Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйнштейн связи

Это выражение совпадает с формулой Планка (9.23) при А2 /В2 = Ьа) / п с ). Таким образом, все три коэффициента Эйнштейна связаны между собой.  [c.441]

Для полного понимания этих данных необходимо располагать информацией о межмолекулярных силах в системе, с одной стороны, а также микроскопической теорией действующего на молекулу электрического ноля — с другой. Согласно предположению Смолуховского [171], сильное увеличение интенсивности рассеянного света вблизи критической точки обусловлено флуктуациями плотности. Эйнштейн [62] обошел трудности, связанные с применением формул Релея к системе частиц, предположив, что жидкость состоит из изотропных элементов объема с диэлектрической проницаемостью 8, которая непрерывно меняется вследствие флуктуаций плотности или концентрации. Вычисляя работу сжатия или работу осмоса, которыми сопровождаются соответственно флуктуации плотности в однокомпонентной или флуктуации концентрации в двухкомпонентной жидкостях, Эйнштейн связал рассеяние с сжимаемостью Б однокомпонентной системе или с ее аналогом — осмотическим давлением в двухкомпонентной системе.  [c.98]


Если уровни энергии Шт и Шп простые, а не кратные, то коэффициенты Эйнштейна связаны соотношением  [c.705]

После появления первого лабораторного макета рубинового генератора прошло 16 лет. Этот срок относительно невелик. В самом деле, кто знал через 16 лет об изобретении радио выдающимся русским физиком А. С. Поповым Только специалисты. Население результатами этого удивительного изобретения еще не пользовалось. А как долго после М. Фарадея свойства электричества изучались только в лабораториях и не применялись в житейской практике Открытие А. Эйнштейном связи между массой и энергией нашло целесообразное применение в ядерной энергетике только спустя полвека.  [c.38]

Первое замечание касается истолкования соотношения Эйнштейна Е = тс , которое дано автором недостаточно четко и не совсем правильно. Это соотношение впервые было установлено Эйнштейном как одно из следствий специальной теории относительности. В последние годы в связи с многочисленными исследованиями различных ядерных реакций его справедливость была  [c.13]

О том, что момент времени / одинаков в обеих системах — латинской и греческой. Если рассматривать t как параметр, то равенство (34) выражает лишь геометрический факт —связь между производными по параметру от функций, зависящих от этого параметра, в различных системах координат. Но если параметр / понимается как время, то правило (34) оказывается верным лишь тогда, когда время в латинской и греческой системах протекает одинаково и когда для этих сред имеет смысл понятие одновременности, т. е. когда могут быть указаны в них одинаковые моменты времени. Отказ от этого предположения является краеугольным камнем релятивистской механики Эйнштейна, в которой формула (34) уже неприменима.  [c.32]

Существует связь между интегральными коэффициентами Эйнштейна (А 21, Bia) и введенными дифференциальными коэффициентами, в частности  [c.381]

С другой стороны, Эйнштейн вывел уравнение, где связал массу вещества m и энергию Е, которой обладает эта масса  [c.251]

Специальная теория относительности, созданная Эйнштейном в 1905 г., означала пересмотр всех представлений классической физики и главным образом представлений о свойствах пространства и времени. Поэтому данная теория по своему основному содержанию может быть названа физическим учением о пространстве и времени. Физическим потому, что свойства пространства и времени в этой теории рассматриваются в теснейшей связи с законами совершающихся в них физических явлений. Термин специальная подчеркивает то обстоятельство, что эта теория рассматривает явления только в инерциальных системах отсчета.  [c.172]

Отсюда Эйнштейн пришел к следующему фундаментальному выводу общая энергия тела (или системы тел), из каких бы видов энергии она ни состояла (кинетической, электрической, химической и т. д.), связана с массой этого тела соотношением  [c.218]


А. Эйнштейн показал возможность построения координатной системы в пространстве, исключающую поле сил тяготения. При этом оказалось, что геометрические свойства пространства связаны с движением материи и ее распределением в пространстве.  [c.444]

Как известно, дифференциальные уравнения движения материальной системы содержат компоненты векторов механических сил. Ограничившись изучением лишь поля сил тяготения, А. Эйнштейн установил связь между геометрическими свойствами физического пространства, в котором движется материальная система, и силами тяготения, приложенными к материальным точкам системы.  [c.526]

Тогда уравнения (IV. 186), указанные Е. Крекером, являются трехмерным аналогом уравнений тяготения А. Эйнштейна (IV. 166). Таким образом, инородная материя вызывает появление кривизны в лагранжевой системе координат, с которой связана метрика в деформирующемся теле.  [c.535]

Имеется известный закон Эйнштейна, который гласит, что масса М всегда связана с энергией Е следующим уравнением  [c.275]

Этот результат был выведен Эйнштейном в статье по электродинамике без упоминания понятия фотона. Однако результат (72) прямо вытекает из следующих соображений. Как было показано в (11.41), при продольном эффекте Доплера частоты, воспринимаемые наблюдателями, покоящимися в системах S и S, связаны соотношением  [c.396]

Еще в тот период, когда указанный закон был экспериментально установлен в качественной форме, Эйнштейн (1905 г.) обосновал теоретически количественную связь между энергией, получаемой электроном при его освобождении светом, и частотой этого света. Согласно теории Эйнштейна закон фотоэффекта имеет следующий вид  [c.638]

В 1916 г. в связи с анализом проблемы равновесного теплового излучения Эйнштейн дополнил квантовую теорию Бора количественным описанием процессов поглощения и испускания света. Новые понятия и представления, введенные Эйнштейном, полностью сохранили свое значение до наших дней и служат основой теоретического анализа большинства вопросов, касающихся интенсивности линий испускания и поглощения.  [c.730]

Величина а п ( ). называемая спектральной плотностью первого коэффициента Эйнштейна, описывает контур линии и связана с Атп соотношением  [c.738]

Выражения (211.20) устанавливают связь между непосредственно измеряемым коэффициентом поглощения и коэффициентами Эйнштейна. В выполненном расчете приняты во внимание переходы только между двумя состояниями тип. Полный коэффициент поглощения, обусловленный переходами между всеми состояниями атома, равен сумме выражений типа (211.20).  [c.740]

У Казани е. Использовать соотношения (224.1), (225.6)—(225.8), а также связь между коэффициентом усиления и спектральной плотностью второго коэффициента Эйнштейна  [c.908]

В заключение отметим, что идея о связи между силовыми полями и внутренней геометрией пространства была высказана задолго ДО Эйнштейна Риманом в его знаменитой диссертации О гипотезах, лежащих в основании геометрии ) Вопрос о том, справедливы ли допущения геометрии в бесконечно малом, тесно связан с вопросом о внутренней причине метрических отношений в пространстве. Этот вопрос, конечно, также относится к области учения о пространстве и при рассмотрении его следует принять во внимание... замечание о том, что в случае дискретного многообразия принцип метрических отношений содержится уже в самом понятии этого многообразия, тогда как в случае непрерывного многообразия его следует искать где-то в другом месте. Отсюда следует, что или то реальное, что создает идею пространства, образует дискретное многообразие, или же нужно пытаться объяснить возникновение метрических отношений чем-то внешним — силами связи, действующими на это реальное.  [c.478]

Расхождение эксперимента с теорией связано с тем, что в модели твердого тела Эйнштейна предполагалось, что каждый от-168  [c.168]

В теории молекулярного рассеяния Эйнштейн рассматривал флуктуации плотности в жидкостях или кристаллах в виде наложения периодических колебаний плотности. Пользуясь таким математическим приемом, позволившим построить количественную теорию рассеяния в жидкостях и твердых телах, Эйнштейн нс приписывал этим периодическим колебаниям какого-либо реального значения и никак, не связывал их с другими свойствами жидкостей и кристаллов. В дальнейшем, благодаря идеям Мандельштама, оказалось возможным связать теорию рассеяния с теорией теплоемкости твер-  [c.121]


В заключение отметим, что для количественных измерений в фотохимии используется единица, называемая Эйнштейном (Э) 1 Э — это число квантов света определенной частоты, которое вызывает в системе, способной к фотохимическим реакциям, фотохимическое превращение и равняется 6,02- 10 моль . Связь между энергией в I Э и частотой света V задается формулой 1 Э = = 6,02-  [c.191]

Принцип относительности Эйнштейна приводит к выводу, что время не абсолютно. Время течет по-разному в разных системах отсчета. Следовательно, утверждение, что между двумя данными событиями прошел определенный промежуток времени, имеет смысл только тогда, когда указано, к какой системе отсчета это утверждение относится. В частности, события — одновременные в некоторой системе отсчета, будут не одновременными в другой системе. Постоянство скорости света во всех инерциальных системах связано с тем, что при переходе от одной системы к другой меняются не только расстояния между движущимися точками, но и течение времени. Следовательно, ньютоновская концепция абсолютного времени оказывается столь же несостоятельной, как и концепция абсолютного пространства.  [c.212]

Выражения для коэффициентов Вп и В21 и их связь с Л21 выводятся в квантовой электродинамике на основе термодинамических соображений. Приведем здесь вывод связи между коэффициентами Эйнштейна, для чего рассмотрим замкнутую полость, стенки которой испускают и поглощают электромагнитное излучение. При статистическом равновесии излучение внутри полости характеризуется спектральной плотностью v.r, определяемой формулой Планка  [c.270]

Окончательно эфир был изгнан из физики в самом начале XX в. в связи с созданием А. Эйнштейном специальной теории относительности.  [c.34]

Равновесное излучение и равновесная система атомов связь между коэффициентами Эйнштейна. Пусть к п - отнесенное к единице объема число атомов, находящихся соответственно на уровне Ei и на уровне Ei. Для термодинамически равновесной системы атомов при температуре Т в отсутствие излучения справедливо известное распределение Больцмана  [c.70]

Проделанные выше выкладки, в ходе которых была установлена связь между коэффициентами Эйнштейна, можно рассматривать как еще один вывод формулы Планка. В данном выводе не используется квантование энергии осциллятора. Здесь применяется теория Бора, в частности его правило частот, и, кроме того, делается принципиальное предположение о наличии наряду со спонтанным также н вынужденного испускания. Нетрудно убедиться (предлагаем читателю самому сделать это), что если бы в (3.2.6) отсутствовало слагаемое то вместо (3.2.10) мы получили бы результат  [c.72]

И уже совсем слабое взаимодействие — гравитационное — находит свое место во Вселенной за счет трех его свойств дальнодействия, абсолютной универсальности и одинаковости знака сил между любой парой частиц. Последнее свойство приводит к тому, что гравитационные силы всегда растут с увеличением гравитирующих тел. Поэтому гравитация, несмотря на ее ничтожную относительную интенсивность, всегда проявляется для достаточно больших тел. В мире элементарных частиц роль гравитации ничтожна. И универсальность, и одинаковость знака гравитационных сил, как показал А. Эйнштейн, связаны с их геометрической природой. Гравитационные силы представляют собой не что иное, как проявление искривления четырехмерного пространства-времени.  [c.280]

После открытия строения атома и других физических явлений энергетизм было быстро пошел на убыль, но с установлением Эйнштейном связи между энергией и массой Е — тс поднялась новая его волна — неоэнергетизм во главе с другим Нобелевским лауреатом Вернером Гейзенбергом. Из основных форм энергии, — заявил он, — три формы отличаются особенной устойчивость[о электрон, протон и нейтрон. Материя... состоит из этих форм энергии, к чему всегда следует добавлять энергию двин ення . На самом деле ничего не изменилось в материальном мире с выводом этой зависимости — как и раньше одни виды материи и формы движения превращаются в другие, но помимо массы покоя то появилось представление о динамической массе mg и переходе их друг в друга, ибо m=mo-fmg. Так, при слиянии вещественных частиц электрона и позитрона общей массой 2шо образуются частицы электромагнитного поля — фотоАЫ общей массой Emg, но Lmo— Zirig.  [c.130]

Минковский первым показал, что, рассматривая евклидово многообразие в четырех измерениях, так называемую вселенную, или пространство-время, можно геометрически просто представить введенные Эйнштейном связи между пространством и временем. Для этого он брал три оси в прямоугольных координатах пространства и четвертую ось, нормальную к трем первым, на которую наносились значения времени, умноженные на с ]/— 1. Сейчас принято относить к четвертой оси вещественное значение с(, но в этом случае плоскости, проходящие через эту ось и нормальные к пространству, будут иметь гиперболическую псевдоевклидову геометрию, основной инвариант которой будет — х — dy — dz .  [c.650]

При малых концентрациях (а2< 0,05), получаемые значения ц согласуются с формулой Эйнштейна, но при больших определяемые из таких опытов вязкости (х существенно превышают значения (3.6.51) и, кроме того, имеют значительный разброс у разных авторов и при разных комбинациях фаз (рис. 3.6.1). Этот разброс, но-видимому, отражает неньютоновость концентрированных вязких дисперсных смесей и недостаточность величин р и ц, для определения их механических свойств. В связи с этим на практике приходится для каждой смеси и реальных устройств в рассматриваемом диапазоне режимных параметров (например, расходов) проводить эксперименты по определению потери напора, привлекая для их обработки различные реологические модели, в частности, модель вязкой жидкости с эффективным коэффициентом  [c.171]

Но это уже связано со слишком g большой простотой той модели g твердого тела, которую исполь-зовал Эйнштейн и которую мы приняли вслед за ним.  [c.179]

Это соотношение, которое носит имя Эйнштейна, замечательно тем, что устанавливает связь между двумя совершенно различными по виду явлениями. Коэффициент диффузии характеризует случайное блуждание частиц, которое приводит, в частности, к флуктуациям плотности. Подвижность же характеризует их регулярное движение под действием внешней силы. На первый взгляд это обычное механическое движение. Но оно сопровождается трением. В результате энергия этого упорядоченного движения, как говорят, Ъиссипирует, т.е. превращается в энергию хаотического движения частиц.  [c.209]


Никогда еще за каких-то 100 лет общепринятая точка зрения на мир (или, как ее еще называют, общечеловеческая парадигма) не претерпевала настолько радикальных изменений. Во многом это было связано с идеей ноосферы В.Вернадского, теорией относительности А.Эйнштейна, разработкой основ кибернетики Н.Внннером, синергетикой Г.Хакена, новым взглядом на проблему времени И.Пригожина, открытием фракталов Б.Мандельбротом. Этот список талантливых людей, или даже в своем роде гениев, можно продолжать. Но вот что чрезвычайно волнующе - мы живем в одно время со многими из них. Сейчас это не кажется чем-то из ряда вон выходящим, но кто отказался бы от возможности поболтать, например, с Альбертом Эйнштейном, современники которого тоже не видели ничего особенного в том, что он живет рядом с ними  [c.15]

Вопрос о связи коэффициентов Атп с внутренним строением атома выходит за рамки теории Эйнштейна. Этот вопрос полностью разъяснен квантовой механикой, и разработанные в ней методы позволяют рассчитывать значения А п практически для любого перехода, исходя из свойств уровней т, п. Ниже приводятся в качестве примера коэффициенты Атп Для некоторых линий атомарного водорода (серии Лаймана L и Бальмера Н)  [c.733]

Первостепенной задачей теории является нахождение единой причины существующих частных явлений или законов и уменьшение числа независимых исходных положений. Этот процесс давно уже идет в физике. Достаточно вспомнить объединение земного и космического тяготений в законе всемирного тяготения Ньютона, объединение электричества и магнетизма в электродинамике Максвелла, установление связи между микро- и макропараметрами систем Больцманом, связь геометрии физического пространства с теорией гравитации в общей теории относительности Эйнштейна и т. п. Удивительнейший пример единства природы открывает связь явлений, происходящих в микромире и Вселенной, о чем идет речь в этой части книги. Многие свойства Вселенной определяются характеристиками фундаментальных взаимодействий, происходящих в микромире. И, напротив, происходящие во Вселенной процессы дают много для понимания свойств элементарных частиц и необходимы для построения правильной теории. Но все же впереди очень и очень шого работы.  [c.200]

Настоящий курс посвящен изучению классической механики, т. е. механики, основанной на законах, впервые точно сформулированных Галилеем (1564—1642) и Ньютоном (1643—1727). В конце XIX и начале XX вв. выяснилось, что законы классической механики неприемлемы для движения микрочастиц и тел, движущихся со скоростями, близкими к скорости света. В начале XX в. возникла релятивистская механика, основанная на теории относительностп А. Эйнштейна (1879—1955). Теория относительности, установив закономерные связи между пространством временем, массой и энергией, уточнила границы применения законов классической механики. Однако эта принципиальная сторона вопроса не умалила значения классической механики как практического метода для изучения движения макроскопических тел со скоростями, малыми по сравнению со скоростью света, т. е. для изучения движений, обычных в технике.  [c.14]

В начале XX в. принципы классической механики подвергались критике, в результате чего появилась релятивистская и квантовая механика. Не входя в подробности, можно указать, что принципы теории относительности, развитые Дж. К. Максвеллом (1831—1879), X. А. Лоренцем (1853—1928), А. Пуанкаре (1854— 1912) и А. Эйнштейном (1879—1955), коренным образом меняют наши обычные представления о пространстве и времени. Теория относительности методом научного анализа еще раз подтвердила справедливость марксистско-ленинского положения о единстве движущейся материи со временем и пространством. В релятивистской механике время не является универсальным понятием, а имеет л1естное значение. Связь наблюдателей, находящихся в различных движущихся системах, осуществляется при помощи световых сигналов, причем постулируется, что ito-рость света — универсальная постоянная для всех систем. Релятивистская механика не отменяет классическую механику, а лишь указывает па ее ограниченность и на несправедливость ее законов там, где скорость движения тела соизмерима со ско-росгью света.  [c.143]

К представлениям о световых квантах привели два направления исследований. Первое связано с проблемой теплового излучения, второе — с атомными спектрами. Первоначально эти направления развивались независимо друг от друга. Так было до 1916 г., когда появились фундаментальные работы Эйнштейна Испускание и поглощение излучения по квантовой теории и К квантовой теории излучения . В первой работе, опираясь на теорию Бора, Эйнштейн рассмотрел задачу о взаимодействии равновесного излучения с равновесной системой испускаюш,их и поглош,ающих атомов. Он показал, что для получения формулы Планка надо наряду с поглош,ением и спонтанным испусканием рассмотреть дополнительный процесс испускания, который может быть назван индуцированным (вынужденным). Во второй работе обоснована необходимость учитывать изменение импульса атома при испускании или иоглощении им светового кванта здесь же сделан вывод, что импульс светового кванта равен /ioj/с.  [c.68]

В те годы, когда появилась работа Эйнштейна, особенно ценным представлялся вывод формулы Планка на основе учета вынужденного испускания, а не установление связи между коэффициентами Эйнштейна. В настоящее время больший интерес представляет не вывод формулы Планка (сегодня она уже не нуждается в дополнительных подтверж-  [c.72]


Смотреть страницы где упоминается термин Эйнштейн связи : [c.224]    [c.376]    [c.169]    [c.211]    [c.220]    [c.72]    [c.800]   
Единицы физических величин (1977) -- [ c.123 , c.191 , c.242 ]



ПОИСК



Эйнштейн

Эйнштейний



© 2025 Mash-xxl.info Реклама на сайте