Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйнштейн волны

На основании соотношения Эйнштейна для энергии фотона может быть получено уравнение для выражения зависимости длины волны от массы фотона  [c.74]

Применяя соотношение Эйнштейна и гипотезу де Бройля к волнам частиц, получаем  [c.75]

Линия спектра поглощения, наблюдаемая экспериментально, сочетается с некоторым количеством энергии, эквивалентным разности между соседними энергетическими уровнями. Длина волны, соответствующая каждой линии, выражается уравнением Эйнштейна  [c.89]


Рассеяние света в жидкостях. В 1910 г. А. Эйнштейн, исходя из идеи Смолуховского, дал количественную термодинамическую теорию рассеяния света в жидкости, учитывающую ее сжимаемость. Эйнштейн установил что интенсивность рассеянного света определяется кроме длины падающей световой волны абсолютной температурой и физическими постоянными среды — сжимаемостью, зависимостью оптической диэлектрической постоянной (обусловленной только световым полем, т. е. квадратом показателя преломления), от плотности. Эйнштейн, полагая, что рассеивающий объем и имеет форму куба, представляя флуктуацию оптической диэлектрической постоянной в виде  [c.318]

Рассмотрим (как это делается в статье Эйнштейна по электродинамике) пакет, или группу, плоских световых волн. Предположим, что пакет обладает энергией е и движется в положительном направлении х в системе отсчета S. По измерениям, произведенным в системе S, движущейся со скоростью Vx относительно S, волновой пакет имеет энергию  [c.396]

Установив противоречие между уравнениями преобразования Галилея и экспериментальными постулатами, Эйнштейн проанализировал представление о способах измерения пространства и времени. По отношению к измерению пространства классическая механика пользовалась вполне реальными приемами сравнения измеряемых величин с образцовым эталоном (например, сравнение с эталонным метром или с длиной световой волны), причем возможность однозначных измерений обеспечивалась существованием жестких тел (не изменяемых при определенных условиях температуры и т. д.).  [c.455]

Понятно также, что более короткие волны должны быть химически более активными. Так как поглощение одного фотона должно по закону Эйнштейна вести к превращению одной молекулы, то активными могут быть лишь те волны, для которых Ну больше энергии активации О, необходимой для первичного процесса (например, диссоциации поглотившей свет молекулы). Так как вероятность поглощения одной молекулой одновременно двух или большего числа квантов крайне мала, то условие, определяющее предельную частоту активного света, записывается в виде  [c.668]

Волны, испущенные в результате вынужденных переходов, обладают, как показал Эйнштейн, следующей важной особенностью их частота, фаза, направление распространения и состояние поляризации такие же, как у излучения, вызвавшего переходы. Другими словами, индуцированно испущенные фотоны неотличимы от фотонов, падающих на атомы, и роль индуцированного испускания сводится только к увеличению амплитуды поля.  [c.739]


Возбуждения значительно меньшей энергии образуются в том случае, когда все спины повертываются лишь частично. Такая спиновая волна схематически изображена на рис. 10.12. Из рисунка видно, что спиновые волны представляют собой колебания относительной ориентации спинов в кристалле. Они сходны с упругими волнами в кристалле (фононами). Спиновые волны также квантованы. Квант энергии спиновой волны получил название магнон. При повышении температуры число магнонов возрастает, а результирующий магнитный момент ферромагнетика соответственно уменьшается. При малой плотности магнонов взаимодействие их друг с другом можно не учитывать и, следовательно, магноны можно считать идеальным газом. Газ магнонов, так же как и газ фононов, подчиняется. статистике Бозе — Эйнштейна. Если известны  [c.340]

Основные выводы, вытекающие из теории Эйнштейна, совпадают с результатами теории Рэлея, так как флуктуационные неоднородности считаются малыми по сравнению с длиной волны. В первую очередь следует отметить, что в молекулярном рассеянии интенсивность рассеянного света обратно пропорциональна длине волны в четвертой степени (/ 1/Я ). Этим и объясняется  [c.119]

Мандельштам предположил, что флуктуации плотности в кристаллах и жидкостях, о которых идет речь в теории рассеяния Эйнштейна, в действительности являются реальными акустическими волнами Дебая. Иными словами, флуктуации плотности в кристалле имеют периодичность, определяемую частотами этих волн. Мы можем рассматривать данные волны как стоячие или как бегущие. В первом случае кристалл можно представить как пространственную дифракционную решетку, состоящую из системы сгущений и разрежений плотности (система стоячих воли), и рассеяние света на такой решетке должно быть подобным рассеянию рентгеновских лучей обычной кристаллической решеткой. Различие заключается в том, что рассеяние света происходит па периодических сгущениях и разрежениях плотности, а рассеяние рентгеновских лучей — на периодически расположенных атомах, ионах или молекулах. Дебаевский спектр упругих волн включает частоты 10 °—10 Гц, т. е. относится к гиперзвуковой области.  [c.122]

Волны де Бройля. Условие квантования электронных орбит Бора (112) стало предметом исследований. Наибольшую по глубине мысли идею предложил в 1924 г. молодой французский физик Л. де Бройль Появление целых чисел в законах внутриатомного квантованного движения электронов, как мне казалось, указывает на существование для этих движений интерференции, аналогичной интерференции, встречающейся во всех разделах волновой теории... [87]. Впервые к электрону, который до этого всеми отождествлялся с частицей, применялись волновые представления. Предло сение де Бройля по своей революционности не уступало многим нововведениям Эйнштейна. Понятие корпускулярно-волнового дуализма переносится де Бройлем с фото-  [c.165]

Проблемы теплового излучения 36 2.2. Формула Планка 42 2.3. Световые кванты Эйнштейна 46 2.4. Вывод формул Рэлея -Джинса и Планка по современной теории (переход от световых волн к фотонам) 52  [c.15]

В квазиклассическом приближении, когда все величины медленно изменяются на расстояниях порядка длины волны частицы (т. е. когда состояние частицы определяется координатой и импульсом, но ее импульс и энергия дискретны, частицы квантово неразличимы и удовлетворяют принципу Паули), можно пользоваться кинетическим уравнением Больцмана. Как мы увидим в следующей главе, учет квантовых свойств частиц в этом случае состоит в использовании для приближенного вычисления члена столкновений равновесной функции распределения Ферми — Дирака или Бозе — Эйнштейна.  [c.135]

В этой работе Эйнштейн писал, что ему не удалось разъяснить этот парадокс. Однако в следующем сообщении по квантовой теории идеального газа ои отметил, что упомянутый парадокс обусловлен волновыми свойствами микрочастиц. Как известно, интерференция волн происходит только при условии полной тождественности этих волн и скорости их распространения. Волны де Бройля удовлетворяют этому условию только в том случае, если они принадлежат атомам тождественной массы и одинаковой скорости. Таким образом, интерференционное взаимодействие наблюдается только между тождественными атомами и исчезает даже при очень малом отличии природы смешиваемых газов. В этом коренится, по Эйнштейну, физическая причина обнаруженного парадокса. Впоследствии И. Е. Тамм использовал ту же идею интерференции волн де Бройля для разъяснения парадокса Гиббса. 4 несколько позднее  [c.324]


Свет, как известно, представляет собой электромагнитные волны. Однако в отличие от классических представлении, широко распространенных в конце XIX в., энергия этих волн не распределена равномерно по фронту волны, а сконцентрирована в форме пучков или пакетов, которые стали называть фотонами. Именно понятие фотона позволило Эйнштейну найти объяснение явлению фотоэффекта.  [c.95]

Накопленные в последние годы экспериментальные доказательства, по-видимому, решительно свидетельствуют в пользу действительного существования световых квантов. Кажется все более и более правдоподобным, что фотоэлектрический эффект, являющийся основным механизмом обмена энергией между излучением и материей, всегда подчиняется эйнштейновскому закону фотоэффекта. Опыты по фотографическим действиям света и недавние результаты А. Комптона об изменении длины волны рассеянных рентгеновских лучей было бы трудно объяснить без использования представления о световых квантах. С теоретической стороны представления Бора, которые подтверждаются столь многими экспериментальными доказательствами, основаны на том постулате, что атомы могут испускать или поглощать лучистую энергию частоты V только ограниченными количествами, равными /г к теория Эйнштейна флуктуаций энергии в черном излучении также с необходимостью приводит к подобным представлениям.  [c.631]

В настоящей статье принято, что свет состоит по существу из световых квантов, каждый из которых обладает одной и той же чрезвычайно малой массой. Математически показано, что преобразование Лоренца—Эйнштейна совместно с квантовыми соотношениями приводит к необходимости связать движение тела и распространение волны и что это представление дает физическую интерпретацию аналитических условий устойчивости Бора. Дифракция является, по-видимому, совместимой с обобщением ньютоновской динамики. Далее, оказывается возможным сохранить как корпускулярный, так и волновой характер света и дать с помощью гипотез, подсказываемых электромагнитной теорией и принципом соответствия, правдоподобное объяснение когерентности и интерференционных полос. Наконец, показано, почему кванты должны входить в динамическую теорию газов и почему -закон Планка является предельной формой закона Максвелла для газа световых квантов.  [c.639]

Понятие фазовой волны дает нам возможность объяснить условие Эйнштейна. Из рассуждений второй главы следует, что траектория движущегося тела является одним из лучей его фазовой волны последняя должна про-  [c.663]

Все же может быть позволено сделать несколько замечаний об истолковании приведенных положений. Прежде всего нельзя не упомянуть, что основным исходным толчком, приведшим к появлению приведенных здесь рассуждений, была диссертация де Бройля ), содержащая много глубоких идей, а также размышлений о пространственном распределении фазовых волн , которым, как показано де Бройлем, всякий раз соответствует периодическое или квазипериодическое движение электрона, если только эти волны укладываются на траектории целое число раз. Главное отличие от теории де Бройля, в которой говорится о прямолинейно распространяющейся волне, заключается здесь в том, что мы рассматриваем, если использовать волновую трактовку, стоячие собственные колебания. Я недавно показал ), что, рассматривая подобные стоячие собственные колебания и пользуясь законом де Бройля дисперсии фазовых волн, можно обосновать теорию газов Эйнштейна. Предыдущее изложение является в свою очередь как бы обобщением рассуждений, приведенных в связи с упомянутой газовой моделью.  [c.676]

Граничные задачи О. д. с. Простейший пример — задача об отражении эл.-магн. волн от движущегося зеркала, впервые решённая Эйнштейном в 1905 методами частной теории относительности. Если волна вида (1) с амплитудой Ед, волновым вектором кд и частотой сОр падает на движущееся ей навстречу плоское идеально отражающее зеркало со скоростью , направленной по нормали к поверхности зеркала, то отражённая от него волна будет иметь другие частоту ( 1),  [c.423]

Соотношения, связывающие волновые характеристики (частота v и длина волны X) с корпускулярными (энергия и импульс р), установленные Эйнштейном (1905 г.), были обобщены Луи де Бройлем (1924 г.) на частицы с отличной от нуля массой покоя . Тем самым была предложена гипотеза, согласно которой свойство дуализма присуще не только свету, но материи вообще. Экспериментальное обнаружение явления дифракции электронов (Дэвиссон и Джермер в 1927 г., Тартаковский и Томсон в 1928 г.) послужило подтверждением гипотезы де Бройля.  [c.338]

Разберемся подробнее в этом важном вопросе. Соотношение Annl mn указывает, что отношение коэффициентов Эйнштейна для спонтанного и вынужденного переходов при переходе от видимой части спектра (л 10" см) к метровым радиоволнам должно уменьшиться примерно в 10 раз. Поэтому не должна удивлять разница в механизме процессов излучения для этих двух столь различных диапазонов спектра электромагнитных волн.  [c.429]

Уравнение Эйнштейна (177.1) (его можно также записать в виде = h (v — Vq) = eV), подтвержденное опытами Милликена, подвергалось и в дальнейшем разнообразным экспериментальным проверкам. В частности, частота падающего света варьировалась в очень широких пределах — от видимого света до рейтгеновских лучей, и во всем интервале опыт оказался в превосходном согласии с теорией. В опытах с рентгеновскими лучами проверка упрощается благодаря тому, что v очень велико по сравнению с Vq. Поэтому соотношение Эйнштейна принимает вид hv — eV и позволяет определить V, если измер ёно V. Таким приемом пользуются даже для определения длины волны очень жестких у-лучей, для которых метод дифракции на кристаллах невозможно осуществить с достаточной точностью из-за малости соответствующей длины волны.  [c.640]

Из условия пространственной синфазности (222.4) видно, что фазы ф/ волн SJ должны изменяться в зависимости от положения излучающегося атома по такому же закону, по которому изменяется фаза в световой волне. Это означает, что агентом, фазирующим излучение атомов, должна быть световая же волна. Вместе с тем, в гл. XXXIII указывалось, что для микроскопического описания спектральных свойств теплового излучения А. Эйнштейн ввел представление о вынужденном испускании. Одно из основных свойств вынужденного испускания состоит в том, что волны, излучаемые атомом в этом процессе, имеет такую же частоту и такую же фазу, что и действующая на атом волна. Благодаря указанному свойству, как будет показано в 223, фазнровка излучения удаленных атомов может обеспечиваться вынужденным испусканием.  [c.774]


Кроме спонтанного испускания и поглощения Эйнштейн ввел представление о вынужденном (индуцированном или стимулированном) испускании. Под действием внешнего электромагнитного поля атомы, находящиеся в возбужденном состоянии (например, на уровне 2), могут согласно Эйнштейну либо поглощать энергию, переходя на более высокий уровень, либо, наоборот, отдавать энергию к = Ё2— ь возвращаясь на более низкий уровень энергии. Такие переходы являются вынужденными и обусловливают вынужденное испускание. Вероятность этих переходов в единицу времени есть 2lWv Величина Б21 называется коэффициентом Эйнштейна для вынужденного испускания. Если внешнее поле отсутствует (и = 0), то вынужденные переходы не происходят. Таким образом, внешнее электромагнитное поле вызывает переходы, сопровождающиеся как поглощением, так и испусканием энергии. Следует отметить, что существование вынужденного испускания не противоречит и классической теории. Согласно законам электродинамики электромагнитная волна, падающая на колеблющийся диполь, в зависимости от соотношения фаз их колебаний может усиливать или тормозить колебания диполя. Иными словами, излучение, падающее на атом, может заставлять последний не только поглощать, но и испускать соответствующие кванты энергии.  [c.143]

Так, Планк предполагал, что излучение только испускается порциями. Он связывал это с особенностями механизма испускания излучения атомами и молекулами вещества. Само же излучение существовало, как полагал Планк, не в виде квантов, а в виде непрерывной сущности , в виде непрерывных электромагнитных волн в пространстве. Однако такие представления казались не вполне состоятельными, так как в этом случае непрерывная световая энергия должна была бы где-то ждать возможности порциоиного поглощения атомами вещества иначе говоря, непрерывная энергия должна была бы каким-то образом разбиваться на кванты перед поглощением (такое возражение выдвигал Пуанкаре). Под влиянием подобной критики Планк выдвинул так называемую гибридную гипотезу, согласно которой излучение испускается квантами, а поглощается непрерывно. Однако допущение столь разных физических механизмов испускания и поглощения излучения не могло не казаться довольно странным. Напрашивался единственный выход признать, что само излучение не непрерывно, а состоит из отдельных порций (квантов), Сделать такой вывод Планк все же не решился. Это сделал Эйнштейн.  [c.46]

Об импульсе фотона. Как уже отмечалось, Эйнштейн предполагал, что наблюдаемое в отсутствие излучения распределение (3.2.5) сохраняется и при наличии излучения. В работе К квантовой терии излучения Эйнштейн показал, что это предположение имеет интересный физический смысл. Он рассмотрел два разных механизма спонтанного испускания 1) излучение испускается в виде расходящейся от атома во все стороны сферической электромагнитной волны, и тогда импульс атома-излучателя на меняется 2) излучение испускается в виде кванта света, и тогда атом-излучатель получает всякий раз импульс отдачи, причем у разных атомов эти импульсы будут иметь случайное направление. Оказывается, что равновесие системы атомов, взаимодействующих с излучением, не нарушается только при условии, что имеет место второй из указанных механизмов спонтанного испускания и при этом импульс кванта света равен iiail . Таким образом, Эйнштейн привел дополнительное подтверждение существования световых квантов, характеризующихся наряду с энергией 1ъи> также импульсом Асо/с.  [c.73]

Несколько позже Дебай предложил остроумную модель, согласно которой в твердом теле имеется полный спектр характеристических колебаний с длинами волн, лежащими в пределах от макроскопических размеров кристалла до размеров, соответствующих межатомным расстояниям. Б этой модели, известной под разными названиями (вроде студня или квазиконтинуума ), сохраняется важное представление о наличии единой характеристической температуры данного твердого тела. Б целом модель Дебая очень хорошо объясняла экспериментальные результаты и, в частности, величины скорости уменьшения теплоемкости с температурой в области низких температур, в которой по формуле Эйнштейна должно наблюдаться значительно более резкое спадание теплоемкости ).  [c.186]

Р( занов и Черепанов [73] рассчитали теплопроводность ферромагнитных металлов, считая спиновые волны подчиняющимися статистике Бозе— Эйнштейна. Роль спиновых волн состоит главиыд образом в том, что они рассеивают электроны, уменьшая электронную теплопроводпость. С формальной стороны эта теория подобна изложенной в и. 14.  [c.255]

Отметим, что большой диамагнетизм наблюдается только, когда длина волны электронов велика по сравнению с глубиной проникновения поля. Волновые функции электронов в этом случае размазываются на расстояния, большие по сравнению с глубиной проникновения поля. В этом смысле предельным случаем является идеальный газ Бозе — Эйнштейна заряженных частиц. Ниже температуры конденсации некоторая часть электронов находится в самом нижнем состоянии, причем волновая функция этого состояния размазывается на весь объедг. Это соответствует в рассмотренном выше примере пределу и мы получаем обычную  [c.721]

Оптические квантовые генераторы (ОКГ), или лазеры, дают мощное когерентное излучение, которое невозможно получить при использовании обычных источников света. Если раньше когерентное электромагнитное излучение получалось и широко использовалось только в радиодиапазо не, то с появлением лазеров сфера его применения распространилась и на оптический диапазон спектра. Действие ОКГ основано на явлении вынужденного излучения, которое было открыто Эйнштейном в 1917 г. Идея использования этого явления для усиления света в среде с инверсной населенностью энергетических уровней принадлежит В. А. Фабриканту (1939). Первые квантовые генераторы были созданы в 1954 г. Н. Г. Басовым и А. М. Прохоровым в СССР и Ч. Таунсом в США. В них использовалось вынужденное излучение возбужденных молекул аммиака на длине волны А,= 1,27 см. В 1960 г. был создан лазер на кристалле рубина, работающий в видимой области спектра (А = 694,3 нм), а в 1961 г. — лазер на смеси газов гелия и неона. В настоящее время имеются самые разнообразные типы лазеров, использующие в качестве рабочих сред газы, жидкости и твердые тела. Мощное и высококогерентное излучение ОКГ находит широкое применение в различных областях науки и техники.  [c.278]

Для объяснения фотоэффекта Эйнштейн предположил (1905), что 1ЮГОК энергии световой волны не являе1ся непрерывным, а представляет собой поток дискретных порций энергии, называемых квантами или фотонами.  [c.21]

После открытия строения атома и других физических явлений энергетизм было быстро пошел на убыль, но с установлением Эйнштейном связи между энергией и массой Е — тс поднялась новая его волна — неоэнергетизм во главе с другим Нобелевским лауреатом Вернером Гейзенбергом. Из основных форм энергии, — заявил он, — три формы отличаются особенной устойчивость[о электрон, протон и нейтрон. Материя... состоит из этих форм энергии, к чему всегда следует добавлять энергию двин ення . На самом деле ничего не изменилось в материальном мире с выводом этой зависимости — как и раньше одни виды материи и формы движения превращаются в другие, но помимо массы покоя то появилось представление о динамической массе mg и переходе их друг в друга, ибо m=mo-fmg. Так, при слиянии вещественных частиц электрона и позитрона общей массой 2шо образуются частицы электромагнитного поля — фотоАЫ общей массой Emg, но Lmo— Zirig.  [c.130]


Историческое введение. Еще со времен появления фарадеевой концепции силовых лннпй обсуждался такой вопрос что происходит с силовыми линиями, когда тела приведены в движение Перемещается ли электрическое поле, создаваемое материальными телами, жестким образом при перемещении этих тел Г. Герц, первый демонстратор электромагнитных волн, отвечал на этот вопрос утвердительно. Однако эксперименты Физо с движущейся водой показали, что скорость распространения света в воде равна не с - - i а лишь с + (1— ln )v, где п — коэффициент преломления воды. Лоренц объяснил коэффициент увлечения 1—Ми-на основе гипотезы о неподвижном эфире , не увлекаемом движущимися сквозь него электрическими зарядами. С другой стороны, из гипотезы о неподвижном эфире следовало, что на Земле (движущейся относительно неподвижного эфира вследствие своего вращения вокруг Солнца с периодом в год) должны были бы наблюдаться определенные оптические эффекты порядка где v — линейная скорость вращения Земли вокруг Солнца, а с — скорость света. Экспериментальное доказательство отсутствия этих эффектов поставило теоретическую физику в тупик, выход из которого был указан в 1905 г. в статье Эйнштейна Об электродинамике движущихся тел .  [c.331]

Нам придется встретиться в этой главе с достаточно большими трудностями, потому что теория относительности — надежный путеводитель при исследовании равномерных движений — еще не дает окончательного заключения относительно неравномерных движений. Во время недавнего пребывания Эйнштейна в Париже Пенлевэ выдвинул интересные возражения против теории относительности Ланжевен легко сумел их отвести, так как все они предполагали ускорения, в то время как преобразование Лоренца— Эйнштейна применимо только к равномерному движению. Аргументы зна-л1енитого математика лишний раз доказали, что применение идей Эйнштейна становится вопросом деликатным, как только дело касается ускорений, и в этом отношении эти аргументы очень поучительны. Метод первой главы, позволивший нам изучить фазовую волну, здесь абсолютно непригоден.  [c.652]

В первой главе мы приняли за основной постулат существование периодического явления, связанного с каждой отдельной порцией энергии, зависимость которой от собственной массы выражена соотношением Планка— Эйнштейна. Теория относительности показала нам, таким образом, необходимость связать с равномерным движением всякого движущегося тела распространение с постоянной скоростью некоторой фазовой волны, и мы смогли объснить это распространение, пользуясь представлением Минковского о пространстве-времени.  [c.666]

Стандартная процедура кваитовааия показывает, что гравитац. волны можно рассматривать как поток квантов — гравитонов, представляющих собой нейтральные частицы с нулевой массой покоя и со спином 2 (в единицах %). Спиральность гравитона (проекция его снниа на направление движения) всегда равна 2. Гравитоны подчиняются Бозе — Эйнштейна статистике и могут неограниченно накапливаться в одном квантовом состоянии, образуя когерентный конденсат, к-ры 1 представляет собой классич. гравитац. волну. Аналогично вектор-потенциалу эл.-маги. поля йцу является калибровочным полем ур-ппя поля не изменяются при замепе  [c.296]


Смотреть страницы где упоминается термин Эйнштейн волны : [c.82]    [c.170]    [c.175]    [c.806]    [c.290]    [c.382]    [c.293]    [c.148]    [c.223]    [c.366]    [c.275]    [c.464]   
Единицы физических величин (1977) -- [ c.101 , c.184 ]



ПОИСК



Эйнштейн

Эйнштейний



© 2025 Mash-xxl.info Реклама на сайте