Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение относительное электрическом

Отметим, что, хотя в уравнении (4. 7. 1) интегрирование по размерам пузырьков ведется до бесконечности, из-за быстрого убывания константы коалесценции К (У, У) при У У . фактически учитывается коалесценция пузырьков с размерами меньше критического. Перемещение мелких пузырьков газа в жидкости происходит благодаря их тепловому (броуновскому) движению, а электрическое поле при этом только увеличивает вероятность коалесценции пузырьков в силу их диполь-дипольного взаимодействия. Поскольку такое взаимодействие является короткодействующим, электрическое поле не влияет на относительно большие перемещения пузырьков. Для больших пузырьков газа роль теплового движения сильно уменьшается, математически это отражается на быстром убывании К , У) при У, У оо.  [c.162]


Для удержания тяжелых деталей в роботах этого типа применяются схваты с двумя поступательными кинематическими парами (рис. 7.1, б), что позволяет обеспечить значительные усилия зажима при малом ходе, а также более высокую жесткость схвата. Для переноса труб используют специализированные схваты с пневмоприводом (рис. 7.1, в). С целью устранения деформаций и перегрузок звеньев робота и захватываемых предметов применяют самоустанавливающиеся схваты. Самоустановка достигается плавающими губками, обладающими двумя свободами движения относительно корпуса схвата, как это сделано в отечественном универсальном манипуляторе УМ-1. Для лучшей приспособляемости губок схвата к форме детали широко применяют резиновые или подпружиненные элементы, что необходимо при захвате хрупких деталей. Часто для захвата хрупких деталей применяют надувные элементы в виде резиновых подушечек или пальцев. Схваты с пневматическим приводом отличаются широким распространением, так как обеспечивают простоту, надежность и удобство эксплуатации. Гидропривод применяется преимущественно в промышленных роботах большой грузоподъемности. Электрический привод захватных устройств находит достаточно широкое применение.  [c.122]

Пример 2. Закон электродинамической индукции (закон Ленца). Относительное движение двух электрических цепей, которое поддерживается пондеромоторными электродинамическими силами, вызывает инду-  [c.449]

В настоящее время, вообще говоря, считается, что электродинамика—это наука об электрических зарядах, находящихся Б движении, тогда как к механике сплошных сред относятся исследования деформации и течения вещества под действием внешних факторов (сил и моментов сил) в обоих случаях все переменные величины рассматриваются в виде полей, т. е. достаточно гладких функций координат и времени. Состояние покоя (нет изменения во времени) в обеих дисциплинах рассматривается как частный случай. Понятие движение относительно в том смысле, что введение разных временных масштабов показывает за один и тот же промежуток времени одни явления могут считаться практически неизменными, тогда как картина другого явления значительно меняется и, следовательно, оно принципиально динамическое по сравнению с первым. Такова ситуация при сопоставлении явлений распространения света с акустическими явлениями.  [c.11]

До сих пор мы рассматривали малые движения относительно естественного, т. е. ненапряженного, состояния. Однако при теоретическом исследовании сред с электрическими и магнитными свойствами часто приходится проводить линеаризацию относительно начального состояния с конечной деформацией и намагниченностью и/или поляризацией (см. гл. 6 и 7). Разумеется, если за начальное состояние взято состояние без напряжений, намагниченности, поляризации и электромагнитных полей, то линеаризованная система уравнений, полученная из полной нелинейной системы уравнений, сводится к системе линейных уравнений классической теории. Техника, используемая для получения системы линеаризованных уравнений, описываю-  [c.150]


Правильное же понимание физической сущности электротепловых процессов немыслимо без тех теоретических расчетных формул, которые на сегодня могут считаться достоверными. При этом неоднократно приходится прибегать к использованию понятий подобия и к некоторым аналогиям. Вполне, например, допустимо провести аналогию между течением по трубе вязкой жидкости и течением электрического тока по проводу. Эту аналогию рассмотрим с помощью трубной модели. Силовые линии электрического тока можно уподобить струям ламинарного потока вязкой жидкости (рис. 1.19, а). Эти струи встречают концентрированное сопротивление своему движению относительно диафрагмы 1, вставленной в трубу (рис. 1.19, б), что приводит к искривлению струй. Если посередине диафрагмы вставлена решетка 2 (рис. 1.19, в), то происходит добавочное, уже микроскопическое искривление струй, и тем самым вводится дополнительное сопротивление движению жидкости. Сопротивления диафрагмы и решетки суммируются. Удалить решетку — значит снять микрогеометрическое искривление и уменьшить общее сопротивление. Ликвидировать диафрагму — устранить вообще всякое местное концентрированное сопротивление. Остается постоянно действующее, равномерно по длине трубы распределенное сопротивление трения жидкости о стенки трубы.  [c.48]

При пропускании через раствор электролита постоянного электрического тока происходит процесс анодного растворения, как при электрохимической обработке. При соприкосновении инструмента-катода с микронеровностями обрабатываемой поверхности заготовки-анода происходит процесс электроэрозии, присущий электроискровой обработке. Кроме того, при пропускании электрического тока металл заготовки в точке контакта с инструментом разогревается так же, как при электроконтактной обработке, и материал заготовки размягчается. Продукты электроэрозии и анодного растворения удаляются из зоны обработки при относительных движениях инструмента и заготовки.  [c.409]

Для быстрого торможения больших маховиков применяется электрический тормоз, состоящий из двух диаметрально расположенных полюсов, несущий на себе обмотку, питаемую постоянным током. Токи, индуцируемые в массе маховика при его движении мимо полюсов, создают тормозящий момент М , пропорциональный скорости V на ободе маховика М = кв, где к — коэффициент, зависящий от магнитного потока и размеров маховика. Момент М2 от трения в подшипниках можно считать постоянным диаметр маховика Л, момент инерции его относительно оси вращения ]. Найти, через какой промежуток времени остановится маховик, вращающийся с угловой скоростью Шо-2У, /1 I к Ои>а  [c.278]

При к =0 условие (5. 7. 34) всегда выполняется. Физический смысл этого свойства заключается в том, что течение газожидкостной смеси всегда устойчиво относительно возмущений, распространяющихся перпендикулярно направлению движения смеси. Неравенство (5. 7. 35) будет выполняться при достаточно большой величине напряженности электрического поля  [c.233]

Таким образом, в отсутствие электрического поля режим равномерного всплывания пузырей неустойчив, при этом наиболее быстро будут возрастать амплитуды коротковолновых колебаний. Электрическое поле, направленное вдоль движения газовых пузырей, способствует стабилизации барботажных процессов. С ростом электрического поля а )> 0) скорость возрастания амплитуд малых возмущений становится ограниченной для любых длин волн. При дальнейшем увеличении напряженности электрического поля Е > р), если режим равномерного всплывания пузырей реализуется, то он будет устойчивым относительно малых возмущений. Если электрическое поле направлено под углом к вертикали, режим равномерного всплывания пузырьков неустойчив.  [c.236]

Из соотношения (6. 7. 3) следует, что в точках поверхности пузырька, для которых выполняется равенство 8 = соз (1/И ) (где 1И=4не [к- - )/и — безразмерный комплекс, характеризующий относительное влияние электрического поля на движение фаз (2. 9. 25)), компонента скорости обращается в ноль. Следовательно, при )> 1 уравнение (6. 7. 1) перестает быть спра-  [c.272]


Пример 162. Для быстрого торможения больших маховиков применяется электрический тормоз, состоящий пз двух полюсов, расположенных диаметрально противоположно и несущих на себе обмотку, питаемую постоянным током. Токи Фуко, индуцируемые в массе маховика, при его движении около полюсов создают тормозящий момент Л ,, пропорциональный скорости о на ободе маховика M = kv, где — коэффициент, зависящий от магнитного потока н размеров маховика. Момент от трения в подшипниках можно считать постоянным радиус маховика г момент инерции его относительно оси вращения J. Найти, через какой промежуток времени остановится маховик, вращающийся с угловой скоростью со,,.  [c.343]

Взаимодействие материи. Материальные объекты, расположенные в разных частях пространства, взаимодействуют, т. е. движение одних материальных объектов зависит от наличия других материальных объектов и их движения таковы, скажем, гравитационные, электрические, магнитные и иные взаимодействия. Физическая природа этих взаимодействий связана с понятием о физических полях, которое не укладывается в исходные представления классической механики. Так, например, с точки зрения общей теории относительности гравитационные взаимодействия материи являются следствием того, что время и пространство взаимосвязаны в единый четырехмерный континуум пространство-время , что этот континуум подчиняется законам не евклидовой, а римановой геометрии, т. е. что он искривлен , и что локальная кривизна в каждой его точке зависит от распределения материальных объектов и их движения. Таким образом, физические причины гравитационного взаимодействия материи тесно связаны с такими свойствами пространства и времени, которые не учитываются в исходных предположениях классической механики.  [c.41]

Поглощение света с точки зрения классической теории. Под действием электрического поля световой волны с круговой частотой со отрицательно заряженные электроны атомов и молекул смещаются относительно положительно заряженных ядер, совершая гармоническое колебательное движение с частотой, равной частоте действующего поля. Колеблющийся электрон, превращаясь в источник, сам излучает вторичные волны. В результате интерференции /j падающей волны со вторичной в среде возникает волна с амплитудой, отличной от амплитуды вынуждающего поля. Поскольку интенсивность есть величина. Рис. 11.10 прямо пропорциональная квадрату амплитуды, то соответственно изменится и интенсивность излучения, распространяющегося в среде другими словами, не вся поглощенная атомами и молекулами среды энергия возвращается в виде излучения — произойдет поглощение. Поглощенная энергия может превратиться в другие виды энергии. В частности, в результате столкновения атомов и молекул поглощенная энергия может превратиться в энергию хаотического движения — тепловую.  [c.279]

Известно, что электродинамика Максвелла в современном ее виде приводит к заключению об асимметрии в явлениях движения тел, которая, по-видимому, несвойственна этим явлениям. Представим себе, например, электродинамическое взаимодействие между магнитом и проводником с током. Наблюдаемое явление зависит здесь только от относительного движения проводника и магнита, в то время как согласно обычному представлению приходится строго различать два случая, в которых движется или одно, или другое из этих тел. В самом деле, если движется магнит, а проводник неподвижен, то вокруг магнита возникает электрическое поле с определенной энергией, создающее ток Б тех местах, где находятся части проводника. Если же неподвижен магнит, а движется проводник, то вокруг магнита не возникает никакого электрического поля, но зато мы обнаруживаем в проводнике электродвижущую силу, которой самой по себе не соответствует никакая энергия, но которая (считаем, что в обоих обсуждаемых случаях относительное движение одинаково) вызывает электрические токи той же величины и того же направления, что и токи, вызванные электрическим полем в первом случае.  [c.372]

Если частица движется сравнительно медленно, то возникающая поляризация будет распределена симметрично относительно местонахождения частицы (рис. 78, а), так как электрическое поле частицы успевает поляризовать все атомы в ее окрестности, в том числе и находящиеся впереди на пути ее движения. В этом случае результирующее поле всех диполей вдали от частицы будет равно нулю и их излучения погасят друг друга.  [c.235]

Равномерно движущийся в среде электрический заряд может излучать электромагнитную волну при условии, что скорость движения заряда больше фазовой скорости света в данной среде. Следует подчеркнуть, что речь идет о фазовой скорости света, поэтому здесь нет никакого противоречия с теорией относительности, которая оперирует скоростью света в вакууме, являющейся предельной скоростью движения в природе.  [c.263]

Исключение из механики задач о движении электрически заряженных частиц приводит к тому, что из механики выпадают все вопросы о движениях со скоростями, не малыми по сравнению со скоростью света между тем именно с такими движениями приходится сталкиваться при рассмотрении многих вопросов в других разделах физики. Вместе с тем исключение из механики задач о движении со скоростями, сравнимыми со скоростью света, лишает конкретного содержания механику теории относительности. Вследствие этого приходится либо излагать механику как раздел физики, вовсе игнорируя теорию относительности (т. е. на уровне начала нашего века), либо излагать механику теории относительности совершенно формально, не опираясь на результаты экспериментов. Включив же в механику движения электрически заряженных частиц, мы устраняем не только ничем не оправданное ограничение рамок механики, но и указанные методические трудности, которые порождаются этим совершенно искусственным ограничением.  [c.8]


Конечно, изложение вопросов о движении электрически заряженных частиц, а тем более механики теории относительности связано с преодолением известных методических трудностей. Однако это — трудности естественные, обусловленные существом дела, и если не в разделе механики, то в разделе, посвященном электромагнитным явлениям, или в оптике эти трудности все равно преодолевать придется. Но эти трудности вполне преодолимы и в механике, поскольку элементарный курс физики дает знания, необходимые для того, чтобы ввести представление о силе Лорентца. Словом, включение в раздел механики задач о движении электрически заряженных частиц (в том числе и движущихся с большими скоростями) не создает никаких искусственных методических трудностей, а именно исключе-  [c.8]

Наконец, в силу Лорентца входит скорость движения заряженного тела относительно тех приборов, при помощи которых мы измеряем напряженности электрического и магнитного полей, входящих в выражение силы Лорентца. Если эти приборы покоятся в выбранной нами сначала неподвижной системе координат, то под v в выражении для силы Лорентца следует понимать скорость заряженного тела относительно неподвижной системы координат. Когда мы пользуемся двумя движущимися одна относительно другой системами координат, то приборы для измерения напряженностей полей, покоящиеся в одной из этих систем координат, окажутся движущимися в другой системе координат. Поэтому, когда мы переходим к движущимся системам координат, нужно установить, как связаны между собой показания приборов, служащих для измерения напряженностей электрического и магнитного полей, если эти приборы движутся друг относительно друга.  [c.228]

Прежде всего рассмотрим идею опыта, который мог бы доказать, что сила Лорентца не изменяется при изменении скорости движения электронов относительно неподвижной системы координат, если эта скорость остается неизменной относительно приборов, с которыми производится опыт, т. е. конденсатора и магнита, создающих электрическое и магнитное поля, и приборов, служащих для измерения этих полей. (Практически такой опыт не надо делать, так как ряд опытов, хотя и косвенно, но убедительно доказывает это но идея прямого опыта поможет нам лучше понять существо вопроса.)  [c.228]

Опыт Майкельсона раньше рассматривали именно как одну из попыток обнаружить это движение ( эфирный ветер ). Но эфирный ветер не был обнаружен не только в опыте Майкельсона, но и в ряде других электрических опытов, которые были предприняты с той же целью. Более того, эти опыты приводили к явному противоречию — для объяснения их нужно было бы предположить, что эфир покоится по отношению к разным комплектам приборов, которые движутся друг относительно друга. Таким образом, сама постановка вопроса  [c.254]

В преобразованиях изменяется время. Принцип относительности электродинамики вводит понятие времени, связанного с системой отсчета. Понятие абсолютного времени теряется. Затем электрические и магнитные силы ие существуют независимо от состояния движения координатной системы.  [c.325]

По существу, дело так и обстоит при истолковании и обобщении экспериментальных фактов, касающихсй быстрых движений, и формулировке законов этих движений можно обойтись без применения теории относительности, пока не ставится вопрос о переходе к другим системам координат, движущимся по отношению к той исходной системе координат, для которой эти законы сформулированы. Исторически же дело обстояло совсем иначе когда возникла теория относительности, было известно еще очень мало экспериментальных фактов о движениях быстрых электрически заряженных частиц. Между тем уже в первой работе А, Эйнштейна по теории относительности (появившейся в 1905 г.) были теоретически выведены законы быстрых движений со всеми характерными их чертами (зависимость массы от скорости, связь между энергией и массой, различие между нормальным и тангенциальным ускорением и т. д.). Таким образом, хотя по существу законы быстрых движений являются обобщением опытных фактов и могут быть установлены независимо от теории относительности, открытием этих законов наука обязана теории относительности. Тем самым изложение законов быстрых движений вне связи с теорией относительности является отступлением от исторического хода развития механики теории относительности.  [c.240]

Конструктивные принципы, заложенные в испытываемой машине, могут решить вопрос о надежности электродных систем в установках повышенной производительности. Основным недостатком конструкции является необходимость ввода высокого напряжения внутрь заземленного вращающегося барабана, причем четыре электрода, закрепленные на консоли, должны быть достаточно точно выставлены. Практически оказалось, что при вращении барабана, который был собран из плоских шпальтских блоков, не удалось выдержать постоянного рабочего промежутка, который является координирующим с точки зрения электрической прочности. Как следствие, стала пробиваться изоляция высоковольтных электродов. Придание барабану цилиндрической формы частично решило эту проблему. Однако система и блок крепления высоковольтных электродов являются в этой конструкции недостаточно надежными. Следует отметить, что испытываемая конструкция не позволяет рассматривать возможность создания таких устройств с производительностью более 1 т/ч. Устранить указанные недостатки и сохранить преимущества конструкции можно, используя вместо барабана полуцилиндр, который имеет колебательные движения относительно оси, на которой закреплены высоковольтные электроды. В такой конструкции все проблемы с высоковольтными электродами решаются достаточно просто.  [c.274]

ТЕОРЕМА (Ирншоу система неподвижных точечных зарядов электрических, находящихся на конечных расстояниях друг от друга, не может быть устойчивой Карно термический КПД обратимого цикла Карно не зависит от природы рабочего тела и являегся функцией абсолютных температур нагревателя и холодильника Кастильяно частная производная от потенциальной энергии системы по силе равна перемещению точки приложения силы по направлению этой силы Кельвина сила (или градиент) будет больше в тех точках поля, где расстояние между соседними поверхностями уровня меньше Кенига кинетическая энергия системы равна сумме двух слагаемых — кинетической энергии поступательного движения центра инерции системы и кинетической энергии системы в ее движении относительно центра инерции Клеро с уменьшением радиуса параллели поверхности вращения увеличивается отклонение геодезической линии от меридиана Кориолнса абсолютное ускорение материальной точки рав1Ю векторной сумме переносного, относительного и кориолисова ускорений Лармора единственным результатом влияния магнитного поля на орбиту электрона в атоме является прецессия орбиты и вектора орбитального магнитного момента электрона с некоторой угловой скоростью, зависящей от внешнего магнитного поля, вокруг оси, проходящей через ядро атома и параллельной вектору индукции магнитного поля Остроградского — Гаусса [для магнитного поля магнитный поток сквозь произвольную замкнутую поверхность равен нулю для электростатического поля <в вакууме поток напряженности его сквозь произвольную  [c.283]


Регистрация параметров движения производилась электрическими датчиками и усилительной аппаратурой с записью на пленку с помощью осциллографа МПО-2. Начальное смещение отклонение от положения равновесия г и сила трения Р фиксировались проволочными датчиками, наклеенными на упругое кольцо 4 динамометра. Скорость стола г регистрировалась датчиком 7 индукционного типа, включенным между концом ходового винта и столом. Вертикальные перемещения стола записывались с помощью индуктивных датчиков 8, установленных по углам стола. В качестве базы, относительно которой измерялись вертикальные перемещения, использовались тонкие стальные ленты 9, натянутые наподобие струны вдоль направляющих и допускающие регулировку в вертикальном и в поперечном направлениях. Абсолютная скорость привода V отмечалась контактом 10, скользящим по виткам ходового винта. Прибор П104 завода Вибратор использовался в качестве отметчика времени. Расшифровка осциллограмм производилась на проекторе при увеличении X 10 с использованием данных предварительной тарировки аппаратуры.  [c.56]

По причинам исторического характера, направление магнитного вектора часто называют направлением поляризации, а плоскость, в которой лежат магнитный вектор и направление распространения,— плоскостью поляризации. Однако такая терминология совсем пе общепринята некоторые авторы определяют эти величины не относительно магнитного, а относительно электрического вектора. Нарушение единообразия возникает частично из-за отсутствия одного-едннственного физического понятия, которое можно было бы однозначно считать световым вектором . Когда особое внимание уделяется физическому действию векторов поля, действительно имеются некоторые основания считать световым вектором век тор Е. В самом деле, любое действие есть следствие движения элементарных заряженных частиц (электронов, ядер), приведенных в двия<ение электромагнитным полем. В этом случае механическая сила F, действующая на частицу со стороны поля, определяется законом. Лорентца (см. (1.1.34))  [c.47]

Броуновском) движении. Рассеянное электрическое поле — функция положения частицы и, следовательно, постоянно изменяется. Интенсивность (пропорциональная площади электрического поля) также колеблется во времени. При измерении указанных флуктуаций возможно определить, используя автокорреляционную теорию для определения коэффициента диффузии для частиц, как эти флуктуации затухают за более продолжительные промежутки BpeMejiH. Это, в свою очередь, может быть соотнесено через уравнение. Стокса-Эйнштейна с диаметром частицы, если сделать определенные предположения относительно формы частиц, и известна вязкость среды.  [c.195]

В системах газ—жидкость может также возникать дополнительный поток вещества вдоль межфазной границы, обусловленный локальными изменениями поверхностного натяжения во время процесса массопероноса (эффект Марангони). Изменения поверхностного натяжения могут быть вызваны локальными изменениями любой величины, влияющей на поверхностное натяжение, например концентрации вещества на межфазной границе, температуры или электрических величин. Характер движения вещества по межфазной поверхности различен в случае движущихся друг относительно друга или покоящихся (невозмущенных) фаз. В последнем случае могут происходить слабые пульсации коэффициента поверхностного натяжения. Тогда, если движущая сила массопереноса и градиент поверхностного натяжения малы, а естественная конвекция отсутствует, происходит медленный дрейф элементов жидкой фазы с растворенным в ней целевым компонентом вдоль границы раздела, вызванный последовательными сжатиями и растяжениями поверхности раздела фаз. При этом наблюдают образование пространственных долгоживущих ячеек с различной концентрацией целевого компонента. Такой вид поверхностной конвекции часто называют ячеистым поверхностным движением.  [c.8]

Лоренц сделал попытку истолковать отрицательный результат опыта Майкельсона и спасти идею абсолютного движения в неподвижном эфире, предположив наличие контракции (сокращения) тел в направлении их движения (гакое же предположение независимо от него выдвинул Фицджеральд). Он получил уравнения, описывающие изменение длины тел, движущихся прямолинейно и равномерно преобраяования Лоренца), относительно которых уравнения электродинамики вакуума оставались инвариантными. Но физическая природа исходного предположения оставалась совершенно неясной, и теорию Лоренца нельзя было принять в качестве основы для истолкования всех оптических и электрических измерений с использованием движущихся тел.  [c.371]

Продольный эффект Доплера служит причиной смещения спектральных линий ионов, которые в релультате воздействия электрического паля могут приобретать очень большие скорости направленного движения. На рис. 7.14 приведены результаты интерферометрического исследования смещения линий Ar-It относительно линий нейтральных атомов этого же )Л( мента (Аг-1), возникавшие в результате движения ионов под действием посто-янного, )лек грического 1юля, направленного вдо 1ь оси разрядной трубки.  [c.390]

Электродинамика (и оптика) движущихся сред, развитая Ло-рентцом, есть часть его общей электронной теории, в силу которой все электромагнитные свойства вещества обусловливаются распределением электрических зарядов и их движением внутри неподвижного эфира. В качестве формул преобразования координат при переходе от одной инерциальной системы к другой сохраняются преобразования Галилея, и, поскольку отрицается принцип относительности, уравнения электродинамики Лорентца не являются инвариантными по отношению к этим преобразованиям. Теория Лорентца означала очень крупный шаг вперед и разрешала большой круг вопросов, представлявших значительные теоретические трудности. В случае оптических явлений она совпадает с теорией Френеля и также приводит к представлению о частичном увлечении световых волн. По теории Лорентца движение вещества есть движение молекул и связанных с ними зарядов в неподвижном эфире, и учет этого движения показывает, что в среде, движущейся со скоростью V, свет распространяется со скоростью q + (1 — in )v, где l — скорость света в неподвижной среде. Таким образом, теория Лорентца приводит к формуле частичного увлечения Френеля, хорошо подтвержденной тщательными измерениями.  [c.449]

В книге, наряду с обычно рассматриваемыми вопросами механики, особое внимание уделено движению заряженных частиц в электрическом и магнитном полях. Это позволяет не только расширить круг физических явлений, которые привлекаются для иллюстрации задач механики, но также позволяет органически ввести в механику изложение основ специальной теории относительности. Такое построение кииги является педагогически целесообразным новшеством. По срав-непию с первым изданием, вышедшим в 1962 г., в книгу внесены отдельные уточнения и небольшие дополнения.  [c.2]


Смотреть страницы где упоминается термин Движение относительное электрическом : [c.60]    [c.171]    [c.134]    [c.238]    [c.29]    [c.177]    [c.188]    [c.326]    [c.305]    [c.234]    [c.174]    [c.366]    [c.372]    [c.116]    [c.139]    [c.153]    [c.229]   
Физические основы механики (1971) -- [ c.206 ]



ПОИСК



4 000—6 000 квт электрический, относительный

Движение относительное

Относительность движения



© 2025 Mash-xxl.info Реклама на сайте