Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства теплового излучения

Свойства теплового излучения  [c.312]

Люминесцентные лампы. Известно, что при тепловом излучении энергия испускается в широкой области спектра и на видимую (полезную) область приходится весьма малая доля. Это свойство теплового излучения не позволяет увеличить к. п. д. ламп накаливания (тепловых источников света) выше 5%, а светоотдачу больше 10—12 лм/Вт. Поэтому возникла необходимость получить источники света с составом излучения, близким к дневному свету, с большей  [c.377]


Значит, при малых частотах (точнее, при выполнении условия hv << кТ) квантовая формула Планка переходит в классическую формулу Рэлея—Джинса. Следовательно, условие малости кванта энергии hv по сравнению с величиной кТ определяет границы применимости классической теории. Если нельзя считать hv кТ, то использование формулы Рэлея—Джинса незаконно и для описания свойств теплового излучения нужно применять формулу Планка.  [c.425]

Если в оптическом переходе участвует один фотон, то такой переход (такой процесс взаимодействия излучения с веществом) называют однофотонным. Однофотонный переход сопровождается либо рождением (испусканием), либо уничтожением (поглощением) фотона, причем испускание фотона может быть либо спонтанным, либо вынужденным. До сих пор мы имели дело только с однофотонными переходами (однофотонными процессами). Они определяют свойства теплового излучения и оптические спектры вещества, лежат в основе как фотоэлектрических, так и люминесцентных явлений. С однофотонными процессами связано и нелинейно-оптическое явление просветления среды.  [c.219]

Приборы для измерения температуры тел по тепловому излучению принято называть пирометрами излучения или просто пирометрами. Измерение температуры тел пирометрами (методами пирометрии) основано на использовании законов и свойств теплового излучения.  [c.183]

Как и для березовского угля, расчет по серой модели приводит здесь к завышению значения плотности потока результирующего излучения на экранных поверхностях нагрева. Средняя величина этого завышения составляет для всей топочной камеры примерно 10 % по сравнению с расчетом по реальным селективным радиационным характеристикам пламени и поверхностей нагрева. Соответствующим образом занижается, как и для березовского угля, температура газов на выходе из топки по сравнению с имеющимися опытными данными. Расчет с учетом реальных селективных свойств теплового излучения пламени и поверхностей нагрева дает возможность определить температуру газов на выходе из топки, которая хорошо согласуется по значению с имеющимися опытными данными.  [c.230]

Лучистой энергией называют энергию колебаний непрерывного электромагнитного поля. Свойства лучистой энергии существенно зависят от длины волны % этих колебаний. В интервале 0,8 мкм 40,0 мкм лучистая энергия обладает свойствами теплового излучения. К этим свойствам прежде всего следует отнести способность теплового излучения к испусканию, распространению, поглощению, отражению и пропусканию.  [c.326]


Природа теплового излучения. В отличие от конвективного теплообмена, для которого тепловой поток в каждой точке среды определяется локальным значением фадиента температуры в этой точке, лучистый поток определяется излучением внешних источников (по отношению к среде). При этом среда может не принимать участия в переносе теплоты. Носителем теплового излучения являются электромагнитные волны, энергия которых зависит от температуры тела, его атомной и молекулярной структуры, а также от состояния поверхности тела. Свойствами теплового излучения обладает электромагнитное излучение только в диапа зоне длин волн, =0,4... 800 мкм.  [c.284]

Методы измерения температур, использующие различные свойства теплового излучения тел, вытекающие из законов излучения абсолютно черного тела, нашли широкое практическое применение. Под абсолютно черным телом понимают тело, которое поглощает всю падающую на него лучистую энергию. Такие тела в природе отсутствуют, но модель черного тела можно осуществить с достаточной степенью приближения.  [c.261]

Ниже ознакомимся с различными свойствами теплового излучения черного тела, вытекающими из законов излучения, положенными в основу наиболее распространенных бесконтактных методов измерения температур реальных тел.  [c.263]

Поля в состоянии теплового равновесии принято называть тепловым излучением. Одно из характерных свойств теплового излучения состоит в том. Что плотность энергии является функцией только температуры в отличие от идеального газа число частиц каждого сорта зависит от температуры. Излу-  [c.47]

Проблема детектора теплового излучения неотделима от вопроса об излучательных свойствах источника излучения. Спектральные характеристики излучения черного тела, как будет показано, описываются законом Планка. Проинтегрированный по всем длинам волн закон Планка приводит к закону Стефана — Больцмана, который описывает температурную зависимость полного излучения, испущенного черным телом. Если бы не было необходимости учитывать излучательные свойства материалов, оптический термометр был бы очень простым. К сожалению, реальные материалы не ведут себя как черное тело, и в законы Планка и Стефана — Больцмана приходится вводить поправочные факторы, называемые коэффициентами излучения. Коэффициент излучения зависит от температуры и от длины волны и является функцией электронной структуры материала, а также макроскопической формы его поверхности.  [c.311]

Хотя отношение коэффициентов Эйнштейна было известно, сами значения А и В не могли быть вычислены без развития квантовой механики. В 1927 г. Дирак показал, как это в принципе можно осуществить. Методы, использованные для выполнения таких вычислений, не просты, и интересующийся читатель отсылается за подробностями к работам по квантовой механике (см., например, [78]). Прямые вычисления излучательных и поглощательных свойств реальных материалов в общем случае чрезвычайно сложны и для термометрии бесполезны. Однако атомный аспект теплового излучения позволяет воспользоваться соотношением между коэффициентами Эйнштейна, чтобы получить полезное различие между квантовой и классической областями.  [c.321]

Полость сделана большой, чтобы при визировании нижней части цилиндра и обращенного конуса ее излучательная способность для теплового излучения при 273 К превышала 0,9999. Область длин волн, на которую приходится основная часть излучения при этой температуре, простирается от 2 до 200 мкм. На излучение за пределами этой области приходится лишь 0,1 % от полной энергии излучения. Температура полости измерялась восемью прецизионными платиновыми термометрами сопротивления, прикрепленными к различным частям полости. Однородность температуры в цилиндрической и конической частях была лучше, чем 1 мК. Внутренняя поверхность полости покрыта черной краской ЗМ-С-401, оптические свойства которой известны до длины волны 300 мкм. Вплоть до длины волны 30 мкм коэффициент отражения краски меньше 0,06. Таким образом, излучательная способность полости с достаточной степенью точности определяется только членом с р в уравнении (7.56) для углов падения больше 80° при всех длинах волн чернение приводит к преимущественно зеркальному отражению.  [c.347]


Лучистая энергия возникает за счет энергии других видов в результате сложных молекулярных и внутриатомных процессов. Природа всех лучей одинакова. Они представляют собой распространяющиеся в пространстве электромагнитные волны. Источником теплового излучения является внутренняя энергия нагретого тела. Количество лучистой энергии в основном зависит от физических свойств и температуры излучающего тела. Электромагнитные волны различаются между собой или длиной волны, или числом колебаний в секунду. Если обозначить длину волны через X, а число колебаний через N, то для лучей всех видов скорость w в абсолютном вакууме буд т равна w к-N = 300 000 км сек.  [c.458]

Выдвижением своей гипотезы о дискретности энергетических состояний осциллятора Планк (1900 г.) заложил основу квантовой теории. Правда, при выводе своей формулы для спектральной плотности теплового излучения он приписывал свойства дискретности только нагретому телу, а не электромагнитному излучению.  [c.338]

В заключение данного параграфа сделаем замечание относительно самого характера и свойства люминесцентного излучения. Поскольку все заключительные акты излучения при люминесценции происходят самопроизвольно, независимо друг от друга, то подобное излучение будет являться некогерентным. Люминесцентное излучение является также неравновесным (в отличие от теплового излучения).  [c.361]

Знакомство с основными законами теплового излучения может на первый взгляд привести к выводу, что абсолютно черное тело или близкие к нему по свойствам тела должны быть наилучшими источниками света. Действительно, при данной температуре абсолютно черное тело и в видимой области спектра отдает с излучением больше энергии, чем любое другое. Далее, выгодно, казалось бы, стремиться к достижению наибольших воз-  [c.152]

Определить погрешность при измерении температуры в камере сгорания воздушно-реактивного двигателя, обусловленную тепловым излучением. Средняя скорость потока в камере сгорания 70 м/с. Температура измеряется термопарой, установленной поперек потока. Показание термопары 650° С, диаметр защитной трубки термопары 8 мм, диаметр камеры сгорания 320 мм температура внутренней поверхности камеры 330° С степень черноты поверхности защитной трубки 0,8. Физические свойства газа Я = 7,2Х Вт/(м-К) V = 135-10" м /с. Отводом теплоты через защитную трубку пренебречь.  [c.262]

Теплообмен излучением характеризуется тем, что некоторая часть внутренней энергии тела преобразуется в энергию излучения и передается через пространство. Носителями теплового излучения являются электромагнитные волны (фотоны), которые распространяются в пространстве в соответствии с законами оптики. Тепловое излучение тел определяется только их температурой и оптическими свойствами их поверхности. Излучение, соответствующее всему спектру длин волн (частот), называется интегральным излучением. Поток излучения, проходящий через единицу поверхности по всем направлениям (в пределах полусферического телесного угла), называется поверхностной плотностью потока интегрального излучения E dQ/dF.  [c.114]

Численная величина температуры может быть измерена при помощи различных термодинамических устройств (термометров) принцип устройства их основан на зависимости от температуры какого-либо из свойств вещества, например теплового расширения, давления насыщенного пара, давления вещества в газообразном состоянии при постоянном объеме или, наоборот, объема его при постоянном давлении, электрического сопротивления, контактной э. д. с., теплового излучения и др. Применение термометров основывается на том факте, что два соприкасающихся тела через некоторое время приходят к состоянию теплового равновесия и принимают одинаковую температуру.  [c.10]

В соответствии с законом Кирхгофа для всех тел, независимо от их физических свойств, отношение плотности потока собственного излучения к его поглощательной способности при одинаковых температурах и длине волны излучения является величиной постоянной и равной плотности потока излучения абсолютно черного тела. Из уравнений (46) и (52) коэффициент теплового излучения топки  [c.180]

Количество энергии, излучаемое телами, резко возрастает с повышением температуры, поэтому роль лучистого теплообмена особенно велика в процессах, протекающих при высоких температурах. Тепловое излучение определяется только температурой и оптическими свойствами излучающего тела.  [c.126]

Тепловое излучение различных тел определяется их тепловым состоянием, а также природными свойствами. Температура резко влияет на лучеиспускательную способность тел, т. е. на количество энергии, излучаемой единицей поверхности тела за единицу времени. Тело, обладающее при данной температуре наибольшей излучательной способностью, называется абсолютно черным телом. Таких тел в природе не существует и все реальные тела излучают при одной и той же гемпературе только часть энергии абсолютно черного тела.  [c.136]

В металлах многие электроны являются свободными. Поэтому в этом случае нельзя говорить о колебаниях около центров равновесия. Электроны движутся и при этом испытывают нерегулярное торможение. Вследствие. этого излучение металлов приобретает характер импульсов и имеет волны различной частоты, в том числе волны низкой частоты. Помимо волновых свойств излучение обладает также и корпускулярными свойствами. Корпускулярные свойства состоят в том, что лучистая энергия испускается и поглощается веществами не непрерывно, а отдельными дискретными порциями — квантами света или фотонами. Испускаемый фотон — частица материи, обладающая энергией, количеством движения и электромагнитной массой. Поэтому тепловое излучение можно рассматривать как фотонный газ.  [c.361]


Для нас наибольший интерес представляют те лучи, возникновение которых определяется только температурой и оптическими свойствами излучающего тела. Такими свойствами обладают световые и инфракрасные лучи, т. е. лучи с длиной волны приблизительно от 0,4 до 800 мкм. Эти лучи и называют тепловыми, а процесс их распространения тепловым излучением или радиацией.  [c.150]

Дело в том, что если поверхность поглощает все лучи, кроме световых, она не кажется черной, хотя по лучистым свойствам близка к абсолютно черному телу. Следует иметь в виду, что тепловое излучение занимает область длин волн от 0,72 до 1000 мкм и располагается между красной границей видимого спектра и границей коротковолновой части миллиметрового диапазона электромагнитных волн, в то время как видимому свету принадлежит область между 0,3 и 0,72 мкм.  [c.122]

Рассмотрим с точки зрения когерентности спонтанное излучение, испускаемое, например, тепловыми источниками света. Для таких источников характерно следующее а — отдельные атомы испускают фотоны самопроизвольно, независимо друг от друга, на волновом языке фотонам можно сопоставить отрезки волн, которые называют обычно цугами, цуги от отдельных атомов не коррелированы друг с другом б — излучение атомов изотропно, т. е. происходит практически с равной вероятностью во всех направлениях. Эти два обстоятельства и обусловливают низкие когерентные свойства спонтанного излучения,  [c.339]

ВИДИМОЙ и отчасти ультрафиолетовой областей спектра. Лишь с развитием нефтеперерабатывающей промышленности и синтеза тяжелых органических соединений спектральный анализ в инфракрасной области спектра начал постепенно приобретать все большее практическое значение. Тем не менее во второй половине XIX в. развитие термоэлектрических методов регистрации инфракрасного излучения получило толчок в связи с изучением распределения энергии в спектре, потребовавших применения измерительных приборов, не обладающих селективными свойствами. Кроме того, возможность использования тепловых приемников для определения температуры удаленных источников (звезд, планет) по их тепловому излучению, давно привлекало внимание астрономов. Начиная с 1870 г. телескоп в сочетании с термоэлектрическим приемником использовали для радиометрического определения температуры Луны и других планет [68].  [c.376]

При высоких частотах или низких температурах, где1, а Пер становится малым, спонтанное излучение больше вынужденного. Спонтанное излучение является в значительной степени квантовым процессом и поэтому предсказывать свойства теплового излучения, основываясь на классических методах (законе Рэлея — Джинса или соотношениях Друде — Зенера), не удается.  [c.322]

Описав свойства теплового излучения, полости черного тела, вольфрамовые лампы и эффективную длину волны, мы имеем теперь все элементы, которые требуются для того, чтобы обсудить воспроизведение МПТШ-68 фотоэлектрическим пирометром.  [c.372]

Из условия пространственной синфазности (222.4) видно, что фазы ф/ волн SJ должны изменяться в зависимости от положения излучающегося атома по такому же закону, по которому изменяется фаза в световой волне. Это означает, что агентом, фазирующим излучение атомов, должна быть световая же волна. Вместе с тем, в гл. XXXIII указывалось, что для микроскопического описания спектральных свойств теплового излучения А. Эйнштейн ввел представление о вынужденном испускании. Одно из основных свойств вынужденного испускания состоит в том, что волны, излучаемые атомом в этом процессе, имеет такую же частоту и такую же фазу, что и действующая на атом волна. Благодаря указанному свойству, как будет показано в 223, фазнровка излучения удаленных атомов может обеспечиваться вынужденным испусканием.  [c.774]

На рис. 7-2-1 дано семейство кривых спектральной светимости Т) = пВо(Я, Т) черного тела в зависимости от длины волны, построенных по формуле Планка, при различных тешгературах. Эти кривые дают наглядное представление о свойствах теплового излучения черного тела, положенных в основу бесконтактных методов измерения температуры тел. Кривые рис. 7-2-1 показывают, что спектральная яркость с увеличением температуры черного тела быстро возрастает. В видимой облаЬги спектра, например, при К = 0,65 мкм, Т = 1000 К и 2000 К спектральная яркость черного тела возрастает соответственно в 20 и 16 раз быстрее, чем температура. Это обстоятельство позволяет осуществлять измерение температуры Б видимой области спектра по изменению с температурой яркости тела в данной длине волны. Условную температуру реального тела, измеренную этим методом, принято называть яркостной температурой. Приборы, предназначенные для измерения яркостной  [c.264]

Относящиеся к квантовой оптике вопросы (фотонные представления явления, в которых проявляются корпускулярные свойства излучения) освещаются в той или иной степенью полноты во всех современных учебных пособиях по физике. В вузовских курсах физики рассматриваются закономерности теплового излучения (от закона Кирхгофа до формулы Планка), сообщаются сведения о фотоэффекте, эффекте Комптона, фотохимическом действии света, дается объяснение испускания и поглощения света атомами на основе теории Бора. При более глубоком изучении физики студентов знакомят также с люминесцентными явлениями, эффектом Л1ёссбауэра, многофотонными процессами, дают им некоторые сведения о квазичастицах в твердых телах. При этом авторы одних учебников пользуются термином квантовая оптика , тогда как в других учебниках этот термин не применяется, а соответствующие вопросы собраны в главах, называемых Тепловое излучение , Световые кванты , Действие света и т. п. Дело в том, что в использовании термина квантовая оптика нет четкой договоренности. Согласно точке зрения, принятой в современной научной литературе, все отмечавшиеся выше вопросы — это еще не сама квантовая  [c.4]

При прохождении через пространство тепловые лy и обнаруживают все свойства, присущие электромагнитньм волнам. Например, тепловые лучи обладают способностью к интерференции, когда лучи, исходящие из одного истог-ника и движущиеся по разным направлениям, соединяются вновь. Вообще говоря, возможна поляризация тепловь х лучей, откуда следует, что эти лучи носят характер поперечных волн однако, как правило, термическое излучение не является поляризованным. Таким образом, природа теплового излучения та же, что и других электромагнитных волн.  [c.141]

В первой части пособия излагаются основные понятия и законы термодинамики, термодинамические свойства рабочих тел, анализ термодинамических процессов и циклов. Рассматриваются циклы тепловых двигателей и холодильных машин, приводится эксерготический анализ эффективности тепломеханических систем. Во второй части описываются явления теплопроводности, конвективного теплообмена и теплового излучения, даются основы теплового расчета теплообменных аппаратов. Изложение математической теории теплообмена и теории подобия в начале второй части пособия позволило обеспечить единый подход к рассмотрению задач теплопроводности и конвективного теплообмена и избежать повторений.  [c.6]


Никель. Серебристо-белого цвета металл — Ni с температурой плавления 1452 С выпускается нескольких марок с содержанием до 99,99% Ni при использовании электровакуумной плавкп. В интервале 25— 600 С значение ТК1 = 1,55-10 Иград. Электрические свойства отожженного никеля р = 0,0683 ом-мм 1м, TKR = 6,8-10 Иград. Никель применяют в качестве оснований (кернов) оксидных катодов, которые активируют окислами в. основном щелочноземельных металлов (ВаО, SrO), с целью снижения работы выхода. Для упрочнения никеля-используют присадку марганца (2,3—5,4%) из марганцовистого никеля изготовляют прочные сетки и траверсы небольших приемно-усилительных ламп. Алюминированный никель в виде ленты, покрытой тонким слоем алюминия (8—15 мкм), обладает высоким коэффициентом теплового излучения (до 0,8) такую ленту используют для анодов небольших электронных ламп. Допустимая для никеля температура в вакууме составляет 800° С.  [c.299]

Для устранения вуалирующего действия фонового теплового излучения предложен метод, позволяющий включать чувствительность. фотослоя только на время экспонирования. Он основан на использовании полупроводниковых материалов, изменяющих свои фоторезистнвные свойства под действием электрического поля. В качестве фоточувствительного материала используют тонкие пластинки мопо-кристаллпческого кремния, германия, сернистого свинца или арсенида галлия, Изображение получают непосредственно на поверхности полупроводника или на специальной токочувствительной пленке, находящейся с ней в контакте.  [c.101]

Тепловое излучение — процесс распространения теплоты с помощью электромагнитных волн, обусловленный только температурой и оптическими свойствами излучающего тела при этом внутренняя энергия тела (среды) ттереходит в энергию излучения. Процесс превращения внутренней энергии вещества в энергию излучения, переноса излучения и его поглощения веществом называется теплообменом излучением. В природе и технике элементарные процессы распространения теплоты — теплопроводность, конвекция и тепловое излучение — очень часто происходят совместно. -  [c.5]

Поскольку ослабляющая среда представляет собой раствор, то модель должна изготавливаться в виде герметичного п в то же время прозрачного сосуда, позволяющего производить световые измерения на его внешней поверхности (как, например, показано на рис. 11-3). Материалом для таких моделей чаще всего служит плексиглас или стекло. Внутренняя поверхность светопрозрачной стенки модели покрывается серой краской с такими же поглощательной н отраиотельной способностями в видимом спектре, как и натуральная стенка в образце по отношению к падающему на нее тепловому излучению. Однако в отличие от подобных покрытий для моделей с диатермической средой в рассматриваемом случае окраска должна обладать стойкостью и не разрушаться под действием соприкасающейся с ней среды. Следует также иметь в виду, что поглощательные и отражательные способности покрытия, погруженного в среду, могут несколько отличаться от этих оптических свойств, измеренных в воздушной среде.  [c.315]


Смотреть страницы где упоминается термин Свойства теплового излучения : [c.371]    [c.79]    [c.348]    [c.166]    [c.203]    [c.117]    [c.216]    [c.5]    [c.2]   
Смотреть главы в:

Температура  -> Свойства теплового излучения



ПОИСК



Пар Тепловые свойства

Статистические свойства интегральной интенсивности теплового и квазнтеплового излучения

Тепловое излучение



© 2025 Mash-xxl.info Реклама на сайте