки ( 25) напряжение в предельном состоянии испытывает при переходе через нейтральную плоскость скачок от -1-0 к —о . Для задачи чисто пластического кручения также характерно наличие линий разрыва, вдоль которых касатель-  [c.159]

Если бы мы принимали во внимание только вертикальную стенку балки, то предположения предыдущего параграфа были бы выполнены полностью. Но не принимать во внимание горизонтальных полок нельзя, так как они в рассматриваемом явлении играют существенную роль. Мы на основании предыдущего знаем, что при переходе плоской формы равновесия в искривленную кроме изгиба приходится учитывать и кручение. В шестой главе мы уже детально занимались кручением прокатных балок и в 70 нашли удобное приближенное решение для двутавровой балки. Но в задаче об устойчивости плоской формы равновесия при изгибе кручение следует рассматривать совершающимся при других граничных условиях на концах балки, чем в случае чистого кручения. Как и в предыдущем параграфе, мы рассмотрим случай балки, защемленной одним концом. Если бы на свободном конце такой балки действовал крутящий момент, ось которого совпадала бы с осью балки, то мы не получили бы случая чистого кручения, так как на защемленном конце поперечное сечение вынуждено оставаться плоским, в то время как в случае чистого кручения оно перекашивалось бы ). Чтобы осуществить такие граничные условия в точности, можно поступить так воспрепятствовать повороту обоих концов балки около оси ее, а к среднему сечению приложить некоторый момент. Тогда вследствие симметрии среднее поперечное сечение будет оставаться плоским. Само собой разумеется, что сказанное относится к балке любого сечения. В предыдущем параграфе в случае прямоугольного сечения мы это обстоятельство оставляли без внимания, так как там оно большого влияния не оказывало. В случае же двутавровой балки дело обстоит иначе. Сохранение плоской формы концевого сечения имеет здесь потому большее влияние на угол закручивания балки, который получается от действия на свободный конец крутящего момента, что в силу рассматриваемого граничного условия горизонтальные полки, особенно вблизи места защемления, работают на изгиб. Подобный случай кручения стержня эллиптического сечения при  [c.335]


Произведенный анализ- напряженного состояния изогнутой балки прямоугольного сечения показывает, что различные ее точки испытывают напряженные состояния разных видов. Нейтральный слой работает на чистый сдвиг, наиболее удаленные от него слои — на простое растяжение или сжатие, а в промежуточных слоях наблюдаются всевозможные переходные состояния от растяжения (сжатия) к чистому сдвигу, которые можно изобразить целой серией кругов Мора (рис. 180). Полюсы этих кругов непрерывно перемещаются от левого края круга (растянутая кромка) через центр (нейтральный слой) до правого края (сжатая кромка). Таким образом, при изгибе (в отличие от растяжения или кручения) материал испытывает не одно напряженное состояние, а совокупность различных напряженных состояний.  [c.174]

Уравнение (V.20) устанавливает связь между хрупкой прочностью при чистом изгибе балки прямоугольного поперечного сечения и кручении круглого стержня. Надо полагать, что при переходе к одноосному растяжению и чистому сдвигу, которые можно рассматривать как предельные случаи изгиба и кручения, когда  [c.144]

Вместо жёсткости балки ЯУ, в формулу (21.22) будут подставляться — при растяжении или сжатии, ОР — при чистом сдвиге и — при кручении.  [c.418]

Сен-Венан нашел способ определения положения нейтральной оси сечения при косом изгибе решил задачу определения больших прогибов консоли (в случае неприменимости приближенного дифференциального уравнения изогнутой оси) решил задачу изгиба балки, материал которой не следует закону Гука исследовал изгиб кривых стержней плоских и двоякой кривизны вывел формулу для определения продольной деформации винтовых пружин провел дальнейшую разработку теории кручения призматических стержней развил вторую теорию прочности дал расчетную формулу для валов, работающих в условиях совместного действия кручения и изгиба показал, что в частном случае плоского напряженного состояния при аг = —вызывается чистый  [c.562]

Допускаемое напряжение при С. для таких материалов, как железо, сталь, медь, обыкновенно принимается равным 0,8 Ез, где Ед— допускаемое напряжение на растяжение лучше согласуются с опытными данными величины 0,5 г, полученные на основании т. н. 3-й теории прочности (см.), по которой разрушение тел зависит но от нормальных, а от касательных напряжений. Явление сдвига в чистом виде встречает-ся в кручении (см.), а в более сложной форме—в изгибе, где кроме основных нормальных напряжений, вызываемых изгибающим моментом, возникают касательные напряжения от действия перерезывающей силы они малы в длинных балках и довольно заметны в коротких (см. Изгиб). Многие детали инженерных сооружений испытывают касательные напряжения. Так, соединительный болт (фиг. 3) под действием растягивающей силы Р может разрушиться от касательных напряжений в сечениях аЬ и d, Такой тип разрушения называется срезыванием. При расчете такого  [c.222]

При кручении коробчатых балок прямоугольного (неквадратного) сечения также возникают депланации точек поперечных сечений. В тех случаях, когда отсутствует стеснение депланаций, в таких балках возникают лишь касательные напряжения чистого кручения. При стеснении депланации в сечениях, расположенных около места стеснения, возникают касательные и нормальные напряжения стесненного кручения. Влияние стеснения депланации при кручении так же, как и при изгибе, удобно учитывать коэффициентом перенапряжения. В таком случае касательное напряжение стесненного кручения  [c.255]

На рис. 8.34 приведены примерные эпюры напряжений кручения в поясах и стенках коробчатой балки касательных напряжений чистого кручения (а), касательных напряжений стесненного кручения (б) и нормальных напряжений стесненного кручения (в). Касательное напряжение чистого кручения при б1>б2 получается большим в стенке (Т2>Т1), а касательное напряжение стесненного кручения при Н>В получается большим в поясе ( Ссг Тсз).  [c.255]

Наконец, результаты испытаний последних двух образцов явно свидетельствуют о том, что наличие уголков жесткости почти не влияет на жесткость стержня при чистом кручении. Этот факт можно объяснить тем, что уголки жесткости в клепаных балках в отличие от сварных балок не соединены с полками, а потому при закручивании они не оказывают никакого препятствия свободной депланации полок и не увеличивают сопротивляемости стержня кручению.  [c.40]

Рассматривая эпюры касательных напряжений при изгибе двутавровой балки, мы наблюдаем, что максимальные касательные напряжения возникают посредине стенки. При совместном действии изгиба и кручения в наружных точках -посредине стенки к напряжениям от изгиба добавляются максимальные касательные напряжения т р, соответствующие чистому кручению что же касается секториальных касательных напряжений т , то в этом месте сечения, как видно из эпюры на рис. 125, они равны нулю.  [c.180]

Теории кручения и чистого изгиба Сен-Венана вошли в технические руководства, но во многих современных учебниках по прикладной механике теория изгиба поперечной силой излагается по методу, предложенному Журавским S3) и Ранкином (Rankine) и развитом в дальнейшем Грасго-фом (Grashof) s ). Компоненты напряжения, определяемые по этому методу, не удовлетворяют условиям, которые необходимы для того, чтобы они могли соответствовать каким-либо возможным смеш,ениям. Однако распределение напряжений, определяемое по этому методу, мало отличается от истинного в случае балки, толщина которой мала в сравнении с ее шириной 8 )  [c.35]


В последующих же главах во втором томе, в частности в главах XI, XII, XIII, посвященных деформации стержней, аппарат теории сплошных сред (главным образом теория упругости) играет уже чисто служебную роль, как рабочий инструмент, с одной стороны, для оценки гипотез, используемых в элементарной теории, и границ применимости последней, а с другой стороны, для решения тех задач, которые не могут быть решены средствами элементарной теории. К числу последних относятся кручение призматических стержней некруглого поперечного сечения, свободное кручение валов переменного вдоль оси диаметра, определение полного касательного напряжения при поперечном изгибе балки, определение положения центра изгиба в поперечном сечении массивных стержней и др.  [c.13]

В главе XII, посвященной изгибу, будут более точно указаны условия его возникиовеиия. Приведенные здесь условия возникновения изгиба без одновременного кручения справедливы для балки, поперечное сечение которой имеет две оси симметрии. Изгиб обычно сопровождается и сдвигом, различным у разных элементов балки. Исключение составляет изгиб стержня моментами, приложенными к его концам. В этом случае сдвига нет, а изгиб называется чистым (рис. 1.8,з). Чистым сдвигом называется деформация, которую испытывает прямоугольный параллелепипед, по четырем граням которого, перпендикулярным одной и той же плоскости, действуют касательные силы, равномерно распределенные по граням, имеющие одинаковую интенсивность и направленные так, как это показано на рис. 1.8, U.  [c.36]

Установка для испытания на ползучесть трубчатых образцов при изгибе и кручении. Одновременное нагружение образца изгибающим и крутящим моментами обеспечивается тем, что оси нагружающей балки 3 и образца J скрещиваются под некоторым углом (рис. 36). Рычаги 4 расположены под прямым углом к оси образца. Перемещающиеся опоры 2 дают возможность получать различный по величине изгибающий момент, в том числе и равный нулю. Изменение плеча рычага 4 позволяет регулировать величину крутящего момента Мкр, причем в случае приложения нагрузки в точке рычага, лежащей на оси образца (/i = 0), Мкр = 0. Таким образом, изменяя точку приложения нагрузки и места расположения опор, можно получать три вида нагружения чистый изгиб, чистое кручение и комбинированное нагружение с различными отношениями. Мкр//Иизг. В установке опоры выполнены в виде шариков, уложенных в полукольцевую канавку. Это дает возможность контакта опоры и захвата по линии окружности, что очень важно для создания изгибающего момента. В то же время при таком исполнении опор захват легко вращается, не препятствуя передаче крутящего момента на образец.  [c.42]

Испытания на изгиб и кручение часто более удобны для определения реологических постоянных, чем испытания на простое растяжение. При реологических испытаниях наблюдаемыми кинематическими величинами редко являются непосредственно деформация или скорость деформации. Чаще это смещение или скорость смещения. При простом растяжении, где деформация является чистой, полное смещение есть сумма элементарных смещений. При изгибе стержня, где имеет место новорот элементов, смещения возрастают по длине стержня, как у вращающейся стрелки какого-либо измерительного устройства. Возьмем, к примеру, в одну руку конец небольшого стержня из какого-либо упругого материала и приложим второй рукой к другому концу некоторую силу. Если сила будет растягивающей в направлении оси стержня, то перемещения свободного конца будут едва заметны. Если сила приложена ла свободном конце в направлении, перпендикулярном к оси, то в этом случае перемещения будут заметны при условии, что стержень не слишком жесткий. Чтобы сделать этот пример более определенным, предположим, что стержень изготовлен из мягкой стали с квадратным поперечным сечением площадью в 1 мм и длиной 10 см. Прикладывая растягивающую силу в 100 г, получили относительное удлинение, согласно равенству (III, т), ei = = 3 10 см и, следовательно, в соответствии с формулой (III. 9) перемещение свободного конца равно Ai = 3-10 см. Прикладывая ту же силу в направлении, перпендикулярном к оси, найдем, что перемещение будет таким же, как в центре опертой по обоим концам балки двойной длины при приложении удвоенной силы. Это перемещение в соответствии с формулой (IV. 25) равно  [c.92]

Следующий раздел книги Клебш посвящает задаче Сен-Ве-нана. Он опускает соображения физического характера, введенные Сен-Венаном при использовании им здесь полуобратного метода, и ставит проблему в чисто математической формулировке найти силы, которые должны быть приложены к торцам призматического бруса, если объемные силы отсутствуют, по боковой поверхности бруса не приложено никаких сил, но между продольными волокнами действуют лишь касательные напряжения в осевом направлении. Таким путем Клебш получает возможность задачи осевого растяжения, кручения и изгиба рассматривать и решать как единую задачу. Подобная трактовка вопроса принимает более сложный вид, чем у Сен-Венана, поскольку при этом подходе опускается физическая сторона явления и решение получается слишком абстрактным, чтобы заинтересовать инженера. Клебш проходит мимо тех многочисленных приложений, на которых останавливается Сен-Венан, демонстрирующий эффективность своего метода на балках различных поперечных сечений. В качестве примеров Клебш приводит случаи сплошного эллиптического бруса и полого бруса, поперечное сечение которого образовано двумя конфокальными эллипсами. Почти никакого практического интереса эти задачи не представляют, но Клебш обращается к ним для того, чтобы впервые ввести новый прием математической трактовки, а именно, использовать сопряженные функции в решении задачи Сен-Венана.  [c.310]

Балка, формы поперечного сечения 150, 153 —, чистый изгиб 145 —, см. также Прогибы балок, Шраз-резные балки, Статически неопределимые балки Бетон, свойства 16, 20, 35 Бетти — Рэлея теорема взаимности 453 Биметаллические балки 181 — стержни, кручение 105  [c.657]

В качестве иллюстрации применения энергетического варианта теории ползучести для описания процесса ползучести и оценки длительной прочности приведем результаты расчета изменения кривизны %=7 t) прямоугольной балки из сплава Д16Т, изгибаемой чистым моментом, при температуре 250° С (рис. 4.12) [51]. Аналогичные результаты получены при знакопеременном изгибе, при кручении толстостенных трубок и сплошных стержней, а также при.сложном нагружении (при действии крутящего момента и осевых усилий [8, 51]). На рис. 4.13, б приведены экспериментальные и расчетные зависимости. от времени погонного угла закручивания при знакопеременном кручении стержней из сплава Д16Т при температуре 250 С с продолжительностями полуцикла 24 и 96 ч.  [c.89]

Справедливость неравенства (2) проверена на примерах чистого изгиба прямоугольной балки, где обобщенной силой является изгибающий момент Qh t = изг, и кручения сплошного цилиндрического стержня, где Qh t = крутящий-  [c.315]

При чистом изгибе балки двутаврового сечения решение для критического изгибающего момента, учитывающее свободное и изтибное кручение, имеет вид  [c.440]

Малый параметр может быть введен в теории пластичности различным образом. А. А. Ильюшин [58] использовал в качестве малого параметра величину, обратную модулю объемного сжатия, и исследовал нормальные и касательные напряжения при чистом изгибе балки за пределом упругости. Отметим, что вопросы, связанные с линеаризацией по коэффициенту Пуассона, рассмотрены ниже в Добавлении. Методом малого параметра, характеризующего геометрию тел, Л. М. Качанов [63, 64] рассмотрел кручение круглых стержней переменного диаметра и ползучесть овальных и разностенных труб. В работе [30] малый параметр характеризует различие между плоским деформированным и осесимметричным состояниями. Б. А. Друянов [13, 14] при помощи метода малого параметра учел неоднородность пластического материала. Здесь малый параметр характеризовал возмущение условия пластичности. Свойства пластического материала характеризует малый параметр в работах Л. А. Толоконникова и его сотрудников [76—78], а также в [83].  [c.9]


Это значит, что в неразрезных тонкостенных балках, для которых жесткость при чистом кручении GJ можно принять равной нулю, бимоментные и моментные фокусные точки совпадают.  [c.321]


Смотреть страницы где упоминается термин Кручение балок чистое : [c.448]    [c.164]    [c.280]    [c.573]    [c.329]    [c.34]   
Справочник машиностроителя Том 3 (1951) -- [ c.40 ]



ПОИСК



Балки кручение

Кручение чистое



© 2025 Mash-xxl.info Реклама на сайте