Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхность гидрофильная

V. Теория адгезии полимеров к поверхности гидрофильных минеральных  [c.181]

Единственным требованием к материалу, контактирующему с поверхностью гидрофильного минерального наполнителя, является наличие функциональных групп, по своему действию аналогичных потенциально слабому пограничному слою (как правило, воде) и способных изменять реологические свойства композиционного ма-  [c.213]

Рис. 5-17. Схематические изотермы сорбции водяного пара для поверхностей гидрофильной (/), гидрофобной (III) к промежуточной Рис. 5-17. Схематические <a href="/info/109147">изотермы сорбции</a> <a href="/info/346965">водяного пара</a> для поверхностей гидрофильной (/), гидрофобной (III) к промежуточной

Однако, как показано на опыте, если приложить силу отрыва, равную капиллярным силам или даже больше их, то и при относительной влажности, близкой к 100%, все равно удаляются не все частицы. Так, при приложении силы в 4,26 дин отрывается примерно 78% общего числа стеклянных шарообразных частиц диаметром 80—100 ж/с. (Поверхности гидрофильны и неполное смачивание исключено.) Па-видимому, величина Н. влияющая на адгезию, определяется не только смачиваемостью поверхностей и влажностью окружающей среды, но и какими-то иными факторами, как, например, размером частиц, шероховатостью поверхности и др.  [c.84]

Обычно смачивание шероховатых поверхностей сопоставляют со смачиванием гладких поверхностей. Гидрофильные шероховатые поверхности смачиваются лучше, чем гидрофильные гладкие поверхности. Наоборот, смачивание гидрофобных шероховатых поверхностей ухудшается по сравнению со смачиванием гидрофобных гладких поверхностей. Смачивание шероховатых поверхностей  [c.213]

Если силы взаимодействия между молекулами жидкости меньше, чем силы взаимодействия между молекулами жидкости и твердого тела, то поверхность гидрофильна. В этом случае величина os 0 изменяется от -f 1 до О, угол смачивания — острый (менее 90°).  [c.11]

В гидрофобных полимерах, сорбирующих ограниченно малое количество воды, такое взаимодействие приводит к связыванию электролита, понижению его подвижности и торможению процесса переноса. В полярных полимерах, особенно при наличии гидрофильных наполнителей, вода ориентируется у полярных групп полимера или на поверхности гидрофильного наполнителя, образуя протяженные области, которые затрудняют свободный перенос молекул летучего электролита. К примеру, если коэффициенты проницаемости по отношению к воде полиэтилена и эпоксидной смолы являются величинами одного порядка, то значение коэффициента проницаемости для НС1 отвержденной эпоксидной смолы на два порядка меньше, чем полиэтилена. Значит, для защиты от действия водных растворов летучих электролитов более эффективными являются покрытия на основе полярных синтетических смол. Этим, кстати, и объясняется широкое применение покрытий на основе эпоксидных смол для защиты металлоконструкций на промышленных объектах.  [c.37]

Поверхности гидрофильные 313. Поверхности гидрофобные 315. Погашение света 610.  [c.490]


Это давно известный и широко применяющийся метод определения чистоты поверхности. У него много достоинств, но он не лишен и недостатков. Метод испытания на смачиваемость водой основан на способности металлической поверхности удерживать непрерывную пленку воды в том случае, если эта поверхность свободна от жировых загрязнений (поверхность гидрофильна при отсутствии заметных количеств жировых веществ). Этот  [c.229]

Поверхностно-активные вещества (ПАВ) - вещества, способные накапливаться на поверхности соприкосновения двух тел (сред, фаз), понижая ее свободную энергию (поверхностное натяжение). Важнейшие ПАВ - водорастворимые органические соединения, молекулы которых состоят из двух частей полярной (гидрофильной) и неполярной (гидрофобной). ПАВ применяют в промышленности (например, при флотации), они входят в состав моющих средств, лаков и красок, пищевых продуктов.  [c.152]

Примеры обсуждаемых задач приведены на рис. 2.18—2.21. На рис. 2.18 показаны равновесные формы пузырьков и капель на плоской поверхности. Характерным для этого случая является то, что сила тяжести как бы прижимает объем дискретной фазы к поверхности. На рис. 2.19 показаны очертания пузырьков и капель на плоской поверхности в условиях, когда сила тяжести стремится как бы оторвать объем от поверхности. Приведенные на рис. 2.18 и 2.19 картины охватывают случаи гидрофильной (0 < Tt/2) и гидрофобной (0 >71/2) поверхностей.  [c.102]

На рис. 2.20 показаны характерные случаи расположения жидкости в цилиндрических контейнерах при нормальной а и перевернутой б ориентации в поле массовых сил. (Здесь также представлены картины для гидрофильных и гидрофобных поверхностей.)  [c.103]

На рис. 3.7 показано еще одно интересное приложение анализа неустойчивости Тейлора. Если на поверхность жидкости в сосуде наложить жесткую сетку (гидрофобную или гидрофильную) с размерами ячейки менее Я., = 2лЬ (т.е. для воды менее 15 мм), то жидкость не будет вытекать из перевернутого сосуда. Это объясняется тем, что сетка ограничивает допустимые длины волн возмущений Я < Я. , и при этом неустойчивость Тейлора устраняется.  [c.146]

Пленочная конденсация —это процесс перехода вещества из газообразного состояния в жидкое на гидрофильной (хорошо смачиваемой жидкостью) поверхности твердого тела, при котором образуется сплошная пленка конденсата.  [c.251]

Поскольку практически все ингибиторы атмосферной коррозии, используемые при производстве антикоррозионной бумаги, гидрофильны, полной сушки поверхности металлоизделия, как это требуется перед консервацией маслами и консистентными смазками, можно не проводить. Это упрощает и удешевляет процесс консервации. Достоинством антикоррозионных бумаг, содержащих гидрофильный ингибитор, является возможность использования их в пересушенном состоянии в качестве водоотнимающего средства, позволяющего в ряде случае отказаться от силикагеля или любого другого типа осушителя, используемого по условиям поставки. Потребитель в своей работе должен учитывать эту возможность антикоррозионных бумаг.  [c.109]

Для полного смачивания поверхности вязкость адгезива должна быть низкой, а поверхностное натяжение — меньше критического поверхностного натяжения с омачиваемой поверхности. Хотя поверхности твердых минеральных наполнителей имеют высокие значения ус, тем не менее на гидрофильных поверхностях адсорбируется влага. Поэтому во влажной атмосфере наблюдаются плохое смачивание и растекание неполярного адгезива при соприкосновении с влажной поверхностью полярного субстрата. Напротив, полярные адгезивы способны либо поглощать воду, либо вытеснять ее в процессе химического взаимодействия на поверхности раздела, которое может быть усилено добавками полярных веществ к адгезиву.  [c.16]

Вода адсорбируется на поверхности гидрофильных окислов (ЗЮг, РегОз и А Оз) в виде гидроксильных групп, подобных М—ОН, и молекул, которые удерживаются поверхностными гидроксилами за счет водородных связей. Возможна также адсорбция, обусловленная взаимодействием слабых дисперсионных сил. Несмотря на общий для всех окислов характер адсорбции, химические свойства поверхности гидрофильных окислов существенно отличаются, что обусловлено гла)вным образом разным количествам ионных или ковалентных связей металл — кислород.  [c.89]


Е. Влияние силановых аппретов на водостойкость связи термопластичных полимеров с поверхностью гидрофильных минеральных наполнителей. .................... .............................206  [c.181]

IV. Взаимодействие силановых аппретов с поверхностью гидрофильных  [c.181]

A. Взаимодействие сйланолов с поверхностью минеральных веществ 210 Б. Характер связи между полимером и поверхностью гидрофильного  [c.181]

Структурой полимера на поверхности раздела (жесткостью или эластичностью) определяется его способность конкурировать с потенциально слабыми пограничными слоями (маслами или низкомолекулярными полимерами). Жесткость полимера исключает возможность образования водостойких связей между ним и поверхностью большинства гидрофильных минеральных наполнителей. Однако и каучукоподобные полимеры при увлажнении не сохраняют адгезию к поверхности гидрофильных минералов даже в присутствии эффективных силановых аппретов. Можно привести много примеров, иллюстрирующих важную роль структуры поверхности раздела.  [c.206]

IV. Взаимодействие силановых аппретов с поверхностью гидрофильных минеральных веществ  [c.207]

С участием воды, проникающей на эту поверхность в результате гидролиза без разрыва связей между полимером и поверхностью минерального наполнителя (рис. 8). Такой механизм обратимого гидролиза, зависящего от условий равновесия, объясняет все наблюдаемые явления адгезии на поверхности гидрофильных веществ в присутствии силановых аппретов.  [c.211]

Обратимые гидролитические связи между эластомерами и поверхностью гидрофильных минеральных веществ не устойчивы к воздействию влаги, даже если поверхность наполнителя модифицирована силанолами. Водостойкие связи возникают только в том случае, если структура модифицированной силаном поверхности раздела допускает равновесное связывание через жесткий или эластичный пограничный слой.  [c.217]

Применение силанов для связывания эластомеров с поверхностью гидрофильных минеральных наполнителей детально изучено, поскольку адгезия между ними имеет большое техническое значение и неверное толкование различных явлений приводит к неправильным выводам. Эффективность простого добавления силановых аппретов к полимеру или обработки силанами минерального наполнителя зависит от структуры полимера на поверхности раздела. Изменение структуры полимера на межфазной границе без модификации его полярными группами (например, силаноль-  [c.217]

При 0 = 0 имеет место абсолютная смачиваемость поверхности жидкостью, при 0 = я — абсолютная несмачиваемость. Принято считать поверхность гидрофильной (смачиваемой), если данная жидкость образует на ней угол 0 < п/2) при 0 > (я/2) поверхность считается гидрофобной. Жидкие щелочные металлы (при температурах, близких к температуре кипения при атмосферном давлении) и криожидкости смачивают металлические поверхности почти абсолютно (краевой угол близок к нулю). Гидрофобны по отношению к воде и к ряду других жидкостей парафин, фторопласт (тефлон). В табл. 1.15 приведены значения 0 для некоторых сочетаний жидкость — твердое вещество. Краевой угол смачивания весьма чувствителен к таким трудно контролируемым факторам, как шероховатость твердой поверхности, присутствие на ней или в жидкости посторонних примесей, особенно поверхностно-активных веществ. Увеличение шероховатости твердой поверхности увеличивает ее смачиваемость, т е. снижает значение 0 [51]. Для отдельных сочетаний твердое тело — жидкость в определенном интервале температур наблюдается зависимость 0 от температуры. В общем случае на гидрофильных поверхностях увеличение температуры приводит к улучшению смачиваемости (уменьшению 0), а на гидрофобных — к ухудшению смачиваемости (увеличению 0) [35].  [c.79]

Ориентация молекул антинакипина на пов-ер хности ра1здела твердая фаза — жидкость происходит таким образом, что своей полярной частью молекулы будут обращены к поверхности к,ристаллов или поверхности теплопередачи, если эти поверхности гидрофильны, углеводородной же частью они будут обращены в сторону малополярного растворителя.  [c.78]

СГ, а также хромированная сталь. Покрытие маслямой крас-жой сообщает стальной поверхности гидрофильность, что ари-водит к увеличению адгезии. Эти закономерности сохраняются в основном при влажности почвы от 20 до 45%.  [c.332]

Исследования показывают [201], что гидрофилизация материала HHHiaeT адгезию парафина. Поэтому для уменьшения адгезии парафина выбирают такие лакокрасочные покрытия, которые сообш,ают поверхности гидрофильные и олеофильные свойства. Влияние на адгезию слоя парафина свойств твердой поверхности исследовали при условии, когда внешнее воздействие направлено тангенциально к поверхности субстрата. Такое направление внешнего воздействия соответствует тангенциально направленному потоку нефти, движущемуся в трубопроводе. Этот поток и обусловливает отрыв слоя парафина. Результаты этих исследований следующие [201]  [c.253]

Не исключено также, что гидрофилизация поверхности стекла при воздействии агрессивных растворов, наряду с деструкцией в некоторой степени связана с явлением переориентации полисилоксановых макромолекул в поверхностном слое, причем гидрофильные части преимущественно обращены к полярной среде. Нельзя отрицать и возможность сорбции поверхностью гидрофильных компонентов из раствора.  [c.77]

Травление производят в растворах кислот или растворителях, состав которых подбирают применительно к природе пластмассы. Чаще детали из пластмасс протравливают в серной кислоте, которая взаимодействует с большинством из них, сообщая их поверхности гидрофильность и одновременно действуя как обезвоживающий агент и растворитель. Для травления применяют также двухкомпонентные смеси, которые обычно содержат серную кислоту и хромовый ангидрид. В таких смесях одновременно с травлением происходит и окисление поверхности, приводящее к частичному разрушению молекул поверхностного слоя вещества, что способствует повышению прочности сцепления покрытия с основой. Используют также растворы с двухромово кислым калием (калиевый хромпик) и бихроматом натрия, вводят поверхностноактивные вещества (ПАВ). Например, для травления пластмасс АВС, нилона, мелатиновых смол, бакелита и некоторых других применяют раствор, содержащий (вес. %) серную кислоту—77—92, хромовый ангидрид О— 4,72, воду —6—21,5, ПАВ (фтористоводородное соединение)— 0,1—0,2. Оптимальный удельный вес этого раствора — 1,69—1,74 (чем он меньше, тем травление идет медленнее), I = 20— 70° С, т = 0,5—30 мин. Хром в растворе должен быть в шестивалентном состоянии, накапливание трехвалентного хрома не допускается. После травления детали промывают в горячей воде и для ней-, трализации кислоты и удаления соединений хрома обрабатывают в течение 5 с в 10—15%-м растворе едкого натра при 70—100° С. Затем для нейтрализации щелочи детали погружают на 10—30 с в 10%-й раствор плавиковой кислоты и промывают в течение 5—6 с в дистиллированной воде. Благодаря этому обрабатываемая поверхность приобретает гидрофильные свойства. В травильные растворы иногда вводят фосфорную кислоту. Один из таких растворов содержит серную кислоту —150 мл, калиевый хромпик — 10 г, фосфорную кислоту — 50 мл, воду — 80 мл / = 70° С, т == 10 мин. Изделия из пластмассы СНП-2 обрабатывают в растворе, содержащем ка-  [c.264]


Установлено, что адсорбция пеногасителя твердой фазой понижает его действие. Для защиты пеногасителя от адсорбции шламом могут быть применены различные защитные коллоиды, в том числе сульфит-целлюлозные щелоки. Совместный мокрый помол на впбромельнице диам ида и сульфитцеллюлозного щелока значительно повышает эффект защиты пеногасителя от сорбции шламом, так как при этом гидрофобный пеногаситель сорбирует на своей поверхности гидрофильный сульфитцеллюлозный щелок. В результате пеногаситель приобретает гидрофильные свойства и равномерно распределяется в объеме воды.  [c.72]

Обычно подобные коррозиош ые процессы наблюдаются вблизи границы раздела двух несмешивающихся (раз в виде углевояород-вод-ный электролит. В таких сисемах под воздействием имеющейся на поверхности металла оборудования гидрофильной окисной плёнки происходит избирательное сючивание металла тонкой плёнкой электролита с вогнутым мениском (рис. I. ). Эта плёнка, как правило, имеет очень малую толщину (порядка 10 - 10 м). В связи с тем, что в углеводородной (разе значительно лучше растворяются кислород и. другие газы, чем в водном электролите, происходит резкое увеличение скорости коррозии под тонкой плёнкой электролита и коррозионный процесс локализуется вблизи границы раздела фаз. При атом скорость коррозии значительно превышает скорость коррозии при полном погружении металла в электролит,  [c.7]

Разряд в воздухе вдоль поверхности твердого диэлектрика называют поверхностным разрядом или поверхностным перекрытием. Внесение твердого диэлектрика в воздушный промежуток существенно снижает его разрядное напряжение, даже если цилиндрический образец поместить между параллельными пластинами, создающими в промежутке однородное поле. Хотя в этом случае образующие цилиндра совпадают с направлением силовых линий электрического поля и поэтому поле, казалось бы, должно оставаться однородным, разряд всегда развивается в воздухе вдоль поверхности твердого диэлектрика при более низком напряжении, чем в чисто воздушном промежутке без цилиндра из твердого диэлектрика. На рис. 23.6 приведены зависимости напряжения поверхностного разряда в воздухе вдоль изоляционных цилиндров из различных твердых диэлектриков при частоте 50 Гц от высоты цилиндра (длины разрядного промежутка). Снижение разрядного напряжения обусловлено нарушением однородности электрического поля, так как пленка влаги на поверхности диэлектрического цилиндра имеет неодинаковую толщину в различных участах вдоль длины образца, в результате чего напряжение вдоль цилиндра распределяется неравномерно. Поэтому гидрофобный (несмачивающийся) парафин в меньшей степени снижает разрядное напряжение по сравнению с чисто воздушным промежутком, чем гидрофильный (смачивающийся) фарфор или стекло. При  [c.547]

Особый вид волокнистого материала представляют собой плетеные или вязаные чулки (пустотелые шнуры), являющиеся основой лакированных трубок. Структура волокнистых материалов предопределяет некоторые их видовые свойства. К числу таковых относятся большая поверхность при сравнительно малой толш,ине в исходном состоянии, неоднородность, вызванная наличием макроскопических пор, т. е. промежутков между отдельными волокнами и нитями и связанная с ней гигроскопичность. Сами растительные волокна обладают известной пористостью, микроскопической и субмикроскопической, которую образуют, например, мельчайшие капилляры. Некоторые волокнистые материалы имеют в своем составе гидрофильные ( водолюбивые ) составные части, способные поглощ,ать влагу из воздуха, набухая при этом и образуя коллоидные системы примерами таких (объемно-гигроскопичных) волокон является клетчатка и др. Материалы, состоящие из волокон, не обладающих объемной гигроскопичностью, как правило, абсорбируют влагу из воздуха за счет наличия пор и смачиваемости поверхности волокон водой, что вследствие сильно развитой поверхности волокон может послужить причиной значительной общей гигроскопичности. Само собой понятно, что материалы из объемно-гигроскопичных волокон будут обладать особенно большой гигроскопичностью. У тканей электрическая прочность определяется пробоем воздуха в макроскопических порах. В бумагах и картонах образование крупных сквозных пор менее вероятно. Так или иначе, но наличие воздушных пор приводит к тому, что все пористые волокнистые материалы обладают сравнительно низкой электрической прочностью, тем меньшей, чем меньше структурная плотность материала. В связи с вышеописанными общими свойствами волокнистых материалов в большинстве случаев их применения требуется пропитка, в результате которой повышается электрическая прочность и снижается скорость поглощения влаги.  [c.164]

После обезжиривания следует травление Эта операция обеспечивает возможность получения прочно сцепленных металлических покрытий В результате химическом обработки в растворах со держащих сильные окис тители поверхностный слои пластмассы частично разрушается с образованием мнкрошероховатости и изменяется химическая природа выходящих па поверхность полимерных молекул Поверхностный слой начинает легко смачиваться водой (становится гидрофильным) вследствие образования полярных групп  [c.36]


Смотреть страницы где упоминается термин Поверхность гидрофильная : [c.206]    [c.218]    [c.582]    [c.40]    [c.474]    [c.464]    [c.78]    [c.562]    [c.305]    [c.148]    [c.94]    [c.94]   
Теоретические основы теплотехники Теплотехнический эксперимент Книга2 (2001) -- [ c.79 ]

Адгезия пыли и порошков 1967 (1967) -- [ c.80 , c.99 , c.111 ]

Трение износ и смазка Трибология и триботехника (2003) -- [ c.84 ]



ПОИСК



Гидрофильность



© 2025 Mash-xxl.info Реклама на сайте