Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стойкость Шероховатость поверхност

Как известно алмазное выглаживание улучшает поверхностный слой. Исследовано влияние алмазного выглаживания боковой рабочей поверхности пуансонов из стали У8А, термообработанных до HR 52—56 и шлифованных, на их стойкость. Шероховатость поверхности рабочей части Ra= 1,2-Ь 0,8 мкм. Исходная величина технологического зазора между матрицей и пуансоном составляла Zi = 5 % и 2= 7,5%.  [c.467]


В зависимости от конкретных условий обработки могут в широких пределах варьироваться те или иные показатели процесса съем материала, стойкость, шероховатость поверхности, точность и др. С этой точки зрения эластичные шлифовальные инструменты являются более управляемыми , так как легко изменяемые конструктивные параметры их дают возможность изменять свойства инструментов в нужном направлении.  [c.65]

Выбор класса шероховатости поверхности оказывает существенное влияние на работоспособность деталей механизмов. Повышение класса шероховатости поверхности детали уменьшает трение, повышает износостойкость, увеличивает предел выносливости, повышает стабильность подвижных и неподвижных посадок, повышает стойкость против коррозии и улучшает внешний вид.  [c.119]

Следует отметить, что на другие виды разрушения материалов в разной степени влияют масштабный фактор и конструкция детали. Так, при оценке коррозионной стойкости материала результаты, полученные для образца, при сохранении внешних условий могут быть, как правило, использованы для различных деталей. Однако, если испытывается усталостная или коррозионно-усталостная прочность материала, то форма и размеры образцов (которые стандартизованы) оказывают существенное влияние на процесс разрушения, поскольку не только вид нагружения, но и конструкция детали и технология ее обработки (шероховатость поверхности) определяют напряженное состояние и выносливость материала. Как известно, для усталостного разрушения разработаны методы пересчета на другой цикл нагружения, а также методы оценки концентрации напряжения и масштабного фактора. Это позволяет более широко использовать результаты испытания образцов для определения усталостной долговечности деталей различных конструктивных форм. В общем случае можно сказать, что применяемая схема испытания стойкости материала отражает уровень познания физики данного процесса. Чем глубже наши знания в раскрытии закономерностей процесса, тем больше методы испытания стойкости материалов абстрагируются от конструктивных форм изделий и отражают свойства и характеристики самих материалов.  [c.487]

При назначении режимов обработки различных жаропрочных материалов нельзя исходить только из производительности или стойкости инструмента. Из указанных материалов изготовляют наиболее ответственные и нагруженные детали машин и приборов. Режим обработки влияет на величину и характер шероховатости поверхности, степень и глубину наклепа, знак и величину внутренних напряжений, т. е. на те свойства, которые объединяются понятием качество поверхности и от которых во многом зависят эксплуатационные качества и надежность деталей. Учет влияния режимов обработки на качество поверхности затруднен большим разнообразием рассматриваемых сталей и сплавов, и сложностью и неоднозначностью зависимости эксплуатационных свойств поверхностей деталей от различных параметров режима обработки. При обработке жаро-  [c.39]


Синтетические алмазы можно применять для зубохонингования термически обработанных зубчатых колес. Ими можно снимать значительные припуски, исправлять некоторые дефекты геометрии зуба. По производительности они не уступают абразивным хонам, а по стойкости и получаемой шероховатости поверхности превосходят их. По своей эффективности они могут уступать только инструменту на основе кубического нитрида бора.  [c.83]

Высокую эффективность обеспечивают круги из кубического нитрида бора при обработке деталей из конструкционных сталей, стойкость кругов из кубического нитрида бора при шлифовании отверстий диаметром 15—30 мм в деталях из стали 20Х, прошедших цементацию и закалку на твердость HR 56—60, в 50—80 ра выше стойкости кругов из белого электрокорунда шероховатость поверхности ниже (10—9-го класса вместо 8). Уменьшение теплового воздействия на деталь, отсутствие прижогов и трещин проявляется при обработке самых различных материалов.  [c.91]

Рабочая подача сохраняется обычно постоянной при обработке всего контура детали. Она назначается с расчетом получения в данных конкретных условиях определенной стойкости инструмента, производительности и шероховатости поверхности.  [c.226]

В настоящее время достаточно изучены вопросы связей качества обработанной поверхности с важными эксплуатационными показателями деталей и узлов машин и приборов (трение и износ при скольжении и качении, жидкостное трение, контактная жесткость, прочность прессовых соединений, отражательная способность, износостойкость при переменных нагрузках, коррозионная стойкость и качество лакокрасочных покрытий, точность измерений, соотношение между допусками размера и шероховатостью поверхности и т. д.). Сведения о связи эксплуатационных свойств поверхности с параметрами шероховатости освещены, например в работах [56—67] и обширной библиографии, приведенной в перечисленной литературе.  [c.160]

Повышенную коррозионную стойкость образцов, подвергнутых гидрополированию, в морской воде и парах воды следует объяснять более равномерной шероховатостью поверхности, что уменьшает местную коррозию в результате действия газов и электролита, а также равномерной интенсивностью поверхностного слоя. Влияние этих факторов объясняется главным образом изменением электродного потенциала поверхности и умень-  [c.314]

Многочисленные лабораторные исследования, а также наблюдения за эксплуатацией деталей машин показывают, что с уменьшением шероховатости поверхности коррозионная стойкость повышается. Это объясняется тем, что при химической коррозии вещества, вызывающие коррозию, собираются на дне впадин и образуют очаги коррозии. Чем меньше глубина впадин, тем меньше условий для образования очагов коррозии и разрушения поверхности металла. При электромеханической коррозии в первую очередь разрушаются гребешки. Поэтому с уменьшением шероховатости поверхности разрушение поверхности также уменьшается. Кроме того, пассивирующие пленки, более устойчивые на гладкой поверхности, также защищают металл от коррозии.  [c.401]

С увеличением наклепа и остаточных напряжений в поверхностном слое уменьшается коррозионная стойкость деталей машин. Это объясняется тем, что первичная защитная пленка на деформированном металле менее прочна и легче разрушается под влиянием внутренних напряжений в металле. Следовательно, для повышения коррозионной стойкости деталей машин необходимо уменьшать шероховатость поверхности деталей машин, наклеп и остаточные напряжения в поверхностном слое. При этом следует иметь в виду, что наиболее коррозионностойкими будут (при прочих равных условиях) детали машин с более равномерной шероховатостью поверхности и более равномерным распределением остаточных напряжений и наклепа по поверхности.  [c.401]


При выборе глубины резания следует учитывать, что влияние ее на стойкость инструмента и скорость резания незначительно. Рекомендуемые величины подач приводятся в табл. 27—28, 33 для сверления отверстий под последующую обработку сверлом, зенкером, резцом в жестких деталях и деталях средней жесткости. При сверлении отверстий, требующих последующей обработки развертками, а также отверстий в деталях малой жесткости, с неустойчивыми опорными поверхностями, отверстий, ось которых не перпендикулярна к плоскости, при сверлении для последующего нарезания резьбы метчиком, приведенные в таблицах подачи следует уменьшать в 1,5—2 раза для сверл из быстрорежущей стали Р18 и на 20% для сверл с пластинками из твердого сплава. Подачи при зенкеровании (табл. 30) даны при обработке отверстий до 5-го класса точности под последующее развертывание с невысокими требованиями к шероховатости. Для обработки отверстий по 3—4-му классам точности с повышенными требованиями к шероховатости поверхности зенкерование под последующую обработку одной разверткой или зенкерование под нарезание резьбы осуществляется с подачами, на 20— 30% меньшими, чем указано в табл. 29, 30, 33.  [c.371]

Шероховатость поверхности оказывает влияние и на усталостную прочность, сопротивление ударным нагрузкам, антикоррозионную стойкость, прочность гальванических покрытий, отражение световых, электромагнитных и ультразвуковых волн.  [c.111]

Последние проходы должны быть односторонними. При этом необходимо иметь в виду, что с увеличением подачи при правке шероховатость поверхности увеличивается, а режущая способность и стойкость круга повышаются. И наоборот — с уменьшением подачи при правке наблюдается уменьшение режущей способности.и стойкости круга.  [c.20]

Повышение классов шероховатости поверхности значительно улучшает антикоррозионную стойкость деталей. Это имеет особенно важное значение в том случае, когда для поверхностей не могут быть использованы защитные покрытия (поверхности цилиндров двигателей и др.).  [c.188]

В зависимости от величины припуска на обработку вначале находят глубину резания. Небольшое влияние глубины резания на стойкость инструмента и скорость резания позволяет при черновой обработке назначать возможно большую глубину резания, обеспечивающую снятие части припуска за один проход. При шероховатости поверхности, соответствующей 5-му классу, глубина резания назначается в зависимости от класса точности в пределах от 0,5 до 1,5—2,0 мм, а при б—7-м классах чистоты — от 0,1 до 0,3—0,4 мм.  [c.141]

При обработке заготовок с чистыми поверхностями попутное фрезерование имеет преимущества перед встречным в отношении как стойкости инструмента, так и шероховатости поверхности. При попутном фрезеровании необходимо, чтобы станок был в хорошем состоянии и имел устройство для устранения зазора в механизме подачи.  [c.251]

В настоящее время применяют торцовые фрезы с механическим креплением металло- и минералокерамических вставных ножей круглой и многогранной форм, что значительно повышает их стойкость, а следовательно, и производительность. Эти фрезы обеспечивают шероховатость поверхности 6—8-го классов.  [c.252]

Стойкость изделий против коррозии в сильной степени зависит от шероховатости поверхности.  [c.35]

СЛОЙ прочно связан с основным материалом лопатки и надежно предохраняет поверхность лопатки от эрозионного разрушения. Упрочненный слой имеет шероховатую поверхность, что способствует удержанию на лопатке пленки влаги и дополни-тельно повышает эрозионную стойкость.  [c.80]

Обычно при выборе скорости резания руководствуются желаемой стойкостью инструмента, а при выборе подачи — точностью обработки и параметром шероховатости поверхности. Скорость резания (м/мин)  [c.345]

Окружную скорость резания шевера выбирают в зависимости от обрабатываемого материала, его твердости, требуемого параметра шероховатости поверхности зубьев и размеров колеса. Наибольшая стойкость шеверов из быстрорежущей стали достигается при скорости резания Го = 120 м/мин. Частота вращения шевера (об/мин)  [c.352]

Интенсификация шлифования. Высокоскоростное шлифование. На операциях со снятием большого припуска повышение скорости круга позволяет пропорционально увеличить минутный съем металла при сохранении стойкости круга и параметров шероховатости шлифованной поверхности. На операциях окончательного шлифования, когда необходимо повысить качество обрабатываемой поверхности, увеличение скорости круга не должно сопровождаться ростом поперечной подачи (минутного съема металла). В этом случае высокоскоростное шлифование позволяет уменьшить параметры шероховатости поверхности, повысить точность обработки путем снижения силы резания и износа круга, а также увеличить производительность с помощью уменьшения числа правок круга, сокращения времени выхаживания и увеличения общей стойкости круга. На современных круглошлифовальных станках скорость круга может быть увеличена до 50—60 м/с.  [c.398]

При обработке деталей из чугуна и конструкционных сталей средней прочности увеличение диаметра отверстия при сверлении сверлами с меньшим диаметром ступени составляет 0,1—0,15 мм, а при сверлении сверлами с большим диаметром ступени — 0,04 — 0,1 мм. Точность обрабатываемого отверстия соответствует 10—12-му квалитету. Параметр шероховатости поверхности Ra as 1,25 мкм. Стойкость сверл без покрытия 20 — 40 мин при диаметре меньшей ступени 5 — 18 мм (работа  [c.571]


В выборе материала, термообработки его, стойкости, прочности. Отсутствие или недостаточное наличие технических требований, предъявляемых к точности изготовления и сборки. Ошибки в выборе допустимых отклонений размеров сопряжений поверхностей в выборе шероховатости поверхностей трущихся частей или сопряжений эргономического характера органы управления не приспособлены к физиологическим и антропометрическим данным человека-оператора эстетического характера (снижение достоинства конструкции) изделие имеет некрасивый внешний вид форма его не соответствует функциональному назначению  [c.165]

Полученные экспериментальные данные показывают, что снижение шероховатости поверхности отливок, увеличение глубины мелкокристаллического поверхностного слоя путем геометрического развития поверхности отливки и термодиффузионного насыщения активными элементами позволяют значительно повысить плотность, прочность, коррозионную стойкость отливок и снизить их массу на 25—30%. Рещение этой проблемы при массовом литье деталей позволит получить высокий технико-экономический эффект.  [c.141]

Общим требованием к гидравлическим машинам, работающим в условиях кавитационно-абразивного износа, является тщательная обработка поверхностей, обтекаемых потоком. Любые, даже самые небольшие неровности поверхности могут стать источником местных возмущений, которые, в свою очередь, могут вызвать разрушение поверхности. Это опасно, потому что кавитационная стойкость материалов, применяемых в гидромашиностроении, уменьшается с увеличением шероховатости поверхности.  [c.150]

Влияние параметров технологического процесса на износо< стойкость поверхностей. Показатели качества изготовления изделий, как следствия принятого технологического процесса, оказывают непосредственное влияние на такое основное эксплуатационное свойство, как износостойкость поверхности. Во-первых, как это было показано выше, на износостойкость влияют химический состав, структура и механические характеристики материалов (см. гл. 5, п. 2 и п. 5), которые зависят от металлургических или других процессов получения материалов, от термических и термохимических видов обработки поверхностей. Во-вторых, износостойкость зависит от геометрических и физико-химических параметра поверхностного Слоя (см. гл. 2, п. 2). При этом отклонения формы деталей увеличивают период макроприработки (см. гл. 8, п. 3), а шероховатость поверхности влияет на период микропри-райотки, поскольку в процессе нормального изнашивания устана-вливаетря оптимальная шероховатость, соответствующая данным условиям работы сопряжения (см. рис. 74).  [c.437]

Известно также, что параметры шероховатости поверхности оказывают существенное влияние на сопротивление усталости. В общем случае предел усталости повышается с улучшением качества поверхностного слоя. Кроме того, на них влияет направление следов обработки при их совпадении с действием главного напряжения предел усталости выше. Финишная обработка поверхности, которая в основном определяет конфигурацию микроскопических рисок и механические свойства поверхностного слоя, существенно влияет н а предел выносливости даже при одинаковом классе шероховатости. Например, в работе [127] приведены результаты испытаний на выносливость образцов из сталей Р18, 9ХМФИ9Х, обработанных алмазным и обычным шлифованием. Сопротивляемость усталостному разрушению при шлифовании кругами из синтетических алмазов повышается на 20—45% при контактных нагрузках и до 30% при изгибе. Это связано с характеристикой рельефа поверхности, когда число царапин на единицу поверхности и их глубина значительно меньше при алмазном шлифовании, чем при абразивном, а рельеф становится более гладким (см. также рис. 150). Проведенные исследования позволили повысить стойкость валков для станов холодной прокатки вследствие правильного выбора технологического процесса.  [c.439]

На коррозионную стойкость испытывали сплавы молибдена в виде листовых заготовок размером 1 х 15 х 40 мм с шероховатостью поверхности Лд = 0,63-ь 1,25 мкм. Такие заготовки ("листики ) получали прокаткой из сутунки размером 250 х 150 х 35 мм после ее нагрева в среде водорода при 1400° С. Отжиг для снятия напряжений после прокатки проводили при 1100° С, что обеспечивало сохранение состояния наклепа (температура рекристаллизации сплава ЦМ2А равна 1300°С). Кроме того, сплав ЦМ2А  [c.86]

Практика обработки лентами самых различных материалов от сталей ХВГ, ШХ15 до чугуна СЧ 21-40 и алюминиевого сплава АК6 показала их большую эф( ктивность. На ряде заводов ими полируют шейки коленчатых валов (сталь 45, HR 58—62), в том числе после суперфиниширования, с охлаждением керосином. Лента после обработки каждого вала перемещается на 2 мм, причем валу дается осциллирующее движение с частотой 400 кол/с при амплитуде 3 мм. В течение 35 с снимается слой 2—5 мкм и достигается шероховатость поверхности, соответствующая 9—10-му классу. Стойкость лент при 100%-ной концентрации алмаза достигает 50—60 тыс. валов, затраты окупаются уже при обработке 9 тыс, валов [116]. Повышение силы прижима ленты с 3 до 10 кгс увеличивает силы резания в 2 раза, соответственно в 1,5—2 раза растет съем металла. Характерно, что получаемая шероховатость не зависит от марки стали и ее твердости.  [c.81]

Электрпфиатеские и электрохимические методы обработки позволяют изменять в нужном направлении физико-механические и химические свойства поверхностного слоя деталей дли повышения износостойкости, твердости, коррозионной стойкости, жаростойкости и т. д. Эти процессы осуществляются практически без силового воздействия, обеспечивая минимальную шероховатость поверхности с округленными вершинами неровностей, тем самым увеличивается опорная поверхность.  [c.172]

Влияние гидрополирования на коррозионную стойкость стали изучалось в сравнении с влиянием обдувки дробью и механического полирования на образцах размером 80 х 50 X X 5 мм из стали 1X13. Предшествующая механическая обработка образцов заключалась в шлифовании или фрезеровании. После обработки дробью ----— была достигнута шероховатость поверхности 4-го класса чистоты, после механического полирования и гидрополирования — 8-го класса чистоты (по ГОСТу 2789—59). Кроме того, испытанию были подвергнуты образцы, поверхность которых после обработки дробью была доведена до 6-го класса чистоты гидрополированием и механическим полированием. Все образцы были изготовлены из стали одной плавки, подвергнутой после прокатки нормализации. Испытания проводили в течение 45 суток в трех различных средах в парах соляной кислоты, в морской воде и в парах воды.  [c.314]

Этот вид обработки в процессе сборки обычно производят для достижения меньшей шероховатости поверхностей, подвергавшихся опиливанию или зачистке. Припуск под иолирозакне оставляется очень небольшой (0,005—0,007 мм). Заглаживание рисок при полировании поверхностей благотворно сказывается на износостойкости деталей. Кроме того, при уменьшении шероховатости сокращается поверхность соприкосновения деталей с воздухом и коррозионными средами, что повышает стойкость полированной поверхности против коррозии. Полирование позволяет также обнаружить дефекты поверхностного слоя — треш,ины, волосовины, флокены, которые на грубо обработанной поверхности часто незаметны.  [c.90]


Алмазно-металлическке бруски. Конструкция алмазно-металлических брусков для хонингования может быть использована и для суперфиниширования. При замене абразивных брусков алмазными на операциях суперфиниширования плоскостей и гладких шеек стальных закаленных деталей наблюдается повышение производительности обработки до 2 раз и увеличение стойкости инструмента в 80—100 раз, однако шероховатость поверхности увеличивается примерно на один класс.  [c.655]

Примечания 1. Скорость резания при обработке алмазными резцами увеличивают в 2 — 2,5 раза по сравнению с твердосплавными при обработке резцами, оснащенными керамическими пластинками, ее увеличивают в 1,3 —1,5 раза. 2. Если предварительное и окончательное растачивание выполняют одними и теми же шпинделями, режим выбирают по окончательному растачиванию. 3. При обработке отверстий диаметром до 20 мм частота вращения шпинделя не должна превышать частоты вращения, допускаемой расточной головкой (снижается скорость резания). 4. При растачивании отверстий диаметром до 22 мм в стальных деталях скорости резания назначают по нижнему пределу и уменьшают в 1,2 раза. 5. При обработке. /1еталей из чугуна, бронзы, баббитов, если позволяют технические условия, для повышения стойкости резцов и уменьшения параметров шероховатости поверхности целесообразно применять охлаждение. При обработке деталей из алюминия и его сплавов применение СОЖ обязательно. При обработке деталей из чугуна и бронзы рекомендуется применять следующие СОЖ 5%-ную эмульсию 50% масла  [c.385]

По сравнению со стандартными абра-ЗИВНЫ1МИ бруска)ми бруски с твердым смазочным материалом обеспечивают увеличенный на 30—50% съем металла, двух-, трехкратное снижение параметра шероховатости поверхности и до 5 раз повышают стойкость инструмента. Для эффекта смазывания необходимо подобрать режимы суперфиниширования, обеспечивающие достаточное выделение теплоты для расплав.ления смазочного материала на режущей поверхности бруска.  [c.437]

Разделение обработки на черновую и чистовую необходимо, когда выполнение операции за один рабочий ход не обеспечивает получения требуемой точности обработки и параметра шероховатости поверхности. Объединение черновых и чистовых рабочих ходов недопустимо, если это влечет за собой остаточные деформации от действия сил резания или зажима, снижает производительность из-за неблагоприятного сочетания режимов резания или малой стойкости отдельных ступеней режущего инструмента. При многопереходной обработке заготовок на многопозиционных станках бывает целесообразно не только разделить технологические переходы на черновые и чистовые, но и ввести получи-стовые переходы, что повышает качество обработки и стойкость инструментов, не увеличивая Т , так как все переходы выполняются одновременно. Не рекомендуется объединять в один технологический переход чистовую и черновую обработки (например, развертывание и цекование), так как возникающие при этом вибрации вызывают огранку и другие отклонения. Если объединение технологических переходов необходимо из-за отсутствия свободных позиций, применяют компенсирующие (плавающие) устройства или обеспечивают последовательность процессов обработки, т. е. вступление в работу второго инструмента после окончания резания первым  [c.458]

В литературе имеются указания на главнейшие факторы, определяющие износостойкость калибров И). Так, считается, что наибольшая стойкость калибров лости-гается при сравнительно мягкой закалке (46—64 HR ) и при троостомартепсито-вой структуре. Кроме твердости материала иа износостойкость влияют материал проверяемого изделия, зазор между калибром и изделием, шероховатость поверхностей калибра 11 изделия, характер финишной обработки, наличие или отсутсгвие износостойкого покрытия и его характер, использование калибров, оснащенных твердым сплавом, и др.  [c.38]

Быстрорежущие резцы дают более гладкую обработанную поверхность, поэтому они находят более широкое применение. Но при строгании сравнительно больших плоскостей, особенно плоскостей деталей из стального литья, стойкость этих резцов меньше машинного времени одного прохода. В конце прохода шероховатость поверхности значительно повышается. В таких случаях применяются резцы с пластинками твердого сплава Т5КЮ. При плавном врезании режущей кромки, обеспечиваемом конструкцией таких резцов, сплав не выкрашивается, кромка достаточно долго остается острой и шероховатость обработанной поверхности получается одинаковой и в начале, и конце прохода. Работа производится при следующих режимах резания /=0,2- 0,3 мм, подача s = lO- -lS мм1ход. Скорость резания устанавливается минимальная, когда необходимо получить поверхность по 6-му классу чистоты. На крупных станках эти скорости составляют 6—7 mImuh, на средних станках 8—9 м/мин.  [c.122]

Механическая эрозия вызывается ударами о поверхность конструкционного материала частиц теплоносителя, срывающих мельчайшую стружку этого материала. Следовательно, механическая эрозия усиливается с увеличением кинетической энергии частиц теплоносителя и шероховатости поверхности. Поэтому при прочих равных условиях механическая эрозия конструкционных материалов будет больше теми теплоносителями, у которых удельный вес больше. С этой точки зрения мини.мальная эрозия должна наблюдаться у истииных металлов и их оплаоов, а максимальная — у. металлов МС. Следовательно, среди всех жидкометаллических теплоносителей минимальная эрозия ими конструкционных материалов будет у лития и. макси.мальная — у ртути. Чтобы уменьшить разрушение материалов посредством эрозии, необходимо применять трубопроводы с минимальной шероховатостью, избегать в коммуникациях острых (крутых) поворотов и резких изменений скорости потока теплоносителя. Наибольшей стойкостью против эрозии обладают те 1.1атериалы, которые обладают большей твердостью. С этой точки зрения закалка стальных деталей является наиболее эффективным методом борьбы с эрозией.  [c.106]


Смотреть страницы где упоминается термин Стойкость Шероховатость поверхност : [c.381]    [c.287]    [c.47]    [c.103]    [c.26]    [c.92]    [c.573]    [c.353]    [c.400]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.3 , c.398 ]



ПОИСК



Поверхности шероховатость

Шероховатость поверхности при поверхностей

Шероховатые поверхности



© 2025 Mash-xxl.info Реклама на сайте