Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проектирование функциональное

Этап функционально-параметрического проектирования выполняется в обязательном порядке при проектировании любых ЭМП и широко известен под названием расчетного проектирования. Функциональные свойства ЭМП в большинстве случаев определяются путем расчетов электромагнитного, электромеханического и теплового состояния активной части, состоящей из магнитопро-вода и обмоток ЭМП. Вследствие ограниченности типовых конструктивных исполнений активной части ЭМП число рассматриваемых функционально-параметрических вариантов обычно невелико. Для каждого варианта осуществляется выбор всех конструктивных данных активной части, а затем производится расчет режимов функционирования, необходимых для проверки требований технического задания и оценки технико-экономических показателей. Результаты расчетного проектирования оформляются в виде так называемых расчетных формуляров, которые служат основанием для выполнения следующего этапа проектирования.  [c.40]


Разработка единого методологического подхода в ремонтном производстве к созданию системы СТО обеспечивает экономически обоснованное и технически оправданное количество типов технических устройств и их модулей. Это ведет к уменьщению времени на создание техники, упрощает ее обслуживание и ремонт. Необходим системный подход к проектированию функционально связанных СТО.  [c.663]

Выше были отмечены два способа проектирования функционального кулачкового механизма. Для оценки того, какой из способов проектирования приводит к меньшим габаритам, функцию 5 — =  [c.191]

Проектирование функциональной системы управления на бесконтактных элементах, в отличие от проектирования на электромеханических релейных элементах, имеет ряд специфических особенностей.  [c.38]

Проектирование функциональных схем ЭВМ включает процедуры синтеза и верификации проектных решений. Исходными данными для синтеза являются алгоритм функционирования или укрупненное описание структуры на языке регистровых передач. Результат синтеза — функциональные или принципиальные схемы устройств, построенные в заданном элементном базисе. Трудности формализации синтеза усугубляются высокими размерностями задач, характерными для проектирования ЭВМ на БИС и СБИС. Трудности удается преодолеть в условиях принятия определенных допущений и правил проектирования, повышающих степень регулярности структуры и основанных на применении типовых схемных  [c.99]

Выбор библиотечного набора данных осуществляется монитором в соответствии с выполняемым этапом проектирования (функционально-логический, схемотехнический, конструкторский и т. п.). Таким образом, универсально адаптируемый транслятор настраивается на соответствующий раздел единого входного языка.  [c.242]

При автоматизации технологического проектирования необходимо учитывать характер и взаимосвязь большого числа факторов, влияющих на построение технологического процесса и определяющих экономическую эффективность изготовления изделий и их качество. С этой целью проводят структурную и параметрическую оптимизацию технологических процессов и их моделирование на основе структурно-логических и функциональных моделей.  [c.5]

Основная задача конструкторского проектирования — реализация принципиальных схем, полученных на этапе функционального проектирования. При этом производятся конструирование отдельных деталей, компоновка узлов из деталей и конструктивных элементов, агрегатов из узлов, после чего оформляется техническая документация на объект проектирования. Одна группа задач конструкторского проектирования определяет чисто геометрические параметры конструкции (например, параметры формы) — задачи геометрического проектирования, а другая группа задач предназначена для синтезирования структуры (топологии) конструкции с учетом ее функциональных характеристик — задачи топологического проектирования. Кроме того, к задачам конструкторского проектирования необходимо отнести проверку (анализ) качества полученных конструкторских решений. Классификация задач конструкторского проектирования показана на рис. 1.1.  [c.7]


Р ешение задач компоновки конструктивных элементов высшего иерархического уровня из элементов низшего иерархического уровня в большинстве случаев наиболее трудоемкая часть конструкторского проектирования, и иногда под компоновкой понимают собственно процесс конструирования. Задача компоновки машиностроительных узлов обычно состоит из двух частей эскизной и рабочей [1]. При решении эскизной части задачи компоновки по функциональной схеме разрабатывают общую конструкцию узла. На основе эскизной компоновки составляют рабочую компоновку с более детальной проработкой конструкции узла. Например, процесс компоновки зубчатого редуктора выполняется по его кинематической схеме. Предварительно необходимо рассчитать  [c.9]

Оценка результатов конструкторского проектирования на основе функциональных моделей  [c.50]

Оценка результатов конструкторского проектирования производится на основе функциональных моделей объектов проектирования (одно- и многовариантный анализ). Математическое описание конструктивных элементов базируется на блочно-иерархическом подходе к объектам проектирования.  [c.68]

Структурно-логические модели. При технологическом проектировании находят применение как структурно-логические, так и функциональные ММ.  [c.71]

Отметим, например, что используемая в настоящее время концепция проектирования интегральных микросхем с большой степенью интеграции по модульному принципу — это концепция БИП. В системе БИП конструктор выполняет функциональные, интуитивные и интеллектуальные преобразования на верхних уровнях, а ЭВМ выполняет проектирование на нижних уровнях.  [c.9]

В общем случае при проектировании технических объектов можно выделить несколько вертикальных уровней, основные из них — функциональный, конструкторский, технологический. Описание каждого вертикального уровня в свою очередь делят на иерархические уровни. Ниже приведен пример структурирования описания ЭВМ  [c.9]

Функциональное проектирование включает в себя анализ технического задания (ТЗ) и на его основе выбор с системных позиций методики построения и путей реализации вычислительного процесса в ЭВА связано с анализом и синтезом блоков ЭВА заключается в разработке функциональных и принципиальных схем. Здесь определяют принципы функционирования и важнейшие параметры и характеристики ЭВА.  [c.10]

Основные задачи функционального проектирования следующие разработка структурных схем, определение требований к выходным параметрам анализ и формирование ТЗ на разработку отдельных блоков ЭВА синтез функциональных и принципиальных схем полученных блоков контроль и выработка диагностических тестов проверка работоспособности синтезируемых блоков расчеты параметров пассивных компонентов и определение требований к параметрам активных компонентов формулировка ТЗ на проектирование компонентов выбор физической структуры, топологии компонентов расчеты параметров диффузионных профилей и полупроводниковых компонентов, электрических параметров, параметров технологических процессов эпитаксии, диффузии, окисления и др. вероятностные требования к выходным параметрам компонентов.  [c.10]

Основные задачи конструкторского проектирования следующие покрытие функциональных схем, т. е. получение принципиальных электрических схем конструкторский расчет геометрических размеров компонентов и площади размещения компоновка элементов размещение элементов с учетом конструкторских схемотехнических и технологических ограничений трассировка соединений контроль топологии проектирование фотошаблонов выпуск конструкторско-технологической документации.  [c.11]

Функциональное проектирование ЭВА состоит из четырех основных горизонтальных уровней системного, логического, схемотехнического, компонентного.  [c.11]


Выше были описаны задачи синтеза. Задачи анализа при проектировании являются задачами исследования моделей создаваемых объектов. Выделяют физические (макеты, стенды, блоки и т. п.) и математические модели. Математические модели (ММ) — это совокупность математических объектов с заданными отношениями между ними. Математические модели бывают функциональные, структурные и коммутационные. Функциональные ММ отображают физические и информационные процессы, происходящие в моделируемом объекте структурные ММ — геометрические свойства объектов коммутационные ММ— соединения в моделируемых объектах. При проектировании объекта обычно используют совокупность описанных моделей. На каждом этапе проектирования могут применять различные модификации ММ.  [c.61]

Проектирование реализации (логическое проектирование) разделяют на две части проектирование базы данных и проектирование программ. Результатом первой части является логическая структура БД. Результатом второй части считают функциональные описания программных модулей и наборы запросов к БД.  [c.98]

Функциональные и структурные модели. В проектных процедурах, связанных с функциональным аспектом проектирования, как правило, используются ММ, отражающие закономерности процессов функционирования объектов. Такие модели называют функциональными. Типичная функциональная модель представляет собой систему уравнений, описывающих либо электрические, тепловые, механические процессы, либо процессы преобразования информации.  [c.143]

В конструкторском проектировании выделяют ММ схем (структурных, функциональных, электрических), монтажного пространства, самих конструкций.  [c.216]

Особенностью цифровой РЭА является использование на функционально-логическом уровне проектирования в качестве моделей систем логических уравнений, а в качестве методов анализа — методов решения этих систем.  [c.222]

Выбор метода решения системы алгебраических уравнений. Решение систем алгебраических уравнений (АУ) имеет место во многих проектных процедурах и прежде всего в процедурах функционального проектирования. Эффективность решения этих задач вносит суш,ественный вклад в общую эффективность выполнения проектных процедур, поэтому необходимо правильно выбрать метод решения системы АУ. Такой выбор приходится осуществлять разработчику пакета прикладных программ (ППП) для подсистем функционального проектирования. Если же пакет выполнен открытым по отношению к численным методам решения систем АУ и, следовательно, содержит ряд модулей, реализующих альтернативные методы, то выбор метода возлагается на пользователя.  [c.232]

Понятие синтез технического объекта в широком смысле слова близко по содержанию к понятию проектирование . Задача синтеза технического объекта состоит в том, чтобы по заданному функциональному назначению объекта или по закону его функционирования получить проектное решение в виде некоторого описания проектируемого объекта.  [c.261]

Одной из задач автоматизации проектирования технологического процесса производства МК является определение функциональной связи между величинами 0 и 5 последующей реализацией математической-модели процесса управления заварки лепестков МК на управляющей мини- или микро-ЭВМ.  [c.301]

Под устойчивостью САПР к искажающим воздействиям будем понимать способность системы выполнять свое функциональное назначение при наличии внешних и внутренних искажающих воздействий. Источниками внешних воздействий могут быть сети электропитания, неприспособленные для эксплуатации вычислительной техники помещения, ошибки в подготовке данных и т. п. Источниками внутренних воздействий являются сбои и отказы в самом КТС САПР, которые могут приводить к искажению кодов программы, результатов проектирования и т. п. Количественной оценкой показателя устойчивости может служить такой критерий, как область устойчивого функционирования. Задача определения области устойчивого функционирования САПР аналогична задаче определения допусков и технических требований, рассмотренной в 6.5.  [c.341]

При большой степени детализации маршруты представляются состоящими из проектных процедур, например для БИС имеем разработку алгоритма функционирования, абстрактный синтез конечного автомата, структурный синтез функциональной схемы, верификацию проектных решений функционально-логического проектирования, разбиение функциональной схемы, ее покрытие функциональными ячейками заданного базиса, размещение, трассировку, контроль соблюдения проектных норм и соответствия электрической и топологической схем, расслоение общего вида топологии, получение управляющей информации для фотонаборных установок. Возможна еще большая детализация маршрута с представлением проектных процедур совокупностями проектных операций, например структурный синтез функциональной схемы БИС можно разложить на следующие операции поиск эквивалентных состояний конечного автомата, реализацию памяти, кодирование состояний, определение функций выхода и возбуждения элементов памяти, синтез комбинационной части схемы.  [c.357]

Например, в качестве понятий можно рассматривать совокупность параметров, даюищх описание электромеханического объекта на некотором этапе проектирования, функциональные взаимосвязи этих параметров интерпретировать как свойства, а событиями считать изменения параметров.  [c.94]


Все рассматриваемые ниже методы описания конструкторской информации представляют отдельные попытки, удовлетворяющие требованиям решения задач разных этапов проектирования. Для описания информации и действий над ней на отдельных этапах проектирования могут оказаться удобными различные частные языки, приспособленные к специфическим особенностям этих этапов ЛЯПАС — при проектировании функциональных схем механизмов и машин, а также принципиальных электро- и гидросхем управления [34], АЛГОЛ-60 [35] — для решения вычислительных задач, КОБОЛ [36] — для технико-экономических задач, СИМСКРИПТ — для моделирования различных процессов [37], ФОРТРАН [38] и т. д.  [c.23]

Базовый элемент — элементарная часть синтезируемого объекта, которую невозможно или нецелесообразно разделять на более мелкие составные части. При синтезе механизмов в роли примитивов выступают детали, при синтезе радиоэлектронных схем — электрорадиоэлементы (резисторы, конденсаторы, трансформаторы и т. п.), при проектировании функциональных схем ЭВМ — логические элементы (дизъюнкторы, конъюнкторы, триггеры и т. п.). Основную часть сведений об элементе составляет перечень его свойств, называемых атрибутами. В перечне указываются имена атрибутов, в сведения могут также входить значения атрибутов, ссылки на другие элементы и процедуры, с помощью которых конкретизируются свойства или выявляются допустимые типы связей и т. п.  [c.55]

Дальнейшим шагом развития автоматизации промышленности является объединение систем САПР, АСТПП и ГАП в единую комплексную систему проектирования и производства. Такое объединение в общую систему образует ядро будущих интегрированных производственных систем. Объединение автоматизированных систем проектного института и завода осуществляется путем создания сети локальных линий связи для передачи данных между системами. Подсистемы АСУП, АСНИ, САПР, АСТПП реализуют информационное обеспечение на входе ГАП АСУП — планирование подготовки производства и загрузки по номенклатуре и количеству изделий АСНИ и САПР-—автоматизацию научных исследований и проектирования (функционального и конструкторского) АСТПП —автоматизацию технологической подготовки производства для ГАП. Таким образом, ГАП следует рассматривать как элемент, взаимосвязанный с другими элементами структуры интегрированных производственных систем.  [c.226]

Главными и наиболее часто используемыми на практике являются традиционные инженерные методы, к которым относятся разработка схем, чертежей, создание эскизов, рисунков, моделей и макетов-натуральных образцов. Нового уровня в художественном конструировании достигли методы аналогий и модификаций. Первый из них предполагает разработку образа и композиции объекта в соответствии с образом и композицией однотипного по назначению и функционированию образца, второй - дальнейшее совершенствование идеи найденного образца базового объекта в его моделях разного назначения за счет изменений в деталях формы. Наряду с этим, методология художественного конструирования может включать художественно-конструкторский анализ (исследование исходной ситуации и построение объекта проектирования, функционально-эргономический анализ), а также художсствен-но-конструкторский синтез в процессе которого ведется функционально- эргономический поиск, работа над композицией изделия.  [c.50]

Разработка ПО основана на модели ВХОД-ОБРАБОТКА-ВЫХОД данные входят в систему, обрабатываются или преобразуются и выходят из системы. Такая модель используется во всех структурных методологиях. При этом важен порядок построения модели. Традиционный процедурно-ориентированный подход регламентирует первичность проектирования функциональных компонент по отношению к проектированию структур данных требования к данным раскрываются через функциональные требования. При подходе, ориентированном на данные, вход и выход являются наиболее важными - структуры данных определяются первыми, а процедурные компоненты являются производными от данных. Информационноориентированный подход, как часть 1Е-дисциплины, отличается от подхода, ориентированного на данные, тем, что позволяет работать с неиерархическими структурами данных.  [c.115]

Разбиение схем устройств на конструктивные элементы (узлы) при компоновке машин в основном однозначно определяется по функциональному признаку. Кроме того, в отличие от электронных устройств задача разбиения компоновки машин — малосвязная. Так, почти однозначно решается задача разработки унифицированных узлов машин (см. рис. 1.2). Наиболее близка к задаче разбиения на конструктивные элементы электронных схем задача модульного проектирования пневмо- и гидросистем.  [c.19]

Прюектирование технологических процессов включает в себя ряд взаимосвязанных иерархических уровней разработку принципиальной схемы технологического процесса проектирование технологического маршрута обработки деталей (или сборки изделий) проектирование операций подготовку управляющих программ для оборудования с ЧПУ. Широкое применение находят как структурно-логические табличные, сетевые, перестановочные, так и функциональные ММ. В промышленности созданы системы технологической подготовки производства, включающие несколько подсистем (систем) автоматизированные системы проектирования технологических процессов механической обработки, сборки, заготовительного производства, оценки технологичности конструкций изделий и др.  [c.91]

САПР создается как иерархическая система, реализующая комплексный подход к автоматизации на всех уровнях проектиро-вапня. Блочно-модульный иерархический подход к проектированию сохраняется при примепении САПР. Так, в технологическом проектнроБаипи механосборочного производства обычно включают подсистемы структурного, функционально-логического и элементного проектирования (разработка принципиальной схемы технологического процесса, проектирование технологического маршрута, проектирование операции, разработка управляющих программ для станков с ЧПУ). Возникает необходимость обеспечения комплексного характера САПР, т. е. автоматизации на всех уровнях проектирования. Иерархическое построение САПР относится не только к специальному программному обеспечению,  [c.110]

Управление автоматизированным банком данных осу-ш,ествляют проектировщики, при этом необходимо обеспечить целостность, правильность данных, эффективность и функциональные возможности СУБД. Проектировщик организует и формирует БД, определяет вопросы использования и реорганизации. База данных составляется с учетом характеристик объектов проектирования, процесса проектирования, действующих нормативов и справочных данных. При создании автоматизированных банков данных одним из основных является принцип информационного единства, заключающийся в использовании единой терминологии, условных обозначений, символов, единых проблемно-ориентированных языков, способов представления информации, единой размерности данных физических величин, хранящихся в БД. Автоматизированные банки данных должны обладать гибкостью, надежностью, наглядностью и экономичностью. Гибкость заключается в возможности адаптации, наращивания и изменения средств СУБД и структуры БД. Реорганизация БД не должна приводить к измененик прикладных программ. Для одновременного обслуживания пользователей должен быть организован параллельный доступ к данным. При использовании интерактивных методов проектирования необходимо использовать режим диалога.  [c.40]


В настоящее время широко распространены системы РАПИРА, используемые для функционального и конструкторского проектирования РЭА и ЭВА, СВЧ устройств, микросборок, плоских конструктивов, управляющих перфолент для станков с ЧПУ и др. Одна из модификаций этой системы проектирования РАПИРА—5.3—82 представляет собой комплекс пакетов прикладных программ, предназначенный для автоматизации проектирования РЭА и ЭВА на ЕС ЭВМ и выполняющий конструкторское проектирование двусторонних печатных плат, тонкопленочных и толстопленочных микросборок. В состав системы входят программные средства базовое программно-информационное обеспечение (БПИО), подсистема конструкторского проектирования микросборок, подсистема конструкторского проектирования двусторонних печатных плат (ДПП). Система функционирует на ЕС ЭВМ модели не ниже ЕС-1022 стандартной конфигурации (ОЗУ-512к). Для функционирования системы дополнительно используют координатографы, графопостроители, сверлильные станки.  [c.91]

Моделирование цифровой РЭА возможно с различной степенью детализации. На логическом (вентильном) подуровне функционально-логического проектирования в качестве элементов аппаратуры рассматривают простые схемы типа вентилей, на регистровом подуровне элементами могут быть как отдельные вентили, так и любые более сложные сочетания простых схем, например регистры, счетчики, дешифраторы, сумматоры, арифметико-логические устройства и т. п.  [c.189]

В маршрутах проектирования БИС и СБИС к числу основных проектных процедур относятся верификация логических и функциональных схем, синтез и анализ тестов. В этих процедурах требуется многократное выполнение моделирования логических схем. Однако высокая размерность задач логического моделирования (СБИС насчитывают.десятки—сотни тысяч вентилей) существенно ограничивает возможности многовариантного анализа. Так, современные программы анализа логических схем на универсальных ЭВМ могут обеспечить скорость моделирования приблизительно 10 вентилей в секунду (т. е. на анализ реакции схемы из 10 вентилей на один набор входных воздействий затрачивается 1 с машинного времени), что значительно ниже требуемого уровня. Преодоление затруднений, обусловливаемых чрезмерной трудоемкостью вычислений, происходит в двух направлениях. Первое из них основано на использовании общих положений блочно-иерархического подхода и выражается в переходе к представлениям подуровня регистровых передач, рассмотренным в 4.7. Второе направление основано на применении специализированных вычислительных средств логического моделирования, называемых спецпроцессорами или машинами логического моделирования (МЛМ), Важно отметить, что появление СБИС не только порождает потребности в таких спецпроцессорах, но и обусловливает возможности их создания с приемлемыми затратами. Разработанные к настоящему времени МЛМ функционируют совместно с универсальными ЭВМ и обеспечивают скорость моделирования 10 —10 вентилей в секунду.  [c.254]

Любому варианту проектируемого объекта соответствуют свои структура и конструкция. При автоматизированном проектировании для порождения множества альтернативных структур технического объекта, эквивалентных по функциональному назначению, но различных по тактико-техническим характеристикам, необходима разработка математической модели объекта, представляющей собой формальное описание проектируемого объекта на принятом уровне детализации.  [c.263]

Большая размерность задач проектирования сложных технических систем и объектов делает целесообразным блочно-иерархический подход, при котором процесс проектирования разбивается на взаимосвязанные иерархические уровни. Структурный синтез составляет существенную часть процесса проектирования и также организуется по блочноиерархическому принципу. Это означает, что синтезируется не вся сложная система целиком, а на каждом уровне в соответствии с выбранным способом декомпозиции синтезируются определенные функциональные блоки с соответствующим уровнем детализации. Существуют различные способы классификации задач структурного синтеза. Так, в частности, в зависимости от стадии проектирования различают следующие процедуры структурного синтеза выбор основных принципов функционирования проектируемой системы, выбор технического решения в рамках заданных принципов функционирования, выпуск технической документации. В зависимости от типа синтезируемых структур различают задачи одномерного, схемного и геометрического синтеза. В зависимости от возможностей формализации различают задачи, в которых возможен полный перебор известных решений, задачи, которые не могут быть решены путем полного перебора за приемлемое время, задачи по-  [c.268]

На промежуточных иерархических уровнях нисходяш,ёго функционального или конструкторского проектирования также возникают задачи, подобные задаче оптимизации допусков. Предположим, что на k-u иерархическом уровне управляемыми параметрами системы являются параметры У1. На следующем, (Л+1)-м иерархическом уровне эти же параметры рассматриваются уже как выходные параметры подсистем, а управляемыми параметрами здесь оказываются другие параметры х,. Для выполнения проектирования на /г+1)-м иерархическом уровне на выходные параметры У/ нужно задать условия работоспособности. Очевидно, что эти условия должны быть результатом проектирования на k-M уровне, т. е. должны быть определены не только некоторая оптимальная точка Y в пространстве параметров у,, но и технические требования на эти параметры.  [c.297]

Структуру обобщенного маршрута, получающуюся при объединении индивидуальных маршрутов, удобно представить в виде орграфа, в котором вершины отображают проектные процедуры, а дуги — последовательность их выполнения. Возможные разветвления соответствуют альтернативным вариантам построения маршрутов. Например, схемотехническое проектирование выполняется по различающимся маршрутам в зависимости от того, является ли проектируемая БИС заказной или полузаказной, цифровой, цифроаналоговой или аналоговой и т. п. Схемотехническое проектирование может сводиться к покрытию функциональной схемы ячейками из заданного набора, но можно включать ряд операций от структурного синтеза прин-  [c.357]


Смотреть страницы где упоминается термин Проектирование функциональное : [c.357]    [c.362]    [c.383]    [c.14]    [c.39]    [c.12]   
Теоретические основы САПР (1987) -- [ c.10 ]

Основы автоматизированного проектирования (2002) -- [ c.246 ]



ПОИСК



АФАР передающей функционального проектирования

Автоматизация функционально-логического проектирования

Алгоритмы функционально-логического проектирования

Гибкие производственные системы 700, 709 - Автоматизированное проектирование 738 - Взаимосвязь структурных компонентов 716 - Классификация по функциональному

Денисов, И. Н. Статников. Об использовании метода ПЛПпоиска в задачах проектирования с функциональными ограничениями

Маршруты функционально-логического проектирования

Оценка результатов конструкторского проектирования на основе функциональных моделей

Пакеты функционального проектирования

Программный комплекс ПА-6 для функционального проектирования динамических объектов

Проектирование функционально-логическое

Пути совершенствования пакетов функционального проектирования

Структура пакета функционального проектирования на макроуровне

Функциональное С (—ао, +оз)

Функциональность

Функциональные основы проектирования общественных зданий и сооружений



© 2025 Mash-xxl.info Реклама на сайте