Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Узлы геометрические

Таковы детали и узлы, применяемые в самых разнообразных машинах независимо от их назначения и особенностей устройства, например в паровых машинах, турбинах, двигателях внутреннего сгорания, станках, самолетах, автомобилях, текстильных, обувных, швейных машинах, машинах пиш,евой промышленности и т. д. Эги детали (или узлы) геометрически и физически тождественны при одинаковых величине и характере передаваемых усилий и поэтому должны быть отнесены к категории элементов, применение которых выражает общемашиностроительную нормализацию. В тех случаях, когда их конструктивные формы, размеры, качество материалов регламентируются в государственном порядке и их применение обязательно для всего народного хозяйства, то такие нормали являются стандартными и узакониваются в соответствующих ГОСТ. Если же их применение регламентируется только отраслевыми заводами, то они соответственно являются отраслевыми или заводскими нормалями.  [c.20]


Основные базы машины — базы основного базирующего узла. Геометрически они обычно представляют собой плоскости XY, YZ, ZX которые могут быть приняты за координатные плоскости  [c.585]

Для обжига в кипящем слое медных концентратов применяют печи, отличающиеся устройством отдельных узлов, геометрическими размерами и формой поперечного сечения. В поперечном сечении печи КС могут быть круглыми, прямоугольными или эллиптическими.  [c.128]

Поскольку мы собираемся использовать нелинейные распределения U, t, ф и т. д. по элементам, целесообразно одновременно исследовать элементы криволинейной формы. Причина их введения станет ясна, если параллельно рассмотреть описание геометрии наших элементов путем задания множества узлов геометрических узлов), число которых равно т для каждого элемента и которые характеризуются, например, матрицей X(Р == 1,2,. .., т) координат геометрических узлов. Мы убедимся, что глобальные координаты Xt произвольной внутренней точки элемента можно выразить через  [c.205]

В связи с перечисленными особенностями сложных изделий машиностроения необходимо согласовать геометрические формы и размеры сопрягаемых поверхностей деталей и узлов (геометрическая увязка), а также номинальные значения и поля допусков физических параметров (увязка по физическим параметрам) функциональных элементов оборудования и систем.  [c.526]

Рис. 27. Температуры в узлах геометрической модели стены с заделанной в ней консолью Рис. 27. Температуры в узлах <a href="/info/121135">геометрической модели</a> стены с заделанной в ней консолью
В ранее использованной модели [163, 171] предполагалось, что элементарные слои, образующие стопу, имеют толщину, равную d, и их оптические характеристики принимались равными характеристикам частиц. Такая связь между свойствами элементарного слоя и образующих его частиц может быть использована по крайней мере в качестве первого приближения при плотной упаковке частиц. Если система частиц сохраняет высокую объемную концентрацию при неплотной упаковке, связь между параметрами элементарного слоя и образующих его частиц будет более сложной. Для расчета этой зависимости служит геометрическая модель элементарного слоя—двумерная модель дисперсной среды [177], в которой реальные частицы, расположенные случайным образом в одной плоскости, заменены системой регулярно расположенных в узлах плоской квадратной сетки с шагом 2ур сфер. В рамках геометрической оптики взаимодействие излучения с поверхностью не зависит от ее размеров [125], поэтому принято, что сферы имеют единичный радиус. Предполагается, что поверхность их диффузно отражающая, серая. Для расчета характеристик элементарного-слоя используется вспомогательная схема (рис. 4.1), образованная моделью 2 и двумя абсолютно черными плоскостями I и 3. Задав на а. ч. плоскости 1 поток излучения плотностью qb, можно найти коэффициенты отражения и пропускания модели rt и Т( по отношению потоков, попадающих на плоскости / и 5 после многократного отражения на частицах, образующих систему 2, к заданному потоку, а затем поглощательную способность и равную ей степень черноты.  [c.149]


Основная задача конструкторского проектирования — реализация принципиальных схем, полученных на этапе функционального проектирования. При этом производятся конструирование отдельных деталей, компоновка узлов из деталей и конструктивных элементов, агрегатов из узлов, после чего оформляется техническая документация на объект проектирования. Одна группа задач конструкторского проектирования определяет чисто геометрические параметры конструкции (например, параметры формы) — задачи геометрического проектирования, а другая группа задач предназначена для синтезирования структуры (топологии) конструкции с учетом ее функциональных характеристик — задачи топологического проектирования. Кроме того, к задачам конструкторского проектирования необходимо отнести проверку (анализ) качества полученных конструкторских решений. Классификация задач конструкторского проектирования показана на рис. 1.1.  [c.7]

Геометрический синтез включает решение задач двух групп. Первая группа задач — задачи формирования (компоновки) сложных геометрических объектов (ТО) из элементарных ГО заданной структуры, возникающих, например, при оформлении деталировочного чертежа. Основным критерием геометрического синтеза сложных ГО является точность их воспроизведения. Вторая группа задач обеспечивает получение рациональной или оптимальной формы (облика) деталей, узлов или агрегатов, влияющей на качество функционирования объ-  [c.8]

Как следует из схемы, представленной на рис. В.1, информация о НДС является ключевой для анализа прочности и долговечности элементов конструкций. Поэтому правильность оценки работоспособности той или иной конструкции в первую очередь зависит от полноты информации о ее НДС. Аналитические методы позволяют определить НДС в основном только для тел простой формы и с несложным характером нагружения. При этом реологические уравнения деформирования материала используются в упрощенном виде [124, 195, 229]. Анализ НДС реальных конструкций со сложной геометрической формой, механической разнородностью, нагружаемых по сложному термо-силовому закону, возможен только при использовании численных методов, ориентированных на современные ЭВМ. Наибольшее распространение по решению задач о НДС элементов конструкций получили следующие численные методы метод конечных разностей (МКР) [136, 138], метод граничных элементов (МГЭ) [14, 297, 406, 407] и МКЭ [32, 34, 39, 55, 142, 154, 159, 160, 186, 187, 245]. МКР позволяет анализировать НДС конструкции при сложных нагружениях. Трудности применения МКР возникают при составлении конечно-разностных соотношений в многосвязных областях при произвольном расположении аппроксимирующих узлов. Поэтому для расчета НДС в конструкциях со сложной геометрией МКР малоприменим. В отличие от МКР МГЭ позволяет проводить анализ НДС в телах сложной формы, но, к сожалению, возможности МГЭ ограничиваются простой реологией деформирования материала (в основном упругостью) [14]. При решении МГЭ упругопластических задач вычисления становятся очень громоздкими и преимущество метода — снижение мерности задачи на единицу, — практически полностью нивелируется [14]. МКЭ лишен недостатков, присущих МКР и МГЭ он универсален по отношению к геометрии исследуемой области и реологии деформирования материала. Поэтому при создании универсальных методов расчета НДС, не ориентированных на конкретный класс конструкций или вид нагружения, МКЭ обладает несомненным преимуществом по отношению как к аналитическим, так и к альтернативным численным методам.  [c.11]

Анализ долговечности сварных узлов на стадии образования усталостного разрушения может быть выполнен на основе из-вестных деформационных критериев разрушения [141, 144, 147] или при использовании разработанного деформационно-силового критерия (см. раздел 2.3). Процедура расчета при этом аналогична анализу долговечности материала у вершины усталостной трещины, так как по сути трещина является острым геометрическим концентратором напряжений и деформаций. Расчет кинетики НДС в концентраторах напряжений в настоящее время проводится с использованием коэффициентов концентрации упругопластических деформаций и напряжений, процедура получения которых достаточно полно представлена в работах [141, 147]. В случае необходимости уточненного анализа НДС в концентраторе можно воспользоваться решением упругопластических задач с помощью МКЭ.  [c.268]


Рис. 5.14. Геометрические размеры и схема узла типа подкрепленного отверстия (а) и результаты расчета реактивных напряжений (б) Рис. 5.14. Геометрические размеры и схема узла типа подкрепленного отверстия (а) и <a href="/info/555466">результаты расчета</a> реактивных напряжений (б)
Рис. 5.17. Схема и геометрические размеры узла типа заделка Рис. 5.17. Схема и геометрические размеры узла типа заделка
Рис. 5.24. Геометрические размеры узла заделка и схема измерения реактивных напряжений Рис. 5.24. Геометрические размеры узла заделка и <a href="/info/672388">схема измерения</a> реактивных напряжений
Одним из основных условий осуществления взаимозаменяемости является точность деталей, узлов и комплектующих изделий по геометрическим параметрам, к которым относятся точность размеров или нормативные допуски характер соединений деталей при сборке т. е. посадка точность формы и расположения поверхностей шероховатость п волнистость поверхностей  [c.5]

Переменные Х, . .., Хт называют переменными проектирования и в зависимости от физической природы объекта проектирования они имеют различную интерпретацию, в частности могут характеризовать количество узлов каждого типа в объекте, указывать на включение или на невключение того или иного узла в структуру объекта, представлять геометрические размеры изделия и т. д.  [c.263]

Деталь следует внимательно осмотреть, уяснить ее назначение, конструктивные особенности (геометрические формы) выявить все конструктивные элементы и поверхности, которыми она будет соприкасаться с поверхностями других деталей в предполагаемом узле (сопрягаемые поверхности) и возможное рабочее положение.  [c.435]

На этапе структурной разработки определяются ППП, необходимые для реализации ПП, и их возможное взаимодействие. На рис. 5.12 приведена структурная схема, включающая минимальный набор проектирующих ППП для реализации семантической модели проектирования СГ (см. рис. 5.2). ППП на рис. 5.12 расположены на трех иерархических уровнях. ППП верхних уровней в определенной мере управляют действием ППП на нижних уровнях. Так, ППП I для минимизации массы СГ требуют расчетов, выполняемых ППП 2 и ППП 3, а для минимизации температур обмоток — в расчетах, выполняемых ППП 4 и ППП 5. В свою очередь, геометрические расчеты и электромагнитные (ППП 2, ППП 3) должны корректироваться с учетом требований к механической прочности узлов и деталей СГ, что осуществляется с помощью ППП 8. В общем случае число иерархических уровней структурной схемы может быть произвольным. Однако во всех случаях последователь-  [c.149]

Технологические параметры (допуски на размеры, точность и чистота обработки поверхностей, марки материалов и т. п.) служат ограничениями при построении технологического процесса и выбора соответствующего оборудования. Например, средняя точность механической обработки на станках зависит от вида обработки (резание, сверление, шлифование, фрезерование и т. п.) и приводится в справочниках. Следовательно, заданная точность. ограничивает возможности выбора тех или иных станков. Причем с повышением точности себестоимость возрастает по гиперболическому закону. А если также учесть, что механической обработке подвергаются почти все детали и узлы ЭМП для получения требуемой геометрической конфигурации и обеспечения заданных технологических параметров, то нетрудно представить, к каким отрицательным последствиям приводит завышение требований к  [c.180]

Гибкие валы применяются для передачи вращающего момен-, та между теми узлами машин и приборов, которые в процессе работы меняют свое относительное положение. Эти валы имеют криволинейную геометрическую ось и предназначены для передачи сравнительно небольших мощностей при большой частоте вращения. Гибкий вал конструктивно состоит из нескольких слоев  [c.318]

В последние годы стали создаваться кибернетические машины, выполняющие требуемые механические движения с г.омощыо соответствующих систем управления, в которых ис юльзуются ЭВМ, биотоки, специальные управляющие приводы и т. д. Это — автооператоры, роботы, манипуляторы, шагающие, ползающие и другие машины. Отличительной их особенностью является то, что рабочие органы этих машин выполняют механические движения, свойственные органам человека или животных. Например, робот имеет как бы ])уку , выполняющую заданные технологические операции. Шагающая машина имеет ноги и в какой-то мере имитирует движения, свойственные животным или насекомым. Ползающие машины сво ми элементами напоминают гусеницу или змею и т. д. Но главным в кибернетических машинах является их очувствление , т. е. оснащение этих машин искусственным осязанием с помощью соответствующих датчш-сов, искусственным зрением с помощью телевизионных устройств и т. д. С помощью специальных управляющих машин роботы, манипуляторы, шагающие и другие машины оснащаются как бы искусственным интеллектом , т. е. по заложенной в систему управления программе могут выполнять технологические операции того или другого вида в зависимости от ситуации, например при сборке каких-либо узлов выбирать требуемые детали, различая их по форме, цвету, геометрическим параметрам и т. д., перемещаться по различным поверхностям, обходя препятствия на своем пути или перешагивая через них, и т. д.  [c.14]


Чтобы разобраться с назначением различных баз, необходимо предварительно вспомнить некоторые положения теоретической мех 1ники. Известно, что каждое тело обладает шестью степенями свободы в пространстве перемещением по трем координатным осям и вращением вокруг этих осей. Если требуется, чтобы узлы и детали машины были относительно неподвижны, надо лишить их всей степеней свободы. Для лишения дет >ли одной степени свободы достато шо довести ее до соприкосновения с базой в одной то же, для лишения же всех степеней свободы деталь должна быть доведена до соприкосновения с базами в шести то гках. Точка соприкосновения с базой представляет собой двустороннюю геометрическую связь.  [c.54]

Точность станка в ненагруженном состоянии, называемая геометрической точностью станка, зависит главным образом от точности изготовления основных деталей и узлов станка и точности их сборки. Погрешности, допущенные в размерах и форме этих деталей и их взаимном расположении (плсскостность, цилиндрич-ность, параллельность и перпендикулярность осей и плоскостей, концентричность, соосность и т. д.), называют иногда геометрическими погрешностями станка.  [c.48]

Геометрические модели. В алгоритмах геометрического проектирования фигурируют геометрические объекты, являющиеся исходными данными, промежуточными и окончательными результатами конструирования. Детали и узлы конструкции имеют самые разнообразные геометрические характеристики. Например, поверхность детали характеризуется микрогеометрией (шерохова-тостькз поверхности, отклонением формы, размеров) и  [c.36]

Пакет программ ФАП-К.Ф также разработан на базе языка ФОРТРАН и относится к программным средствам геометрического моделирования. Он может быть использован в системах автоматизированного конструирования и технологического проектирования, при решении сложных геометрических задач, составлении управляющих программ для станков с ЧПУ, для моделирования движения деталей узлов и механизмов, в задачах раскроя материала и т. д. [5]. В программах пакета используются геометрические переменные и операторы. Так,, все плоские ГО делятся па элементарные ГО (ЭГО), ломаные, лекальные кривые, составные ГО (СГО) и конструктивные ГО (КГО). ЭГО включают точку, прямую, окружность, кривую второго порядка, вектор. Из элементарных ГО, ломаных и лекальных кривых могут быть по.тученЕ.1 СГО. Конструктивный ГО — плоская  [c.166]

Решение термодеформационной задачи МКЭ проводится в предположении об одновременном выполнении прохода пО всей дуге окружности, но с учетом многопроходности шва. В первом узле с жесткостью 77 кг/мм и геометрическими параметрами 1 = 150 мм, 2 3 = 40 мм, 1 = 0, 2 = 90 мм, Rm = = 110 мм, 4 = 300 мм (рис. 5.14,а) погонный объем поперечного укорочения составил 21,5 мм м, продольного — 2,7 мм /мм а во втором узле с жесткостью 15 кг/мм и А = 150 мм, ts = = 40 мм, 1=120 мм, / 2=180 мм, ш = 200 мм, / 4 = 400 мм соответственно— 22,5 и 2,55 мм /мм. Как видно из этих данных, величина объема продольного и поперечного укорочения изменяется незначительно, т. е. с достаточной степенью точности  [c.300]

Агрега/пир чюние (в переводе с лат присоединяю) —мето.т создания новых машин, приборов и оборудования пулел компоновки стандартных и унпсрицировасшых деталей, узлов и механизмов, и.меющи.х одинаковые геометрические размеры и назначение.  [c.25]

Неточности присоединительных размеюв, отклонения от геометрической формы и расположения поверх юстей, шероховатость посадочных поверхностен вала и отверстия корпуса, а также характер посадки колец влияют на величину зазоров в радиальных подшипниках, а следовательно, на долговечность и точность работы под-ши[1Ников и узлов в целом.  [c.252]

Для узла L можно построить также замкнутый силовой 1реугольник и репшть задачу нахождения неизвестных сил геометрически.  [c.23]

Появилось также понятие циклической прочности узлов (резьС рьхх, прессовых соединений и других сборных конструкций). Таким образом, в понятие усталостной прочности вводят не только факторы свойств материала и геометрической формы деталей,  [c.283]

Блочная конструкция узлов трубы позволяла их заменять при выходе из строя или смене геометрического параметра. Диаметр цилиндрической камеры энергоразделения d = 20 мм, а ее длина / = 9rfrp- Камера снабжена спрямляющей крестовиной на горячем конце. Давление измеряли манометрами класса точности  [c.95]

Расчитываются геометрические размеры основных деталей и узлов воспламенителя при его работе на критическом режиме истечения продуктов сгорания, среднемассовая температура факела, коэффициент эжекции. В последнем случае в техническое задание должны входить и параметры Р , Т эжектируемого воздуха, которым обычно служит вторичный воздух. Чаще всего из исходных данных известны марка горючего и потребная тепловая мощность факела пускового устройства N . Тогда расход топлива, кг/с, может быть найден из выражения  [c.335]

Геометрическая сторона задачи. Так как система симметрична относительно оси среднего стержня и боковые стержни растягиваются одинаковыми силами, то узел А при деформации подвески опустится по вертикали на какую-то величину 6. Новое положение узла будет (рис. 142, в). Все стержни удлинятся и займут положенне, показанное на рис. 142, в штриховыми линиями. Удлинение среднего стержня, очевидно, будет Д/i = б. Удлинения боковых стержней получим, если из точек В и D радиусом, равным ВА (или DA), проведем дуги через точку А и сделаем засечки на новых длинах стержней ВА и Вследствие того что упругие удлинения очень малы по сравнению с длинами стержней (на рис. 142, в для наглядности удлинения сильно увеличены), можно считать, что углы а между осями стержней не изменяются, а проведенные дуги заменить перпендикулярами, опущенными из узла А на новые направления стержней. Тогда, как видно из рисунка,  [c.140]

Методы конечных элементов и конечных разностей имеют ряд существенных отличий. Прежде всего методы различны в том, что в МКР аппроксимируются производные искомых функций, а в МКЭ — само решение, т. е. зависимость искомых функций от пространственных координат и времени. Методы сильно отличаются и в способе построения сеток. В МКР строятся, как правило, регулярные сетки, особенности геометрии области учитываются только в околограничных узлах. В связи с этим МКР чаще применяется для анализа задач с прямолинейными границами областей определения функций. К числу традиционных задач, решаемых на основе МКР, относятся исследования течений жидкостей и газов в трубах, каналах с учетом теплообменных процессов и ряд других. В МКЭ разбиение на элементы производится с учетом геометрических особенностей области, процесс разбиения начинается от границы с целью наилучшей аппроксимации ее геометрии. Затем разбивают на элементы внутренние области, причем алгоритм разбие-  [c.49]

Нужно было бы найти удлинения всех стержней, а затем путем геометрических преобразований установить положение узлов деформированной фермы. Такой способ решения привел бы, несомненно, к громоздким выкладкам. При помощи теоремы Кастилйаио эта задача решается несравнешю проще.  [c.175]

Расчетным размером для валов считают наибольший предельный размер, для отверстия — наименьший предельный размер, т. е. проходной предел. При таком условии годный вал может иметь только отрицательные погрешности, не превышающие по абсолютному значению допуск, годные отверстия — только полох(нтельные и также не превышающие допуск. Для расчетов, в которых используют теоретико-вероятностные методы, за расчетный размер целесообразно принимать средний из предельных размеров, т. е. размер, соответствующий середине поля допуска. В этом случае предельные допускаемые погрешности равны по абсолютному значению половине допуска. Точностью изготовления называют степень приближения действительных значений геометрических и других параметров деталей и изделий к их заданным значениям, указанным в чертежах или технических требованиях. Необходимо различать нормированную точность деталей, узлов и изделий, т. е. совокупность допускаемых отклонений от расчетных значений геометрических и других  [c.11]


Так как после решения уравнений равновесия мы получили отрицательные значения для неизвестных реакций S, и S,, то эти силы имеют направления, противоположные выбранным нами на рис. 21, т. е. силы S, и 5 направлены к узлу Е и стержни 3 и 4 сжаты. Полученные результаты проверим геометрически, т. е. рассмотрим геометрический способ решения этой задачи. Для этого построим замкнутый многоугольник сил F,, S,, S,, 5 (рис. 22). Направления сил S, и 5 найдем после того, как обойдем периметр построенного силового многоугольника dekld, причем направление этого обхода определяется направлением известных сил и S,. Измерив стороны Id и kl силового многоугольника выбранной единицей масштаба, най-дем модули искомых сил S, ji S .  [c.29]

Расчетусилий в стержнях фермы. Способ выреза-Г1 и я узлов. Фермой (рис. 1.46) называется геометрически неизменяемая конструкция, образованная прямолинейными стержнями, соединенными друг с другом концами при помощи шарниров. Шарнирные соединения концов стержней называются узлами. Ферма является статически определимой, если число узлов п и число стержней т удовлетворяют уравнению  [c.134]


Смотреть страницы где упоминается термин Узлы геометрические : [c.282]    [c.488]    [c.322]    [c.17]    [c.37]    [c.31]    [c.31]    [c.237]    [c.148]    [c.22]    [c.22]    [c.193]   
Методы граничных элементов в прикладных науках (1984) -- [ c.205 ]



ПОИСК



Геометрическое проектирование деталей и узлов металлорежущих станков



© 2025 Mash-xxl.info Реклама на сайте