Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Адгезия pH среды

Адгезия среды на поверхности металла возможна в этом случае на вакантные места. Следует учитывать также, что жидкость, проникшая на границу полимер - подложка, оказывает расклинивающее действие.  [c.56]

Физические методы обработки используют для придания поверхности отрицательного заряда, что способствует улучшению адгезии. Среди таких методов радиоактивное облучение, воздействие статического электричества, обработка катодным распылением в вакууме, зарядом высокого напряжения. Например, фторопласт подвергают радиации от кобальтового источника или электронного генератора в присутствии другого мономера, который при этом полимеризуется на фторопласте-4. Возможна также его обработка коронным разрядом в атмосфере азота.  [c.269]


Способность сплава длительное время выдерживать воздействие агрессивных сред при высоких температурах зависит не только от диффузионно-барьерных свойств пленок продуктов реакции, но и от адгезии таких пленок к основному металлу. Нередко защитные пленки отслаиваются от поверхности металла во время циклов нагревания — охлаждения, так как коэффициенты расширения пленки и металла неодинаковы. Американское общество по испытанию материалов провело ускоренные испытания [58 ] на устойчивость различных проволок к окислению. Испытания заключались в циклическом нагревании проволоки (2 мин) и охлаждении (2 мин). Попеременное нагревание и охлаждение заметно сокращает срок службы проволоки по сравнению с постоянным нагревом. Срок службы проволоки в этих испытаниях определяется временем до разрушения или временем до увеличения ее электрического сопротивления на 10 %. В соответствии с уравнением Аррениуса, зависимость срока службы т (в часах) проволоки от температуры имеет вид  [c.205]

Эпоксидные смолы также устойчивы в щелочах и щелочных средах. Их отличительным свойством является хорошая адгезия к металлической поверхности — из-за наличия в молекуле большого числа полярных групп. Эти смолы служат основой пластичных смесей — компаундов, которые при добавлении соответствующего катализатора быстро затвердевают по месту нанесения. Они удобны, например, при временной заделке сквозных дефектов в трубопроводах из стали и других металлов.  [c.248]

Важнейшие свойства, определяющие защитную способность покрытий,—их стойкость в воздействующей среде, толщина покрытия, пористость, адгезия к подложке, структура осадка.  [c.53]

Требования, предъявляемые к защитному покрытию опор морских промыслов, не ограничиваются высокой коррозионной стойкостью самого покрытия, его долговечностью, механической прочностью и эффективностью. Не менее важным и, пожалуй, решающим фактором является высокая адгезия покрытий с поверхностью опор и абсолютная герметизация защищаемого участка от внешней среды.  [c.137]

Физико-химические процессы, происходящие вблизи поверхности, заключаются в образовании диффундирующего элемента в атомарном состоянии вследствие химических реакций в насыщающей среде или на границе раздела среды с поверхностью металла (при газовом или жидком методах насыщения) сублимации диффундирующего элемента (при парофазовом методе насыщения) и адгезии диффундирующего элемента на насыщаемой поверхности металла в случае твёрдого метода насыщения. Процессы, происходящие на поверхности насыщаемого металла, заключаются в сорбции образовавшихся атомов поверхностью металла.  [c.125]


Во-первых, поверхностные слои твердого тела наделены избытком энергии, так как молекулы и атомы, находящиеся у поверхности, имеют свободные связи, которые способствуют возникновению таких явлений, как поглощение (адсорбция), сцепление (когезия), прилипание (адгезия), смачивание и другие виды взаи МО действия с веществами внешней среды, когда поверхностный слой приобретает своеобразное строение.  [c.70]

В работе изложены результаты экспериментальных исследований, связанных с поверхностной обработкой углеродных волокон, нанесением медных покрытий. С помощью растровой электронной микроскопии изучено влияние предварительной обработки углеродных волокон на адгезию покрытия к поверхности волокон. Было обнаружено, что предварительная обработка в окислительной среде способствует улучшению адгезии. Показано, что качество покрытия зависит от режима осаждения и состава раствора. Рис. 3, библиогр. 5.  [c.230]

Соотношение отдельных составляющих может изменяться в зависимости от требований к применению и обеспечению стойкости против коррозии под действием окружающей среды, оттенка, глянца, непрозрачности, стойкости к механическим повреждениям, резким изменениям температуры и т. д. Эмаль представляет собой тонкое защитное покрытие, обычно двухслойное, где первый слой обеспечивает адгезию, а второй — требуемые свойства, например кислотоупорность и др. В обычных атмосферных условиях срок службы эмалей составляет несколько десятков лет. Чаще всего эмалируют штампованные изделия из специальных низкоуглеродистых стальных полос, прокатанных в холодном состоянии, толщиной 0,6—1,5 мм. С учетом высоких температур отжига (более 800° С) необходимо, чтобы штамповки имели хорошо армированные утонения и т. д. Из-за различных коэффициентов термического расширения эмали и стали радиус граней должен быть более 4,5 мм, а радиус у углов — более 6 мм, чтобы предотвратить самопроизвольное отслаивание эмали. Кислотоупорные эмали отличаются исключительной стойкостью против большинства неорганических кислот, за исключением фтористоводородной и фосфорной. Для щелочных растворов эмаль непригодна. Кислотоупорная эмаль выдерживает температуру до 350° С. Хорошо эмалируются автоклавы, реакторные котлы, вакуумные аппараты, теплообменники, оборудование для дистилляции и другие аппараты химической промышленности, узлы из листовых сталей для силосных башен, трубопроводы, запорные устройства.  [c.88]

Способность твердого соединения защищать металл зависит, конечно, от его растворимости в окружающей среде, адгезии с поверхностью металла, сцепления кристаллов и др. Различные системы металл — среда образуют слои твердых соединений, различающиеся по степени защиты, которую они сообщают металлу. Такие металлы, как Ni, Сг, А1, Ti, и нержавеющие стали во многих средах обладают способностью образовывать тонкие невидимые пленки окислов (толщиной I—3 нм). Несмотря на электрохимическую активность этих металлов пленки оказывают значительное влияние на скорость реакции. Способность металла образовывать защитную пленку, так называемое пассивирование, является одним из самых важных средств противокоррозионной защиты. Одни металлы пассивны в разных условиях окружающей среды, другие — только в определенных условиях. Так, тантал пассивен в большинстве кислот, включая соляную кислоту, а железо — лишь в дымящейся азотной кислоте.  [c.30]

Защитные покрытия в основном подразделяются на две группы — неметаллические и металлические. В свою очередь неметаллические покрытия бывают органическими (лаковые, битумные, пластмассовые, эпоксидные, резиновые и др.) и неорганическими (цементные, асбоцементные, окисные, силикатные, фосфатные, сульфидные и др.). Часто в защитных системах применяют комбинации из органических и неорганических покрытий, например фосфатирование перед нанесением лакокрасочного покрытия для улучшения адгезии органического покрытия и одновременно его защитной способности. Металлические покрытия отличаются от органических тем, что они непроницаемы для коррозионной среды. Однако в них имеются дефекты — поры, царапины, посторонние включения и др., которые создают предпосылку для коррозионного воздействия на основной металл. При наличии пор в коррозионном покрытии коррозионное действие агрессивной среды зависит от электрохимического поведения обоих металлов — основного и металла покрытия. По этому признаку покрытия делятся на катодные и анодные. По отношению к стали, например, цинковое покрытие является анодным, а медное — катодным, т. е. цинковое покрытие оказывает защитное действие по отношению к стали, но при этом само разрушается, а медное покрытие в результате гальванического действия повышает скорость коррозионного разрушения стали.  [c.35]


Конструкционные материалы и покрытия на основе эпоксидных смол обладают исключительно высокими физико-химическими показателями и высокой химической стойкостью во многих агрессивных средах. Эпоксисмолы очень легко совмещаются с другими высокомолекулярными соединениями и, в зависимости от характера и природы модифицирующих веществ, обладают кислотостойкостыо, щелочестойкостью и теплостойкостью до 110—120" С. Основными ценными свойствами эпоксидных смол являются назначительная их усадка при отверждении и высокая адгезия к различным материалам (металлу, бетону, керамике II др.).  [c.407]

По химической стойкости во многих агрессивных средах фторопласт-3 уступает фторопласту-4, так же как и в онюше-нии теплостойкости но возможность получения из пего суспензий позволяет наносить его в виде гьтенок. Последние при специальном режиме термообработки (закалке) приобретают хорошую адгезию к защищаемой металлической поверхности.  [c.432]

Новым прогрессивным методом является гуммирование растворами каучука (в которые вводятся и другие ингредиенты) с последующей вулканизац.чей при нагреве или на холоде. Преимуществом этого способа гуммирования является то, что полученные покрытия однородны по физико-механическим свойствам, ие имеют стыков и швов, обладают высокой адгезией к металлической поверхности и сравнительно хорошей стойкостью в агрессивных средах. Описанным методом можно гуммировать конструкции сложных конфигураций (роторы вентиляторов, колеса иа-С0С01 , спирали и т. п.), что не удается при нанесении листовых резиновых обкладок.  [c.443]

Показано [165], что на основе этих соединений и комплексов могут быть созданы высокоэффективные экологически чистые ингибиторы коррозии (включая коррозионно-усталостное разрушение, фреттинг-коррозию) углеродистых сталей в водных средах с различными значениями pH и в биологически активных средах. Они хорощо зарекомендовали себя в различных областях техники как ингибиторы солеотложения. Кроме того, соединения и комплексы, содержащие переходные металлы и их соли, снижают пористость защитных лакокрасочных покрытий, повышают продолжительность их набухания, способствуют сохранению адгезии, а также позволяют улучшать антифрикционные, противоизносные и противопиттинговые свойства масел.  [c.292]

Под действием внешней жидкой или газообразной среды адгезия полимерных плёнок к металлической поверхности снижается. Выше температуры стеклования 7, конкурентная адсорбция на металле осуществляется со взаимным вытеснением одного Beiue TBa другим. Этому способствует динамический характер сорбции. Уменьшение адсорбции полимера пропорционатьно парциальному давлению или концентрации диффундирующего вещества в граничном слое и его адсорбционной способности. Условие стабильности адгезионных связей  [c.55]

Хи.мически стойкие композиции для ремонта стеклоэмалевых покрытий Композиции для ремонта стеклоэмалевых покрытий должны обладать, помимо химической стойкости в рабочих средах, хорошей адгезией к металлу и стеклоэмали, теплопроводностью, достаточно высокой прочностью и низким коэффициентом термического расширения (КТР), близким к аналогичному показателю сталей и чугунов. Ряд композиций, удовлетворяющих в определенной мере сочетанию таких свойств, рекомендован к применению стандартом /93/ и приводится в табл. 13.  [c.127]

Разрушение поверхностей трения при изнашивании может происходить в субмикроскопических масштабах, когда вместе со смазочным материалом или воздухом уносятся обломки кристаллических образований, зерен. Размер частиц продуктов износа может изменяться от неразличимых газом пылинок до нескольких миллиметров. Чистые (ювенильные) поверхности в процессе их образования при отделении частиц износа окисляются, сами частицы износа в дальнейшем дробятся, слиг1аются, прилипают и впрессовываются в сопряженные гю-верхности. Продукты износа участвуют в процессе изнашивания в качестве промежуточной среды между поверхностями трения. Взаимное внедрение неровностей поверхностей, глубинное вырывание материала, адгезия и спрессовывание продуктов износа предопределяют перенос материала с одной поверхности на другую.  [c.90]

Согласно современным представлениям, механизм защитного действия неметаллических покрытий связан как с изолирующим действием, так и с влиянием на электрохимические процессы, протекающие под неметаллической пленкой. Экранирующее действие неметаллических покрытий обусловлено их способностью замедлять диффузию и перенос через покрытие компонентов коррозионно-активной среды к поверхности металла и определяется в значительной степени пористостью покрытий. Проникновение электролита через поры покрытия или через межмо-лекулярные несовершенства пленкообразующего вещества (в процессе теплового движения) происходит под действием капиллярных сил. Осмотическое давление, возникающее вследствие перепада концентрации электролита на поверхности капиллярной пленки, контактирующей с внешней средой, прилегающей к защищаемому металлу, способствует диффузии среды через покрытие. При осмотическом перемещении влаги через пленку давление может быть больше, чем сила адгезии пленки к металлу, в результате чего происходит локальный отрыв пленки от поверхности металла, что приводит к образованию вздутий и пузырей, являющихся первоначальным очагом коррозионного поражения металлической основы.  [c.128]

Эффективно использование хлорсульфированного полиэтилена, отверждаемого кремнийорганическими агентами, такими, как циклосила-мин, силамин и др. Использование хлорсульфированного полиэтилена с кремнийорганическими отвердителями повыщает стойкость материала покрытия в минерализованных и сероводородсодержащих средах. Недостатки необходимость соблюдения строгого температурного режима нанесения (543—593 К), малый температурный диапазон применения, склонность к растрескиванию, слабая адгезия к металлу. Покрытие наносят по грунту, в качестве которого используют фенольную смолу.  [c.137]


Высокая защитная способность ДГУ в условиях электрохимической коррозии в двухфазных средах электролит-углеводород связана с наличием в композищш изощюната, который реагирует с водой на поверх- ности металла, снижает скорость коррозионного разрушения, увеличивая адгезию с подложкой. По данным нефтяных фирм США, покрытия на основе полиуретанов с толщиной слоя 250 мкм, применяемые для защиты трубопроводов различного диаметра, обеспечивают защитное действие в течение 20 лет. Сообщается также об эффективности защиты насосно-компрессорных труб в условиях гидроабразивного потока, содержащего агрессивные хлор- и сероводородсодержащие компоненты.  [c.140]

Развитию представлений о поверхности раздела в системах Ni-сплав — AI2O3 способствовали и другие исследования процессов смачивания и адгезии. Риттер и Бёртон [40] изучали влияние газовой среды и легирующих элементов Сг и Ti на поверхностное натяжение и краевой угол никеля и его сплавов на подложках из сапфира при 1773 К. Газовая среда не оказывала заметного влияния на Yjk и краевой угол в случае контакта чистого никеля с сан-фиром. Результаты, полученные для сплавов, согласуются с предыдущими исследованиями. Уменьшение краевого угла для сплава в среде аргона по сравнению с водородной средой, возможно, обусловлено большим содержанием кислорода в аргоне. Результаты испытаний на сдвиг показали, что прочность связи выше при использовании никеля, выплавленного в кислородсодержащей атмосфере, чем никеля, выплавленного в отсутствие кислорода. Предполагается, что этот эффект связан с возможным образованием шпинели на поверхности раздела.  [c.327]

Покрытие поверхно сти наполнителя сополимерами метакрило-ксипропилметоксисилана с другими акриловыми мономерами способствует сохранению адгезии полистирола и акриловых полимеров к металлу и стеклу во влажной среде при температуре ниже температуры стеклования покрытия. Эластичные сополимеры этого же силана (например, с этилакрилатом) неэффективны как покрытия в присутствии воды при комнатной температуре [29].  [c.206]

Даже при максимальной адгезии полимеров к немодифициро--ванным графитовым волокнам композиты на их основе имеют невысокую прочность на сдвиг вследствие разрушения по слабым пограничным слоям графита. Окисление применяется прежде всего для удаления потенциально слабого пограничного слоя с поверхности графита. На возникающей в результате этого гидрофильной поверхности в присутствии воды могут образовываться гидролитически равновесные связи с полярными смолами, что в свою очередь приводит к снижению усадочных напряжений в материале. В случае композитов из оксидированного графита с неполярными смолами для релаксации напряжений и сохранения механических, свойств во влажной среде необходима, вероятно, обработка наполнителя силановыми аппретами.  [c.217]

Покрытие, образующееся из этого герметика, устойчиво к действию минеральных кислот, щелочей средних концентраций, воды при температуре агрессивной среды до 320К, обладает хорошей адгезией к различным материалам, неплохими физико-механическими свойствами.  [c.37]

Таким образом, комплекс сведений о свойствах межфазной границы кристаллизующейся твердой фазы с маточной средой (краевой угол смачиваемости, работа адгезии, адгезионное и межфазное нatяжeниe) могут служить существенным дополнением диаграммы состояния сплава.  [c.3]

Для выяснения влияния предварительной обработки поверхности углеродных волокон на образование и качество покрытия были проведены опыты по осаждению меди на необработанное в окислителе волокно, подвергнутое термообработке в воздушной среде при температуре 500° С в течение 1 мин, и волокно, прошедшее обработку в 65%-ной HNOg в течение 5 мин. Дальнейшие сенсибилизация, активация и металлизация проводились в одинаковых условиях. В случае, если волокно не прошло окислительную обработку, часто происходит образование одной рубашки на группе элементарных волокон. На рис. 1, (см. вклейку) полученном на растровом электронном микроскопе, показана группа, состоящая из четырех элементарных волокон. При разрыве нити одно элементарное волокно было удалено из оболочки. Видно отслоение и самой оболочки, что свидетельствует о плохой адгезии покрытия к поверхности волокна. Следует также учитывать и крутку волокна, которая благодаря тесному контакту элементарных волокон между собой препятствует проникновению раствора внутрь. Характер разрыва углеродных волокон, прошедших предварительное окисление на воздухе или в растворе азотной кислоты, как правило, свидетельствует о хорошей адгезии покрытия к поверхности волокна. Анализ снимков позволяет сделать вывод о необходимости предварительной обработки углеродных волокон в окислительной среде.  [c.149]

Номерами, начинающимися с 03 88..., обозначены стандарты по климатотехнологии, относящиеся к испытаниям изделий на морозостойкость, теплостойкость в сухой среде, стойкость к солнечной радиации, плесени, пыли, песку и т. д. Значительная часть стандартов под номерами от 67 30... до 67 65... посвящена лакокрасочным материалам и определению их свойств, например стойкости при растяжении, вдавливании, ударе, износостойкости, определению адгезии, стойкости к атмосферным воздействиям, поглощающей способности, стойкости в коррозионной камере, огнестойкости, морозостойкости, стойкости к колебаниям температуры, воздействию химикалиев и т. д.  [c.92]

Лакокрасочные покрытия, содержащие в качестве наполнителя цинковый порошок, менее чувствительны к толчкам, ударам и трению, чем свинцово-суриковые или цинкхроматные группы. Поэтому рекомендуется наносить первое покрытие в цехе стальных конструкций, а второе на строительной площадке. Необходимо также знать, будут ли лакокрасочные покрытия с цинковым порошком подвергаться воздействиям агрессивной среды. На конструкциях, эксплуатирующихся в атмосферных условиях, могут возникнуть трудности с адгезией кроющих слоев. Чтобы избежать этого, второй слой грунта выполняют лакокрасочным материалом на основе цинка или хромата цинка. Он обеспечивает адгезию последующих кроющих слоев. Толщина второго слоя должна составлять примерно 40 мкм.  [c.96]

Кремнийорганические — образуют покрытия, стойкие при высоких и низких температурах, с хорошими электроизоляционными свойствами во влажной среде, стойкие к минеральным маслам, бензину, воде, растворам солей, слабым кислотам и щелочам. Однако эти покрытия уступают но адгезии к металлам и прочности алкидным, эпоксидным и алкидномеламиновым.  [c.101]

Достоинством фенолоформальдегидных смол является их высокая твердость, стойкость к воде, нефтепродуктам и различным химически агрессивным средам. Однако в качестве лакокрасочных материалов они находят ограниченное применение из-за хрупкости получаемой пленки, слабой адгезии и неустойчивости к механическим воздействиям, которая объясняется высокими внутренними напряжениями в покрытии. Для устранения этого недостатка вводят пластификаторы. С целью повышения эластичности покрытий на основе фенолоформальдегидных смол успешно применяются эластомер-ы, в частности карб-оксилатный бутадиен-нитрильный каучук СКН-26-125. При его введении достигается лучшая адгезия и минимальное водопо-глощение.  [c.73]

Для защиты аппаратуры от воздействия агрессивных сред применяют эмали ХВ-785 различных цветов и лак ХВ-784. Защита металлических изделий в атмосферных условиях может быть осуществлена эмалями ХВ-124 различных цветов и ХВ-125 серебристой, ХВ-110, ХВ-113 и ХВ- 6. Обладая хорошими защитными свойствами, эти эмали имеют ряд недостатков пониженную адгезию, особенно в первый период после нанесенпя, низкую термостойкость, недостаточную светостойкость.  [c.83]


Известно, что сила адгезии частицы пропорциональна поверхностному натяжению. Факторов, влияющих на адгезию, много, и конкретные случаи взаимоотношений частицы, металла катода и среды требуют отдельного экспериментального изучения, тем более, что теоретические аилы адгезии превышают на 2—3 порядка эноперимен-тально найденные. Это связано с тем, что в расчетах необходимо учитывать не радиус частицы, а размеры микроскопических выступов, которыми фактически осуществляется контакт частицы с поверхностью. По этой причине, а также из-за несовершенства способов определения поверхностного натяжения адгезия определяется только экспериментально.  [c.77]

Скорость ползучести и длительная прочность. Результаты сравнительных исследований показывают, что эти свойства материала находятся во взаимнообратной зависимости, что согласуется с исходными представлениями о деформационном или псевдо-деформационном контроле разрущения, находящими свое выражение в соотнощениях типа (3). В то же время влияние окружающей среды само по себе оказывается связанным с наличием на поверхности металла оксидной пленки (окалины) с хорощей адгезией. Отметим, что отсутствие такой пленки может быть обусловлено проведением испытаний не только в вакууме, но и в агрессивных средах, активно разрушающих окалину. Кроме того, влияние внещней оксидной пленки становится менее существенным по мере уменьщения размера зерна или при возрастании роли какого-либо другого внутреннего фактора.  [c.18]

Многие из величин Ос еще требуется определить количественно или хотя бы качественно. Тем не менее мы предположим, что при определенных составах и микроструктурах сплавов, средах и состояниях напряжения некоторые эффекты должны быть доминирующими. В частности, применяя этот метод анализа к основному примеру поведения I типа, а именно к случаю суперсплава на никелевой основе с умеренно крупным зерном [14, 18—21], мы отметим в соответствии с эффектами, перечисленными в табл. 5, следующие положения. В такой упрочненной системе, как данный сплав (временное сопротивление 1033 МПа даже при 760 °С [169]), маловероятно, чтобы какие-либо эффекты твердого раствора существенно влияли на внутренние напряжения. Выше отмечалось, что зернограничными эф( ектами также пренебрегали. Основной эффект, как можно предположить, в этом случае будет связан с величинами Ос, аналогичными входящим в уравнение (19). Иными словами, упрочнение рассматриваемой системы на воздухе обусловлено противодействием образованию и движению дислокаций со стороны окалины с хорощей адгезией, формирующейся при испытаниях на ползучесть на воздухе, но отсутствующей при испытаниях в вакууме (см. рис. 10) или в горячей солевой среде [14]. Микрофотографии, представленные на рис. 10, показывают также, что в результате ползучести (как на воздухе, так и в вакууме) поверхностные слои подложки постепенно становятся однофазными. На воздухе образуется фаза у, вероятно, посредством селективного окисления алюминия и титана, а в вакууме образуется фаза у вследствие испарения хрома. Важно, что ни в одном случае поверхностные слои подложки не являются дпсперсиоупроч-ненными. Таким образом, эти эффекты будут иметь тенденцию к самокомпенсации при любых попытках, подобных этой, проанализировать сравнительное поведение системы на воздухе и в вакууме.  [c.37]


Смотреть страницы где упоминается термин Адгезия pH среды : [c.447]    [c.35]    [c.35]    [c.47]    [c.55]    [c.66]    [c.138]    [c.268]    [c.244]    [c.191]    [c.26]    [c.84]    [c.69]    [c.141]    [c.171]   
Адгезия пыли и порошков 1967 (1967) -- [ c.133 ]



ПОИСК



АДГЕЗИЯ В ГАЗОВОЙ (ВОЗДУШНОЙ) СРЕДЕ Адгезия и модификация поверхностей. Изменение сил молекулярного взаимодействия

АДГЕЗИЯ В ЖИДКИХ СРЕДАХ Особенности молекулярного взаимодействия в жидких средах

Адгезивы

Адгезия

Адгезия в газовой среде

Адгезия в газовой среде. Причины адгезии

Адгезия в жидких средах

Адгезия влияние внешней среды

Адгезия пленок в газовой (воздушной) среде

Адгезия пленок в жидкой (водной) среде

Адгезия пленок, образовавшихся в результате осаждения частиц из жидкой среды

Адгезия свойств жидкой среды

Адгезия температуры среды

Влияние внешней среды на силы адгезии

Влияние размеров частиц на силы адгезии в жидких средах

Влияние свойств контактирующих поверхностей и среды на адгезию пленок в электрическом поле

Влияниежидкой среды на адгезию пленок

Зависимость сил адгезии от формы поверхности и температуры водной среды

Изменение адгезии пленок в жидкой среде

Особенности адгезии пленок в жидкой среде

Равновесная адгезия пленок в жидкой среде

Соотношение между когезией и адгезией в жидкой среде

Ускоренные методы оценки адгезии покрытий в водных средах

Физико-химические аспекты адгезии металлических поверхностей к лакокрасочным покрытиям и ее стабилизации в сероводородсодержащих водных средах



© 2025 Mash-xxl.info Реклама на сайте